Wolfgang Peukert

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3758717/wolfgang-peukert-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

82 11,469 418 54 h-index g-index citations papers 6.61 12,874 5.6 430 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
418	Robust optimization in nanoparticle technology: A proof of principle by quantum dot growth in a residence time reactor. <i>Computers and Chemical Engineering</i> , 2022 , 157, 107618	4	
417	Determination of the yield, mass and structure of silver patches on colloidal silica using multiwavelength analytical ultracentrifugation. <i>Journal of Colloid and Interface Science</i> , 2022 , 607, 698-7	790	1
416	En route towards a comprehensive dimensionless representation of precipitation processes. <i>Chemical Engineering Journal</i> , 2022 , 428, 131984	14.7	1
415	Temperature influence on the triboelectric powder charging during dry coating of polypropylene with nanosilica particles. <i>Powder Technology</i> , 2022 , 399, 117224	5.2	0
414	Quantitative modeling of precipitation processes. Chemical Engineering Journal, 2022, 136195	14.7	O
413	Versatile strategy for homogeneous drying patterns of dispersed particles. <i>Nature Communications</i> , 2022 , 13,	17.4	2
412	Mechanics of colloidal supraparticles under compression. <i>Science Advances</i> , 2021 , 7, eabj0954	14.3	7
411	Facile Synthesis of Gallium (III)-Chitosan Complexes as Antibacterial Biomaterial. <i>Pharmaceutics</i> , 2021 , 13,	6.4	1
410	Towards a generally applicable methodology for the characterization of particle properties relevant to processing in powder bed fusion of polymers From single particle to bulk solid behavior. <i>Additive Manufacturing</i> , 2021 , 41, 101957	6.1	3
409	Effect of pH and urea on the proteins secondary structure at the water/air interface and in solution. Journal of Colloid and Interface Science, 2021, 590, 38-49	9.3	7
408	Infiltration behavior of liquid thermosets in thermoplastic powders for additive manufacturing of polymer composite parts in a combined powder bed fusion process. <i>Polymer Composites</i> , 2021 , 42, 5265	;3	О
407	Isoelectric Point of Proteins at Hydrophobic Interfaces. Frontiers in Chemistry, 2021, 9, 712978	5	7
406	Towards recombinantly produced milk proteins: Physicochemical and emulsifying properties of engineered whey protein beta-lactoglobulin variants. <i>Food Hydrocolloids</i> , 2021 , 110, 106132	10.6	11
405	Impact of DAA/water composition on PFSA ionomer conformation. <i>Journal of Colloid and Interface Science</i> , 2021 , 582, 883-893	9.3	1
404	Estimation of bivariate probability distributions of nanoparticle characteristics, based on univariate measurements. <i>Inverse Problems in Science and Engineering</i> , 2021 , 29, 1343-1368	1.3	2
403	Probing sedimentation non-ideality of particulate systems using analytical centrifugation. <i>Soft Matter</i> , 2021 , 17, 2803-2814	3.6	3
402	Improvement of polymer properties for powder bed fusion by combining in situ PECVD nanoparticle synthesis and dry coating. <i>Plasma Processes and Polymers</i> , 2021 , 18, 2000247	3.4	2

(2020-2021)

Structure and adsorption behavior of high hydrostatic pressure-treated 🛭 actoglobulin. <i>Journal of Colloid and Interface Science</i> , 2021 , 596, 173-183	9.3	2
Einfluss von Tensiden auf die molekulare Struktur der I/Wasser-Grenzfldhe. <i>Angewandte Chemie</i> , 2021 , 133, 25347	3.6	
Rapid fabrication and interface structure of highly faceted epitaxial Ni-Au solid solution nanoparticles on sapphire. <i>Acta Materialia</i> , 2021 , 220, 117318	8.4	2
Effect of Surfactants on the Molecular Structure of the Buried Oil/Water Interface. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 25143-25150	16.4	7
Characterization of Electrospray Drop Size Distributions by Mobility-Classified Mass Spectrometry: Implications for Ion Clustering in Solution and Ion Formation Pathways. <i>Analytical Chemistry</i> , 2021 , 93, 12862-12871	7.8	1
Whey protein (amyloid)-aggregates in oil-water systems: The process-related comminution effect. <i>Journal of Food Engineering</i> , 2021 , 311, 110730	6	1
Well-separated water-soluble carbon dots via gradient chromatography. <i>Nanoscale</i> , 2021 , 13, 13116-13	1 7.8	9
Assessing stress conditions and impact velocities in fluidized bed opposed jet mills. <i>Particuology</i> , 2020 , 53, 12-22	2.8	6
Effects of Medium pH and Preconditioning Treatment on Protein Adsorption on 45S5 Bioactive Glass Surfaces. <i>Advanced Materials Interfaces</i> , 2020 , 7, 2000420	4.6	6
In Situ Monitoring of Particle Formation with Spectroscopic and Analytical Techniques Under Solvothermal Conditions. <i>Chemical Engineering and Technology</i> , 2020 , 43, 879-886	2	1
Probing particle heteroaggregation using analytical centrifugation. <i>Soft Matter</i> , 2020 , 16, 3407-3415	3.6	4
Raman and FTIR spectroscopic study on the formation of the isomers MIL-68(Al) and MIL-53(Al) <i>RSC Advances</i> , 2020 , 10, 7336-7348	3.7	24
eMoM: Exact method of moments Mucleation and size dependent growth of nanoparticles. <i>Computers and Chemical Engineering</i> , 2020 , 136, 106775	4	6
Structure and Dynamics of Interfacial Peptides and Proteins from Vibrational Sum-Frequency Generation Spectroscopy. <i>Chemical Reviews</i> , 2020 , 120, 3420-3465	68.1	61
Effect of the Counteranion on the Formation Pathway of CuZnSnS (CZTS) Nanoparticles under Solvothermal Conditions. <i>Inorganic Chemistry</i> , 2020 , 59, 1973-1984	5.1	2
Measurement of length distribution of beta-lactoglobulin fibrils by multiwavelength analytical ultracentrifugation. <i>European Biophysics Journal</i> , 2020 , 49, 745-760	1.9	7
Role of Prenucleation Building Units in Determining Metal®rganic Framework MIL-53(Al) Morphology. <i>Crystal Growth and Design</i> , 2020 , 20, 3641-3649	3.5	5
Packings of micron-sized spherical particles Insights from bulk density determination, X-ray microtomography and discrete element simulations. <i>Advanced Powder Technology</i> , 2020 , 31, 2293-2304	4.6	14
	Einfluss von Tensiden auf die molekulare Struktur der ÜWasser-Grenzflühe. Angewandte Chemie, 2021, 133, 25347 Rapid fabrication and interface structure of highly faceted epitaxial Ni-Au solid solution nanoparticles on sapphire. Acta Materialia, 2021, 220, 117318 Effect of Surfactants on the Molecular Structure of the Buried Oil/Water Interface. Angewandte Chemie - International Edition, 2021, 60, 25143-25150 Characterization of Electrospray Drop Size Distributions by Mobility-Classified Mass Spectrometry: Implications for Ion Clustering in Solution and Ion Formation Pathways. Analytical Chemistry, 2021, 93, 12862-12871 Whey protein (amyloid)-soggregates in oil-water systems: The process-related comminution effect. Journal of Food Engineering, 2021, 311, 110730 Well-separated water-soluble carbon dots via gradient chromatography. Nanoscale, 2021, 13, 13116-13 Assessing stress conditions and impact velocities in fluidized bed opposed jet mills. Particuology, 2020, 53, 12-22 Effects of Medium pH and Preconditioning Treatment on Protein Adsorption on 4555 Bioactive Glass Surfaces. Advanced Materials Interfaces, 2020, 7, 2000420 In Situ Monitoring of Particle Formation with Spectroscopic and Analytical Techniques Under Solvothermal Conditions. Chemical Engineering and Technology, 2020, 43, 879-886 Probing particle heteroaggregation using analytical centrifugation. Soft Matter, 2020, 16, 3407-3415 Raman and FTIR spectroscopic study on the formation of the isomers MIL-68(Al) and MIL-53(Al) RSC Advances, 2020, 10, 7336-7348 eMoM: Exact method of momentsBlucleation and size dependent growth of nanoparticles. Computers and Chemical Engineering, 2020, 136, 106775 Structure and Dynamics of Interfacial Peptides and Proteins from Vibrational Sum-Frequency Generation Spectroscopy. Chemical Reviews, 2020, 120, 3420-3465 Effect of the Counteranion on the Formation Pathway of CuZnSnS (CZTS) Nanoparticles under Solvothermal Conditions. Inorganic Chemistry, 2020, 59, 1973-1984 Measurement of length distribution of	EinFluss von Tensiden auf die molekulare Struktur der IJWasser-Grenzflöhe. Angewandte Chemie, 2021, 133, 25347 Rapid fabrication and interface structure of highly faceted epitaxial Ni-Au solid solution ananoparticles on sapphire. Acta Materialia, 2021, 220, 117318 Effect of Surfactants on the Molecular Structure of the Buried Oil/Water Interface. Angewandte Chemie. 164, 2021, 62, 25143-25150 Characterization of Electrospray Drop Size Distributions by Mobility-Classified Mass Spectrometry: Implications for lon Clustering in Solution and Ion Formation Pathways. Analytical Chemistry, 2021, 78, 93, 12862-12871 Whey protein (amyloid) aggregates in oil-water systems: The process-related comminution effect. Journal of Food Engineering, 2021, 311, 110730 Well-separated water-soluble carbon dots via gradient chromatography. Nanoscale, 2021, 13, 13116-131729 Assessing stress conditions and impact velocities in fluidized bed opposed jet mills. Particuology, 2020, 53, 12-22 Effects of Medium pH and Preconditioning Treatment on Protein Adsorption on 4555 Bioactive Glass Surfaces. Advanced Materials Interfaces, 2020, 7, 2000420 In Situ Monitoring of Particle Formation with Spectroscopic and Analytical Techniques Under Solvothermal Conditions. Chemical Engineering and Technology, 2020, 43, 879-886 Probing particle heteroaggregation using analytical centrifugation. Soft Matter, 2020, 16, 3407-3415 36 Raman and FTIR spectroscopic study on the formation of the isomers MIL-68(Al) and MIL-53(Al) RSC Advances, 2020, 10, 7336-7348 EMOM: Exact method of moments Blucleation and size dependent growth of nanoparticles. Computers and Chemical Engineering, 2020, 136, 106775 4 Structure and Dynamics of Interfacial Peptides and Proteins from Vibrational Sum-Frequency Generation Spectroscopy. Chemical Reviews, 2020, 120, 3420-3465 Effect of the Counteranion on the Formation Pathway of CuZnSnS (CZTS) Nanoparticles under Solvothermal Conditions. Inorganic Chemistry, 2020, 59, 1973-1984 Measurement of length distribution of b

383 Flowsheet Simulation of Integrated Precipitation Processes **2020**, 269-304

382	Modeling and Simulation of Process Technology for Nanoparticulate Drug Formulations-A Particle Technology Perspective. <i>Pharmaceutics</i> , 2020 , 13,	6.4	3
381	Impact Comminution in Jet Mills 2020 , 305-347		
380	Chromatographic property classification of narrowly distributed ZnS quantum dots. <i>Nanoscale</i> , 2020 , 12, 12114-12125	7.7	4
379	Development of poly(L-lactide) (PLLA) microspheres precipitated from triacetin for application in powder bed fusion of polymers. <i>Additive Manufacturing</i> , 2020 , 32, 100966	6.1	14
378	Observing Oriented Attachment during Mesocrystal Growth with in Situ Dynamic Light Scattering (DLS). <i>Crystal Growth and Design</i> , 2020 , 20, 1266-1275	3.5	3
377	Electrophotographic Multilayer Powder Pattern Deposition for Additive Manufacturing. <i>Jom</i> , 2020 , 72, 1366-1375	2.1	8
376	Rapid Characterization and Parameter Space Exploration of Perovskites Using an Automated Routine. <i>ACS Combinatorial Science</i> , 2020 , 22, 6-17	3.9	5
375	Production of PBT/PC multi-material particles via a combination of co-grinding and spray-agglomeration for powder bed fusion. <i>Procedia CIRP</i> , 2020 , 94, 100-104	1.8	3
374	Scalable production of glass flakes via compression in the liquid phase. <i>Advanced Powder Technology</i> , 2020 , 31, 4145-4156	4.6	3
373	New Prospects for Particle Characterization Using Analytical Centrifugation with Sector-Shaped Centerpieces. <i>Particle and Particle Systems Characterization</i> , 2020 , 37, 2000108	3.1	7
372	Unraveling Complexity: A Strategy for the Characterization of Anisotropic Core Multishell Nanoparticles. <i>Particle and Particle Systems Characterization</i> , 2020 , 37, 2000145	3.1	1
371	Mobility-Classified Mass Spectrometry Reveals a Complete Picture of the Electrospray Outcome. Journal of Physical Chemistry A, 2020 , 124, 8842-8852	2.8	4
370	Thermal rounding of micron-sized polymer particles in a downer reactor: direct vs indirect heating. <i>Rapid Prototyping Journal</i> , 2020 , 26, 1637-1646	3.8	7
369	Anodic Titanium Dioxide Nanotubes for Magnetically Guided Therapeutic Delivery. <i>Scientific Reports</i> , 2019 , 9, 13439	4.9	15
368	A Comprehensive Brownian Dynamics Approach for the Determination of Non-ideality Parameters from Analytical Ultracentrifugation. <i>Langmuir</i> , 2019 , 35, 11491-11502	4	5
367	Influence of the polydispersity of pH 2 and pH 3.5 beta-lactoglobulin amyloid fibril solutions on analytical methods. <i>European Polymer Journal</i> , 2019 , 120, 109211	5.2	16
366	Quantitative Evaluation of Fullerene Separation by Liquid Chromatography. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 16747-16756	3.8	2

(2019-2019)

365	Single-step aerosol synthesis of oxygen-deficient blue titania. <i>Chemical Engineering Science</i> , 2019 , 206, 327-334	4.4	2
364	Formation of drug-loaded nanoemulsions in stirred media mills. <i>Advanced Powder Technology</i> , 2019 , 30, 1584-1591	4.6	4
363	Multidimensional Particle Size Distributions and Their Application to Nonspherical Particle Systems in Two Dimensions. <i>Particle and Particle Systems Characterization</i> , 2019 , 36, 1800554	3.1	11
362	n-Hexanol Enhances the Cetyltrimethylammonium Bromide Stabilization of Small Gold Nanoparticles and Promotes the Growth of Gold Nanorods. <i>ACS Applied Nano Materials</i> , 2019 , 2, 3206-3	2519	10
361	Isoelectric Points of Proteins at the Air/Liquid Interface and in Solution. <i>Langmuir</i> , 2019 , 35, 5004-5012	4	21
360	MagnII-Phases in Anatase Strongly Promote Cocatalyst-Free Photocatalytic Hydrogen Evolution. <i>ACS Catalysis</i> , 2019 , 9, 3627-3632	13.1	27
359	Intracellular Drug Delivery with Anodic Titanium Dioxide Nanotubes and Nanocylinders. <i>ACS Applied Materials & Dioxide Materia</i>	9.5	16
358	Purification and structural elucidation of carbon dots by column chromatography. <i>Nanoscale</i> , 2019 , 11, 8464-8474	7.7	51
357	Analysis of Tribo-Charging during Powder Spreading in Selective Laser Sintering: Assessment of Polyamide 12 Powder Ageing Effects on Charging Behavior. <i>Polymers</i> , 2019 , 11,	4.5	12
356	How to Estimate Material Parameters for Multiphase, Multicomponent Precipitation Modeling. <i>Crystal Growth and Design</i> , 2019 , 19, 2785-2793	3.5	2
355	Mesoporous silica submicron particles (MCM-41) incorporating nanoscale Ag: synthesis, characterization and application as drug delivery coatings. <i>Journal of Porous Materials</i> , 2019 , 26, 443-45	3 ^{2.4}	10
354	Translational and Rotational Diffusion Coefficients of Gold Nanorods Dispersed in Mixtures of Water and Glycerol by Polarized Dynamic Light Scattering. <i>Journal of Physical Chemistry B</i> , 2019 , 123, 9491-9502	3.4	10
353	Deformation and Friction at the Microscale From Model Experiments to Process Characterization 2019 , 385-415		
352	Magnll Phases Doped with Pt for Photocatalytic Hydrogen Evolution. <i>ACS Applied Energy Materials</i> , 2019 , 2, 8399-8404	6.1	6
351	A multiwavelength emission detector for analytical ultracentrifugation. <i>Nanoscale Advances</i> , 2019 , 1, 4422-4432	5.1	3
350	Suspension- and powder-based derivation of Hansen dispersibility parameters for zinc oxide quantum dots. <i>Particuology</i> , 2019 , 44, 71-79	2.8	5
349	A new approach for the stabilization of amorphous drug nanoparticles during continuous antisolvent precipitation. <i>Chemical Engineering Journal</i> , 2019 , 361, 428-438	14.7	9
348	Aerosol synthesis of germanium nanoparticles supported by external seeding: Theoretical and experimental analysis. <i>Journal of Aerosol Science</i> , 2019 , 128, 50-61	4.3	8

347	Formulation of carbon black-ionomer dispersions for thin film formation in fuel cells. <i>Particuology</i> , 2019 , 44, 7-21	2.8	10
346	Pressure induced local phase transformation in nanocrystalline tetragonal zirconia microparticles. <i>Scripta Materialia</i> , 2019 , 163, 86-90	5.6	2
345	Inflow boundary conditions determine T-mixer efficiency. <i>Reaction Chemistry and Engineering</i> , 2019 , 4, 559-568	4.9	21
344	Production of polyamide 11 microparticles for Additive Manufacturing by liquid-liquid phase separation and precipitation. <i>Chemical Engineering Science</i> , 2019 , 197, 11-25	4.4	28
343	How to avoid interfering electrochemical reactions in ESI-MS analysis. <i>Journal of Mass Spectrometry</i> , 2019 , 54, 301-310	2.2	8
342	Determination of Hansen parameters for particles: A standardized routine based on analytical centrifugation. <i>Advanced Powder Technology</i> , 2018 , 29, 1550-1561	4.6	46
341	Microwave-assisted one-step synthesis of white light-emitting carbon dot suspensions. <i>Optical Materials</i> , 2018 , 80, 110-119	3.3	21
340	Biodegradabiliy of spherical mesoporous silica particles (MCM-41) in simulated body fluid (SBF). <i>American Mineralogist</i> , 2018 , 103, 350-354	2.9	3
339	Quantitative evaluation of nanoparticle classification by size-exclusion chromatography. <i>Powder Technology</i> , 2018 , 339, 264-272	5.2	22
338	The effect of mixing on silver particle morphology in flow synthesis. <i>Chemical Engineering Science</i> , 2018 , 192, 254-263	4.4	4
337	The mass transfer at Taylor cones. Journal of Aerosol Science, 2018, 123, 39-51	4.3	7
336	Assessing the influence of viscosity and milling bead size on the stressing conditions in a stirred media mill by single particle probes. <i>Chemical Engineering Research and Design</i> , 2018 , 136, 859-869	5.5	9
335	Molecular structure of octadecylphosphonic acids during their self-assembly on ⊞AlO(0001). <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 19382-19389	3.6	8
334	Production of spherical semi-crystalline polycarbonate microparticles for Additive Manufacturing by liquid-liquid phase separation. <i>Powder Technology</i> , 2018 , 335, 275-284	5.2	23
333	Advanced Multiwavelength Detection in Analytical Ultracentrifugation. <i>Analytical Chemistry</i> , 2018 , 90, 1280-1291	7.8	32
332	Treatment of polymer powders by combining an atmospheric plasma jet and a fluidized bed reactor. <i>Powder Technology</i> , 2018 , 325, 490-497	5.2	9
331	Role of Citrate and NaBr at the Surface of Colloidal Gold Nanoparticles during Functionalization. Journal of Physical Chemistry C, 2018 , 122, 27383-27391	3.8	10
330	Spherical Polybutylene Terephthalate (PBT)-Polycarbonate (PC) Blend Particles by Mechanical Alloying and Thermal Rounding. <i>Polymers</i> , 2018 , 10,	4.5	18

329	Determination of the two-dimensional distributions of gold nanorods by multiwavelength analytical ultracentrifugation. <i>Nature Communications</i> , 2018 , 9, 4898	17.4	28
328	A model for the particle mass yield in the aerosol synthesis of ultrafine monometallic nanoparticles by spark ablation. <i>Journal of Aerosol Science</i> , 2018 , 126, 133-142	4.3	13
327	Ionomer and protein size analysis by analytical ultracentrifugation and electrospray scanning mobility particle sizer. <i>European Biophysics Journal</i> , 2018 , 47, 777-787	1.9	5
326	Simple and Reliable Method for Studying the Adsorption Behavior of Aquivion Ionomers on Carbon Black Surfaces. <i>Langmuir</i> , 2018 , 34, 12324-12334	4	17
325	Elucidation of the Formation Mechanism of Metal®rganic Frameworks via in-Situ Raman and FTIR Spectroscopy under Solvothermal Conditions. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 12267-12278	3.8	23
324	A widely applicable tool for modeling precipitation processes. <i>Computers and Chemical Engineering</i> , 2017 , 98, 197-208	4	13
323	Characterization of a downer reactor for particle rounding. <i>Powder Technology</i> , 2017 , 316, 357-366	5.2	14
322	A Comprehensive Brownian Dynamics-Based Forward Model for Analytical (Ultra)Centrifugation. <i>Particle and Particle Systems Characterization</i> , 2017 , 34, 1600229	3.1	11
321	Continuous synthesis of CuInS2 quantum dots. RSC Advances, 2017, 7, 10057-10063	3.7	13
320	Automated synthesis of quantum dot nanocrystals by hot injection: Mixing induced self-focusing. <i>Chemical Engineering Journal</i> , 2017 , 320, 232-243	14.7	17
319	Functionalization of steel surfaces with organic acids: Influence on wetting and corrosion behavior. <i>Applied Surface Science</i> , 2017 , 404, 326-333	6.7	26
318	In situ spectroscopy of ligand exchange reactions at the surface of colloidal gold and silver nanoparticles. <i>Journal of Physics Condensed Matter</i> , 2017 , 29, 133002	1.8	9
317	Interplay of Internal Structure and Interfaces on the Emitting Properties of Hybrid ZnO Hierarchical Particles. <i>ACS Applied Materials & Description</i> (2017), 9, 15182-15191	9.5	5
316	Electrophoretic deposition of anisotropic Fe 2 O 3 /PVP/chitosan nanocomposites for biomedical applications. <i>Materials Letters</i> , 2017 , 200, 83-86	3.3	13
315	Shedding light on the effective fluorophore structure of high fluorescence quantum yield carbon nanodots. <i>RSC Advances</i> , 2017 , 7, 24771-24780	3.7	76
314	Direct numerical simulation of water日thanol flows in a T-mixer. <i>Chemical Engineering Journal</i> , 2017 , 324, 168-181	14.7	19
313	Mechanochemically induced sulfur doping in ZnO via oxygen vacancy formation. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 13838-13845	3.6	15
312	Changes within the stabilizing layer of ZnO nanoparticles upon washing. <i>Journal of Colloid and Interface Science</i> , 2017 , 504, 356-362	9.3	8

311	Determination of the length and diameter of nanorods by a combination of analytical ultracentrifugation and scanning mobility particle sizer. <i>Nanoscale Horizons</i> , 2017 , 2, 253-260	10.8	13
310	Three-dimensional and quantitative reconstruction of non-accessible internal porosity in hematite nanoreactors using 360° electron tomography. <i>Microporous and Mesoporous Materials</i> , 2017 , 246, 207-2	1 5 43	7
309	Choosing the right nanoparticle size Idesigning novel ZnO electrode architectures for efficient dye-sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 7516-7522	13	8
308	Liquid filtration of nanoparticles through track-etched membrane filters under unfavorable and different ionic strength conditions: Experiments and modeling. <i>Journal of Membrane Science</i> , 2017 , 524, 682-690	9.6	27
307	Interaction of light with hematite hierarchical structures: Experiments and simulations. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2017 , 189, 369-382	2.1	5
306	Structural factors controlling size reduction of graphene oxide in liquid processing. <i>Carbon</i> , 2017 , 125, 360-369	10.4	9
305	Deformation behavior of nanocrystalline titania particles accessed by complementary in situ electron microscopy techniques. <i>Journal of the American Ceramic Society</i> , 2017 , 100, 5709-5722	3.8	10
304	Brownian dynamics simulations of analytical ultracentrifugation experiments exhibiting hydrodynamic and thermodynamic non-ideality. <i>Nanoscale</i> , 2017 , 9, 17770-17780	7.7	4
303	Influence of Tail Groups during Functionalization of ZnO Nanoparticles on Binding Enthalpies and Photoluminescence. <i>Langmuir</i> , 2017 , 33, 13581-13589	4	8
302	Correlation between product purity and process parameters for the synthesis of Cu2ZnSnS4 nanoparticles using microwave irradiation. <i>Journal of Nanoparticle Research</i> , 2017 , 19, 1	2.3	5
301	Enhanced Crystallization of Lysozyme Mediated by the Aggregation of Inorganic Seed Particles. <i>Crystal Growth and Design</i> , 2017 , 17, 967-981	3.5	6
300	Characterization of stressing conditions in mills (A) comprehensive research strategy based on well-characterized model particles. <i>Powder Technology</i> , 2017 , 305, 652-661	5.2	15
299	Noble-Metal-Free Photocatalytic Hydrogen Evolution Activity: The Impact of Ball Milling Anatase Nanopowders with TiH. <i>Advanced Materials</i> , 2017 , 29, 1604747	24	51
298	Formation of Mefenamic Acid Nanocrystals with Improved Dissolution Characteristics. <i>Chemie-Ingenieur-Technik</i> , 2017 , 89, 1060-1071	0.8	12
297	An experimental study of ultrafiltration for sub-10 nm quantum dots and sub-150 nm nanoparticles through PTFE membrane and Nuclepore filters. <i>Journal of Membrane Science</i> , 2016 , 497, 153-161	9.6	23
296	Ligand-assisted thickness tailoring of highly luminescent colloidal CHNHPbX (X = Br and I) perovskite nanoplatelets. <i>Chemical Communications</i> , 2016 , 53, 244-247	5.8	65
295	2D analysis of polydisperse core-shell nanoparticles using analytical ultracentrifugation. <i>Analyst, The,</i> 2016 , 142, 206-217	5	23
294	Simultane Bestimmung spektraler Eigenschaften und Gr\(\mathbb{B}\)n von multiplen Partikeln in L\(\mathbb{B}\)ung mit Subnanometer-Aufl\(\mathbb{B}\)ung. <i>Angewandte Chemie</i> , 2016 , 128, 11944-11949	3.6	2

(2016-2016)

293	Lubrication of Individual Microcontacts by a Self-Assembled Alkyl Phosphonic Acid Monolayer on EAl2O3(0001). <i>Langmuir</i> , 2016 , 32, 8298-306	4	14
292	Deciphering the Role of Impurities in Methylammonium Iodide and Their Impact on the Performance of Perovskite Solar Cells. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600593	4.6	25
291	Assigning Electronic States in Carbon Nanodots. <i>Advanced Functional Materials</i> , 2016 , 26, 7975-7985	15.6	42
290	Simultaneous Identification of Spectral Properties and Sizes of Multiple Particles in Solution with Subnanometer Resolution. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 11770-4	16.4	37
289	Numerical Investigation of Flow Patterns and Concentration Profiles in Y-Mixers. <i>Chemical Engineering and Technology</i> , 2016 , 39, 1963-1971	2	7
288	Impact of formulation and operating parameters on particle size and grinding media wear in wet media milling of organic compounds IA case study for pyrene. <i>Advanced Powder Technology</i> , 2016 , 27, 2507-2519	4.6	23
287	From evaporation-induced self-assembly to shear-induced alignment. <i>Nanoscale</i> , 2016 , 8, 19882-19893	7.7	9
286	Prallzerkleinerung in Fließettgegenstrahlmßlen: Vom Einzelkorn zur Mßle. <i>Chemie-Ingenieur-Technik</i> , 2016 , 88, 1358-1359	0.8	
285	Herstellung und Funktionalisierung neuartiger Pulverwerkstoffe fildie additive Fertigung. <i>Chemie-Ingenieur-Technik</i> , 2016 , 88, 1208-1208	0.8	2
284	Grundprinzipien der Produktgestaltung. Chemie-Ingenieur-Technik, 2016 , 88, 1351-1351	0.8	
283	Multidimensional Nanoparticle Characterization by Means of Analytical Ultracentrifugation and Multiwavelength Detection. <i>Chemie-Ingenieur-Technik</i> , 2016 , 88, 1354-1354	0.8	1
282	Classification of Nanoparticles by Size-Selective Precipitation: The Role of Solubility Parameters. <i>Chemie-Ingenieur-Technik</i> , 2016 , 88, 1299-1299	0.8	
281	A novel process for production of spherical PBT powders and their processing behavior during laser beam melting 2016 ,		5
280	Spectra Library: An Assumption-Free In Situ Method to Access the Kinetics of Catechols Binding to Colloidal ZnO Quantum Dots. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 932-5	16.4	9
279	Mechanochemical aspects in wet stirred media milling. <i>International Journal of Mineral Processing</i> , 2016 , 156, 24-31		46
278	Specific effects of Ca(2+) ions and molecular structure of Elactoglobulin interfacial layers that drive macroscopic foam stability. <i>Soft Matter</i> , 2016 , 12, 5995-6004	3.6	23
277	Dynamic range multiwavelength particle characterization using analytical ultracentrifugation. <i>Nanoscale</i> , 2016 , 8, 7484-95	7.7	37
276	Fast and Slow Ligand Exchange at the Surface of Colloidal Gold Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 1673-1682	3.8	38

275	Production of spherical wax and polyolefin microparticles by melt emulsification for additive manufacturing. <i>Chemical Engineering Science</i> , 2016 , 141, 282-292	4.4	30
274	Quantitative investigation of the fragmentation process and defect density evolution of oxo-functionalized graphene due to ultrasonication and milling. <i>Carbon</i> , 2016 , 96, 897-903	10.4	27
273	Polarized Raman scattering and SEM combined full characterization of self-assembled nematic thin films. <i>Nanoscale</i> , 2016 , 8, 7672-82	7.7	6
272	Impact of stressing conditions and polymerBurfactant interactions on product characteristics of organic nanoparticles produced by media milling. <i>Powder Technology</i> , 2016 , 294, 71-79	5.2	15
271	Effect of polymer species and concentration on the production of mefenamic acid nanoparticles by media milling. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2016 , 98, 98-107	5.7	24
270	Industrially scalable and cost-effective Mn2+ doped ZnxCd1\(\mathbb{I}\)S/ZnS nanocrystals with 70% photoluminescence quantum yield, as efficient down-shifting materials in photovoltaics. <i>Energy and Environmental Science</i> , 2016 , 9, 1083-1094	35.4	53
269	Photobleaching and stabilization of carbon nanodots produced by solvothermal synthesis. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 466-75	3.6	64
268	Design and scale-up of a semi-industrial downer-reactor for the rounding of irregular polymer particles 2016 ,		1
267	Extension of the Deep UV-Capabilities in Multiwavelength Spectrometry in Analytical Ultracentrifugation: The Role of Oil Deposits. <i>Particle and Particle Systems Characterization</i> , 2016 , 33, 184-189	3.1	8
266	Production of micron-sized polymer particles for additive manufacturing by melt emulsification 2016 ,		1
265	Separation of nanoparticles: Filtration and scavenging from waste incineration plants. <i>Waste Management</i> , 2016 , 52, 346-52	8.6	14
264	Binary IndiumZinc Oxide Photoanodes for Efficient Dye-Sensitized Solar Cells. <i>Advanced Energy Materials</i> , 2016 , 6, 1501075	21.8	17
263	Optimized polybutylene terephthalate powders for selective laser beam melting. <i>Chemical Engineering Science</i> , 2016 , 156, 1-10	4.4	47
262	Effective Ligand Engineering of the Cu2ZnSnS4 Nanocrystal Surface for Increasing Hole Transport Efficiency in Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2016 , 26, 8300-8306	15.6	56
261	Layer-by-layer assemblies of catechol-functionalized TiO2 nanoparticles and porphyrins through electrostatic interactions. <i>Chemistry - A European Journal</i> , 2015 , 21, 5041-54	4.8	19
260	The effects of post-processing on the surface and the optical properties of copper indium sulfide quantum dots. <i>Journal of Colloid and Interface Science</i> , 2015 , 445, 337-347	9.3	18
259	Zeolite-Coated Porous Arrays: A Novel Strategy for Enzyme Encapsulation. <i>Advanced Functional Materials</i> , 2015 , 25, 1832-1836	15.6	13
258	New possibilities of accurate particle characterisation by applying direct boundary models to analytical centrifugation. <i>Nanoscale</i> , 2015 , 7, 6574-87	7.7	47

(2015-2015)

257	Effects of an adhesive force of admixed particles on compressed packing fractions in a particle bed. <i>Advanced Powder Technology</i> , 2015 , 26, 626-631	4.6	8
256	Delamination of graphite in a high pressure homogenizer. <i>RSC Advances</i> , 2015 , 5, 57328-57338	3.7	52
255	Local densification of a single micron sized silica sphere by uniaxial compression. <i>Scripta Materialia</i> , 2015 , 108, 84-87	5.6	25
254	Low temperature formation of CuIn 1½ Ga x Se 2 solar cell absorbers by all printed multiple species nanoparticulate Se + CuIh + CuIla precursors. <i>Thin Solid Films</i> , 2015 , 582, 60-68	2.2	1
253	Formation of Nanoemulsions by Stirred Media Milling. <i>Procedia Engineering</i> , 2015 , 102, 557-564		4
252	Surface modification of ZnO nanorods with Hamilton receptors. <i>International Journal of Molecular Sciences</i> , 2015 , 16, 8186-200	6.3	7
251	Carboxylate Ion Pairing with Alkali-Metal Ions for Elactoglobulin and Its Role on Aggregation and Interfacial Adsorption. <i>Journal of Physical Chemistry B</i> , 2015 , 119, 5505-17	3.4	28
250	Self-Assembled Monolayers Get Their Final Finish via a Quasi-Langmuir-Blodgett Transfer. <i>Langmuir</i> , 2015 , 31, 4678-85	4	14
249	In Situ Deformation and Breakage of Silica Particles Inside a SEM. <i>Procedia Engineering</i> , 2015 , 102, 201-	210	8
248	Size specific energy (SSE)Energy required to generate minus 75 micron material. <i>International Journal of Mineral Processing</i> , 2015 , 136, 2-6		18
247	Determination of quantitative structure-property and structure-process relationships for graphene production in water. <i>Nano Research</i> , 2015 , 8, 1865-1881	10	15
246	Investigation of the size-property relationship in CuInS2 quantum dots. <i>Nanoscale</i> , 2015 , 7, 18105-18	7.7	34
245	Top-down Processing of Submicron 45S5 Bioglass for Enhanced in Vitro Bioactivity and Biocompatibility. <i>Procedia Engineering</i> , 2015 , 102, 534-541		7
244	Enhanced Nucleation of Lysozyme Using Inorganic Silica Seed Particles of Different Sizes. <i>Crystal Growth and Design</i> , 2015 , 15, 3582-3593	3.5	9
243	A model-based precipitation study of copper-based catalysts. AICHE Journal, 2015, 61, 2104-2116	3.6	11
242	Tunable conduction type of solution-processed germanium nanoparticle based field effect transistors and their inverter integration. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 22106-14	3.6	6
241	A Combined SAXS/SANS Study for the in Situ Characterization of Ligand Shells on Small Nanoparticles: The Case of ZnO. <i>Langmuir</i> , 2015 , 31, 10130-6	4	33
240	Production of well dispersible single walled carbon nanotubes via a fl oating catalystEmethod. <i>Chemical Engineering Science</i> , 2015 , 138, 385-395	4.4	9

239	Deformation behavior of micron-sized polycrystalline gold particles studied by in situ compression experiments and frictional finite element simulation. <i>Powder Technology</i> , 2015 , 286, 706-715	5.2	10
238	In Situ Study on the Evolution of Multimodal Particle Size Distributions of ZnO Quantum Dots: Some General Rules for the Occurrence of Multimodalities. <i>Journal of Physical Chemistry B</i> , 2015 , 119, 15370-80	3.4	33
237	In-situ X-ray diffraction analysis of the recrystallization process in Cu2ZnSnS4 nanoparticles synthesised by hot-injection. <i>Thin Solid Films</i> , 2015 , 582, 269-271	2.2	10
236	In situ cracking of silica beads in the SEM and TEM LEffect of particle size on structure property correlations. <i>Powder Technology</i> , 2015 , 270, 337-347	5.2	26
235	Quantitative evaluation of delamination of graphite by wet media milling. Carbon, 2015, 81, 284-294	10.4	63
234	Synthesis of Goethite FeOOH Particles by Air Oxidation of Ferrous Hydroxide Fe(OH)2 Suspensions: Insight on the Formation Mechanism. <i>Crystal Growth and Design</i> , 2015 , 15, 194-203	3.5	32
233	Determination of the lateral dimension of graphene oxide nanosheets using analytical ultracentrifugation. <i>Small</i> , 2015 , 11, 814-25	11	47
232	FIMOR: An efficient simulation for ZnO quantum dot ripening applied to the optimization of nanoparticle synthesis. <i>Chemical Engineering Journal</i> , 2015 , 260, 706-715	14.7	22
231	Rounding of Irregular Polymer Particles in a Downer Reactor. <i>Procedia Engineering</i> , 2015 , 102, 542-549		12
230	On the mechanism of Zn4O-acetate precursors ripening to ZnO: How dimerization is promoted by hydroxide incorporation. <i>Journal of Chemical Physics</i> , 2015 , 143, 064501	3.9	4
229	Synthesis of In2Se3 and Cu2-xSe Micro- and Nanoparticles with Microwave-Assisted Solvothermal and Aqueous Redox Reactions for the Preparation and Stabilization of Printable Precursors for a CuInSe2 Solar Cell Absorber Layer. <i>Energy Procedia</i> , 2015 , 84, 62-70	2.3	5
228	A novel process route for the production of spherical SLS polymer powders 2015 ,		2
227	Functionalization of polymer powders for SLS-processes using an atmospheric plasma jet in a fluidized bed reactor 2015 ,		2
226	A Novel Process Chain for the Production of Spherical SLS Polymer Powders with Good Flowability. <i>Procedia Engineering</i> , 2015 , 102, 550-556		16
225	Increasing flowability and bulk density of PE-HD powders by a dry particle coating process and impact on LBM processes. <i>Rapid Prototyping Journal</i> , 2015 , 21, 697-704	3.8	26
224	A comprehensive study on the mechanism behind formation and depletion of Cu2ZnSnS4 (CZTS) phases. <i>CrystEngComm</i> , 2015 , 17, 6972-6984	3.3	34
223	From In Situ Characterization to Process Control of Quantum Dot Systems. <i>Procedia Engineering</i> , 2015 , 102, 575-581		0
222	Process Engineering of Nanoparticles Below 20 nm Fundamental Discussion of Characterization, Particle Formation, Stability and Post Processing 2015 , 279-305		

221	Electrophoretic Deposition of Fe2O3/Chitosan Nanocomposite Coatings for Functional and Biomedical Applications. <i>Journal of Nanoscience and Nanotechnology</i> , 2015 , 15, 10149-55	1.3	9	
220	Mechanically induced phase transformation of zinc sulfide. <i>Particuology</i> , 2015 , 18, 1-10	2.8	7	
219	Germanium-silicon alloy and core-shell nanocrystals by gas phase synthesis. <i>Nanoscale</i> , 2015 , 7, 5186-96	7.7	15	
218	Simultaneous analysis of hydrodynamic and optical properties using analytical ultracentrifugation equipped with multiwavelength detection. <i>Analytical Chemistry</i> , 2015 , 87, 3396-403	7.8	49	
217	Classification of Zinc Sulfide Quantum Dots by Size: Insights into the Particle SurfaceBolvent Interaction of Colloids. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 4009-4022	3.8	22	
216	A General Approach To Study the Thermodynamics of Ligand Adsorption to Colloidal Surfaces Demonstrated by Means of Catechols Binding to Zinc Oxide Quantum Dots. <i>Chemistry of Materials</i> , 2015 , 27, 358-369	9.6	56	
215	Unified Design Strategies for Particulate Products. Advances in Chemical Engineering, 2015, 1-81	0.6	19	
214	Attractive particle interaction forces and packing density of fine glass powders. <i>Scientific Reports</i> , 2014 , 4, 6227	4.9	84	
213	Shedding light on the growth of gold nanoshells. ACS Nano, 2014, 8, 3088-96	16.7	37	
212	Formation and dissolution of twin ZnO nanostructures promoted by water and control over their emitting properties. <i>Chemistry - A European Journal</i> , 2014 , 20, 8199-209	4.8	11	
211	Carbon nanodots: toward a comprehensive understanding of their photoluminescence. <i>Journal of the American Chemical Society</i> , 2014 , 136, 17308-16	16.4	282	
210	Correlation of Enhanced Strength and Internal Structure for Heat-Treated Submicron StBer Silica Particles. <i>Particle and Particle Systems Characterization</i> , 2014 , 31, 664-674	3.1	27	
209	Surface Charging and Interfacial Water Structure of Amphoteric Colloidal Particles. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 10033-10042	3.8	26	
208	ZnO superstructures via oriented aggregation initiated in a block copolymer melt. <i>CrystEngComm</i> , 2014 , 16, 1502-1513	3.3	21	
207	Cobalt-releasing 1393 bioactive glass-derived scaffolds for bone tissue engineering applications. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 1393 bioactive glass-derived scaffolds for bone tissue engineering applications. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 1393 bioactive glass-derived scaffolds for bone tissue engineering applications.	9.5	76	
206	Indentation and self-healing mechanisms of a self-assembled monolayera combined experimental and modeling study. <i>Journal of the American Chemical Society</i> , 2014 , 136, 10718-27	16.4	29	
205	Multidimensional analysis of nanoparticles with highly disperse properties using multiwavelength analytical ultracentrifugation. <i>ACS Nano</i> , 2014 , 8, 8871-86	16.7	102	
204	Pulsed direct flame deposition and thermal annealing of transparent amorphous indium zinc oxide films as active layers in field effect transistors. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2014 , 6, 12245-51	9.5	5	

203	Surface functionalization and electronic interactions of ZnO nanorods with a porphyrin derivative. <i>ACS Applied Materials & Damp; Interfaces</i> , 2014 , 6, 6724-30	9.5	15
202	Mixed layers of Elactoglobulin and SDS at air-water interfaces with tunable intermolecular interactions. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 4098-105	3.4	21
201	Spatially resolved flame zone classification of a flame spray nanoparticle synthesis process by combining different optical techniques. <i>Journal of Aerosol Science</i> , 2014 , 69, 82-97	4.3	22
200	A review of models for single particle compression and their application to silica microspheres. <i>Advanced Powder Technology</i> , 2014 , 25, 136-153	4.6	45
199	Stabilization of carbon black particles with Cetyltrimethylammoniumbromide in aqueous media. <i>Powder Technology</i> , 2014 , 253, 338-346	5.2	18
198	Self-alignment of zinc oxide nanorods into a 3D-smectic phase. <i>Thin Solid Films</i> , 2014 , 562, 659-667	2.2	11
197	Vibrational sum-frequency generation at protein modified air water interfaces: Effects of molecular structure and surface charging. <i>Current Opinion in Colloid and Interface Science</i> , 2014 , 19, 2076	·215	44
196	Functionalization of polymers using an atmospheric plasma jet in a fluidized bed reactor and the impact on SLM-processes 2014 ,		2
195	Dry particle coating of polymer particles for tailor-made product properties 2014,		2
194	Enhancing In Vitro Bioactivity of Melt-Derived 45S5 Bioglass by Comminution in a Stirred Media Mill. <i>Journal of the American Ceramic Society</i> , 2014 , 97, 150-156	3.8	31
193	Biocompatibility of submicron Bioglass powders obtained by a top-down approach. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2014 , 102, 952-61	3.5	13
192	A novel process route for the production of spherical LBM polymer powders with small size and good flowability. <i>Powder Technology</i> , 2014 , 261, 78-86	5.2	63
191	Multi-component and multi-phase population balance model: The case of Georgeite formation as methanol catalyst precursor phase. <i>Chemical Engineering Science</i> , 2014 , 109, 158-170	4.4	16
190	Correlation between shape, evaporation mode and mobility of small water droplets on nanorough fibres. <i>Journal of Colloid and Interface Science</i> , 2014 , 417, 171-9	9.3	5
189	Gas phase synthesis of anisotropic silicon germanium hybrid nanoparticles. <i>Journal of Aerosol Science</i> , 2014 , 67, 119-130	4.3	12
188	Delamination of hexagonal boron nitride in a stirred media mill. <i>Journal of Nanoparticle Research</i> , 2013 , 15, 1	2.3	14
187	Relation of Nanostructure and Recombination Dynamics in a Low-Temperature Solution-Processed CuInS2 Nanocrystalline Solar Cell. <i>Advanced Energy Materials</i> , 2013 , 3, 1589-1596	21.8	34
186	Facile synthesis and post-processing of eco-friendly, highly conductive copper zinc tin sulphide nanoparticles. <i>Journal of Nanoparticle Research</i> , 2013 , 15, 1	2.3	15

185	Synthesis of silver nanoparticles in melts of amphiphilic polyesters. <i>Nanotechnology</i> , 2013 , 24, 115604	3.4	4
184	In vitro reactivity of Cu doped 45S5 Bioglass derived scaffolds for bone tissue engineering. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 5659-5674	7-3	95
183	Transmission electron microscopy and time resolved optical spectroscopy study of the electronic and structural interactions of ZnO nanorods with bovine serum albumin. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 9683-9	3.4	7
182	pH effects on the molecular structure of Elactoglobulin modified air-water interfaces and its impact on foam rheology. <i>Langmuir</i> , 2013 , 29, 11646-55	4	106
181	Formation of nanoemulsions in stirred media mills. <i>Chemical Engineering Science</i> , 2013 , 102, 300-308	4.4	8
180	Quantitative evaluation of size selective precipitation of Mn-doped ZnS quantum dots by size distributions calculated from UV/Vis absorbance spectra. <i>Journal of Nanoparticle Research</i> , 2013 , 15, 1	2.3	35
179	Efficient drug-delivery using magnetic nanoparticlesbiodistribution and therapeutic effects in tumour bearing rabbits. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2013 , 9, 961-71	6	144
178	Spectroscopy of Electrified Interfaces with Broadband Sum Frequency Generation: From Electrocatalysis to Protein Foams 2013 , 120-150		4
177	Highly magnetizable superparamagnetic colloidal aggregates with narrowed size distribution from ferrofluid emulsion. <i>Journal of Colloid and Interface Science</i> , 2012 , 374, 102-10	9.3	15
176	Production of dispersions with small particle size from commercial indium tin oxide powder for the deposition of highly conductive and transparent films. <i>Thin Solid Films</i> , 2012 , 520, 5741-5745	2.2	12
175	TEM preparation method for site- and orientation-specific sectioning of individual anisotropic nanoparticles based on shadow-FIB geometry. <i>Ultramicroscopy</i> , 2012 , 113, 165-170	3.1	15
174	Production of polymer particles below 5 h by wet grinding. <i>Powder Technology</i> , 2012 , 228, 84-90	5.2	53
173	Conductivity in nonpolar media: experimental and numerical studies on sodium AOT-hexadecane, lecithin-hexadecane and aluminum(III)-3,5-diisopropyl salicylate-hexadecane systems. <i>Journal of Colloid and Interface Science</i> , 2012 , 386, 240-51	9.3	19
172	A test of improved force field parameters for urea: molecular-dynamics simulations of urea crystals. <i>Journal of Molecular Modeling</i> , 2012 , 18, 3455-66	2	5
171	Size effects in the elastic deformation behavior of metallic nanoparticles. <i>Journal of Nanoparticle Research</i> , 2012 , 14, 1	2.3	22
170	Polymeric stabilization of fused corundum during nanogrinding in stirred media mills. <i>Powder Technology</i> , 2012 , 217, 315-324	5.2	5
169	Tuning the size and the optical properties of ZnO mesocrystals synthesized under solvothermal conditions. <i>Nanoscale</i> , 2012 , 4, 864-73	7.7	34
168	Phase Transition Behavior and Oriented Aggregation During Precipitation of In(OH)3 and InOOH Nanocrystals. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 24529-24537	3.8	15

167	Impact of oxygen plasma treatment on the device performance of zinc oxide nanoparticle-based thin-film transistors. <i>ACS Applied Materials & Discrete States</i> , 2012, 4, 1693-6	9.5	57
166	Determination of the quantum dot band gap dependence on particle size from optical absorbance and transmission electron microscopy measurements. <i>ACS Nano</i> , 2012 , 6, 9021-32	16.7	105
165	Synthesis of silicon nanoparticles with a narrow size distribution: A theoretical study. <i>Journal of Aerosol Science</i> , 2012 , 44, 46-61	4.3	18
164	Sintering kinetics and mechanism of vitreous nanoparticles. <i>Journal of Aerosol Science</i> , 2012 , 45, 26-39	4.3	21
163	Impact of the nanoparticle-protein corona on colloidal stability and protein structure. <i>Langmuir</i> , 2012 , 28, 9673-9	4	257
162	Early stages of oriented attachment: formation of twin ZnO nanorods under microwave irradiation. <i>Chemistry - A European Journal</i> , 2012 , 18, 13265-8	4.8	19
161	Crystal Shape Engineering of Silicon Nanoparticles in a Thermal Aerosol Reactor. <i>Crystal Growth and Design</i> , 2012 , 12, 1330-1336	3.5	16
160	A novel apparatus for in situ compression of submicron structures and particles in a high resolution SEM. <i>Review of Scientific Instruments</i> , 2012 , 83, 095105	1.7	33
159	Protein adsorption at the electrified air-water interface: implications on foam stability. <i>Langmuir</i> , 2012 , 28, 7780-7	4	59
158	Experimental study of metal nanoparticle synthesis by an arc evaporation/condensation process. Journal of Nanoparticle Research, 2012, 14, 1	2.3	33
157	A population balance model of quantum dot formation: Oriented growth and ripening of ZnO. <i>Chemical Engineering Science</i> , 2012 , 70, 4-13	4.4	31
156	Process control strategies for the gas phase synthesis of silicon nanoparticles. <i>Chemical Engineering Science</i> , 2012 , 73, 181-194	4.4	16
155	Gas phase temperature measurements in the liquid and particle regime of a flame spray pyrolysis process using O2-based pure rotational coherent anti-Stokes Raman scattering. <i>Applied Optics</i> , 2012 , 51, 6063-75	1.7	31
154	Experimental and theoretical studies of the colloidal stability of nanoparticles-a general interpretation based on stability maps. <i>ACS Nano</i> , 2011 , 5, 4658-69	16.7	82
153	Surface Functionalization of ZnO Nanorods with C60 Derivatives Carrying Phosphonic Acid Functionalities. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 5561-5565	3.8	23
152	Detailed investigations of ZnO photoelectrodes preparation for dye sensitized solar cells. <i>Langmuir</i> , 2011 , 27, 3920-9	4	41
151	Delamination and Dissolution of Titanate Nanowires: A Combined Structure and in Situ Second Harmonic Generation Study. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 12381-12387	3.8	13
150	Tuning the molecular order of C60 functionalized phosphonic acid monolayers. <i>Langmuir</i> , 2011 , 27, 150	1,6-23	49

(2011-2011)

149	Accelerated grain refinement during accumulative roll bonding by nanoparticle reinforcement. <i>Scripta Materialia</i> , 2011 , 64, 245-248	5.6	84	
148	Mechano-chemical radical formation and polymerization initiation during wet grinding of alumina. Journal of Colloid and Interface Science, 2011 , 363, 386-92	9.3	18	
147	Polyurethane/silver-nanocomposites with enhanced silver ion release using multifunctional invertible polyesters. <i>Journal of Materials Chemistry</i> , 2011 , 21, 4377		33	
146	EPR investigations of non-oxidized silicon nanoparticles from thermal pyrolysis of silane. <i>Physica Status Solidi - Rapid Research Letters</i> , 2011 , 5, 244-246	2.5	4	
145	Grinding in an air classifier mill Part I: Characterisation of the one-phase flow. <i>Powder Technology</i> , 2011 , 211, 19-27	5.2	31	
144	Shape transformation mechanism of silver nanorods in aqueous solution. <i>Small</i> , 2011 , 7, 147-56	11	39	
143	Conduction mechanisms and environmental sensitivity of solution-processed silicon nanoparticle layers for thin-film transistors. <i>Small</i> , 2011 , 7, 2853-7	11	20	
142	Painting by numbers: nanoparticle-based colorants in the post-empirical age. <i>Advanced Materials</i> , 2011 , 23, 2554-70	24	24	
141	Minkowski tensor shape analysis of cellular, granular and porous structures. <i>Advanced Materials</i> , 2011 , 23, 2535-53	24	91	
140	One-pot colloidal synthesis of plasmonic patchy particles. <i>Advanced Materials</i> , 2011 , 23, 2644-9	24	53	
139	Influence of process parameters on breakage kinetics and grinding limit at the nanoscale. <i>AICHE Journal</i> , 2011 , 57, 1751-1758	3.6	26	
138	Production of filled hydrogels by mechanochemically induced polymerization. <i>Journal of Applied Polymer Science</i> , 2011 , 120, 799-807	2.9	6	
137	Physical degradation of proteins in well-defined fluid flows studied within a four-roll apparatus. <i>Biotechnology and Bioengineering</i> , 2011 , 108, 2914-22	4.9	8	
136	Optimized Production of Protein Crystals: From 1D Crystallization Slot towards 2D Supersaturation B22 Diagram. <i>Chemical Engineering and Technology</i> , 2011 , 34, 510-516	2	7	
135	Influence of the counterion on the synthesis of ZnO mesocrystals under solvothermal conditions. <i>Chemistry - A European Journal</i> , 2011 , 17, 2923-30	4.8	37	
134	Verfahrenstechnische Fortschritte fildie Herstellung neuer Materialien IFoliengie aus Nanopartikeln. <i>Chemie-Ingenieur-Technik</i> , 2011 , 83, 535-544	0.8	1	
133	Morphological impact of zinc oxide layers on the device performance in thin-film transistors. <i>Nanoscale</i> , 2011 , 3, 897-9	7.7	40	
132	Second Harmonic Light Scattering from Spherical Polyelectrolyte Brushes. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 18302-18309	3.8	16	

131	Grinding in an air classifier mill IPart II: Characterisation of the two-phase flow. <i>Powder Technology</i> , 2011 , 211, 28-37	5.2	22
130	Molecular Mie model for second harmonic generation and sum frequency generation. <i>Physical Review B</i> , 2011 , 84,	3.3	17
129	Fabrication, charge carrier transport, and application of printable nanocomposites based on indium tin oxide nanoparticles and conducting polymer 3,4-ethylenedioxythiophene/polystyrene sulfonic acid. <i>Journal of Applied Physics</i> , 2011 , 110, 104301	2.5	9
128	Nanogap-controllable self-assembly of gold nanoparticles using nanotrench template 2011 ,		1
127	Direct Tape Casting of Nanosized Al2O3 Slurries Derived from Autogenous Nanomilling. <i>Journal of the American Ceramic Society</i> , 2010 , 93, 1313	3.8	17
126	In Situ Surface Characterization of Polydisperse Colloidal Particles by Second Harmonic Generation. <i>Particulate Science and Technology</i> , 2010 , 28, 458-471	2	15
125	Influence of Nanoparticle Reinforcement on the Mechanical Properties of Ultrafine-Grained Aluminium Produced by ARB. <i>Materials Science Forum</i> , 2010 , 667-669, 725-730	0.4	3
124	Probing colloidal interfaces by angle-resolved second harmonic light scattering. <i>Physical Review B</i> , 2010 , 82,	3.3	56
123	Facile route to morphologically tailored silver patches on colloidal particles. <i>Langmuir</i> , 2010 , 26, 13564	-741	26
122	Detailed Analysis of the Growth Kinetics of ZnO Nanorods in Methanol. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 6243-6249	3.8	45
121	Efficient synthetic access to cationic dendrons and their application for ZnO nanoparticles surface functionalization: new building blocks for dye-sensitized solar cells. <i>Journal of the American Chemical Society</i> , 2010 , 132, 17910-20	16.4	60
120	Grafting porphyrins (face-to-edge/orthogonal versus face-to-face/parallel) to ZnO en route toward dye-sensitized solar cells. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 14671-8	3.4	30
119	Aerosol synthesis of silicon nanoparticles with narrow size distribution Part 1: Experimental investigations. <i>Journal of Aerosol Science</i> , 2010 , 41, 998-1007	4.3	39
118	Aerosol synthesis of silicon nanoparticles with narrow size distribution Part 2: Theoretical analysis of the formation mechanism. <i>Journal of Aerosol Science</i> , 2010 , 41, 1008-1019	4.3	26
117	An improved generalized AMBER force field (GAFF) for urea. <i>Journal of Molecular Modeling</i> , 2010 , 16, 1427-40	2	54
116	Nanoparticle Production with Stirred-Media Mills: Opportunities and Limits. <i>Chemical Engineering and Technology</i> , 2010 , 33, 1401-1411	2	96
115	Optimum between purification and colloidal stability of ZnO nanoparticles. <i>Advanced Powder Technology</i> , 2010 , 21, 41-49	4.6	48
114	Effect of grinding conditions on mechanochemical grafting of poly(1-vinyl-2-pyrrolidone) onto quartz particles. <i>Advanced Powder Technology</i> , 2010 , 21, 50-56	4.6	5

(2009-2010)

113	Influence of annealing temperature and measurement ambient on TFTs based on gas phase synthesized ZnO nanoparticles. <i>Microelectronic Engineering</i> , 2010 , 87, 2312-2316	2.5	43
112	The morphology of integrated self-assembled monolayers and their impact on devices IA computational and experimental approach. <i>Organic Electronics</i> , 2010 , 11, 1476-1482	3.5	42
111	Scalable production of graphene sheets by mechanical delamination. <i>Carbon</i> , 2010 , 48, 3196-3204	10.4	180
110	Evaluation of the film formation and the charge transport mechanism of indium tin oxide nanoparticle films. <i>Thin Solid Films</i> , 2010 , 518, 3373-3381	2.2	13
109	Interfacial energy estimation in a precipitation reaction using the flatness based control of the moment trajectories. <i>Chemical Engineering Science</i> , 2010 , 65, 2183-2189	4.4	6
108	Generally applicable breakage functions derived from single particle comminution data. <i>Powder Technology</i> , 2009 , 194, 33-41	5.2	25
107	The influence of dispersing and stabilizing of indium tin oxide nanoparticles upon the characteristic properties of thin films. <i>Thin Solid Films</i> , 2009 , 517, 1624-1629	2.2	30
106	Structural dependent drag force and orientation prediction for small fractal aggregates. <i>Journal of Colloid and Interface Science</i> , 2009 , 331, 243-50	9.3	21
105	Influence of mechanical properties on impact fracture: Prediction of the milling behaviour of pharmaceutical powders by nanoindentation. <i>Powder Technology</i> , 2009 , 188, 301-313	5.2	93
104	Identifying the apparent and true grinding limit. <i>Powder Technology</i> , 2009 , 195, 25-30	5.2	110
103	Simultaneous 3D observation of different kinetic subprocesses for precipitation in a T-mixer. <i>Chemical Engineering Science</i> , 2009 , 64, 709-720	4.4	29
102	Microstructural evolution during deformation of tin dioxide nanoparticles in a comminution process. <i>Acta Materialia</i> , 2009 , 57, 3060-3071	8.4	25
101	Communication via Electron and Energy Transfer between Zinc Oxide Nanoparticles and Organic Adsorbates. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 4669-4678	3.8	56
100	Kinetics of radical formation during the mechanical activation of quartz. <i>Langmuir</i> , 2009 , 25, 2264-70	4	41
99	Real-Time Monitoring of the Nucleation and Growth of ZnO Nanoparticles Using an Optical Hyper-Rayleigh Scattering Method. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 11995-12001	3.8	55
98	Three-dimensional simulation of viscous-flow agglomerate sintering. <i>Physical Review E</i> , 2009 , 80, 02631	192.4	34
97	Simulation of structure and mobility of aggregates formed by simultaneous coagulation, sintering and surface growth. <i>Journal of Aerosol Science</i> , 2009 , 40, 950-964	4.3	30
96	Analysis of optical absorbance spectra for the determination of ZnO nanoparticle size distribution, solubility, and surface energy. <i>ACS Nano</i> , 2009 , 3, 1703-10	16.7	213

95	Characterization of the grinding behaviour in a single particle impact device: studies on pharmaceutical powders. <i>European Journal of Pharmaceutical Sciences</i> , 2008 , 34, 45-55	5.1	34
94	Particle generation in pulsed plasmas. <i>Plasma Devices and Operations</i> , 2008 , 16, 11-24		1
93	Mechanism of silver ion reduction in concentrated solutions of amphiphilic invertible polyesters in nonpolar solvent at room temperature. <i>Langmuir</i> , 2008 , 24, 12587-94	4	41
92	Study of amphiphilic polyester micelles by hyper-rayleigh scattering: invertibility and phase transfer. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 6338-43	3.4	28
91	Modeling adhesion forces between deformable bodies by FEM and Hamaker summation. <i>Langmuir</i> , 2008 , 24, 1459-68	4	31
90	Surface activity of new invertible amphiphilic polyesters based on poly(ethylene glycol) and aliphatic dicarboxylic acids. <i>Journal of Colloid and Interface Science</i> , 2008 , 323, 379-85	9.3	15
89	Intrinsically stable dispersions of silicon nanoparticles. <i>Journal of Colloid and Interface Science</i> , 2008 , 325, 173-8	9.3	21
88	Microstructural characterization of hematite during wet and dry millings using Rietveld and XRD line profile analyses. <i>Powder Technology</i> , 2008 , 186, 9-21	5.2	53
87	Dispersing and stabilizing silicon nanoparticles in a low-epsilon medium. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2008 , 320, 183-188	5.1	10
86	Chapter 20 Modelling of Mills and Milling Circuits. <i>Handbook of Powder Technology</i> , 2007 , 873-911		6
85	Synthesis of amphiphilic silver nanoparticles in nanoreactors from invertible polyester. <i>Langmuir</i> , 2007 , 23, 360-3	4	37
84	An effective way to stabilize colloidal particles dispersed in polar and nonpolar media. <i>Langmuir</i> , 2007 , 23, 504-8	4	51
83	Amphiphilic Invertible Polyesters as Reducing and Stabilizing Agents in the Formation of Metal Nanoparticles. <i>Macromolecular Rapid Communications</i> , 2007 , 28, 1410-1414	4.8	28
82	Dispersing silicon nanoparticles with a stirred media mill and subsequent functionalization with phenyl acetylene. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2007 , 301, 382-387	5.1	7
81	Effect of roughness on particle adhesion in aqueous solutions: a study of Saccharomyces cerevisiae and a silica particle. <i>Colloids and Surfaces B: Biointerfaces</i> , 2007 , 55, 44-50	6	11
80	Wet milling of H-ZSM-5 zeolite and its effects on direct oxidation of benzene to phenol. <i>Applied Catalysis A: General</i> , 2007 , 327, 132-138	5.1	29
79	The low Reynolds number turbulent flow and mixing in a confined impinging jet reactor. <i>International Journal of Heat and Fluid Flow</i> , 2007 , 28, 1429-1442	2.4	30
78	Dispersing silicon nanoparticles in a stirred media mill Investigating the evolution of morphology, structure and oxide formation. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2007 , 204, 2329-2338	1.6	8

(2006-2007)

77	Impact Fragmentation of Metal Nanoparticle Agglomerates. <i>Particle and Particle Systems Characterization</i> , 2007 , 24, 193-200	3.1	46
76	A general approach for the characterization of fragmentation problems. <i>Advanced Powder Technology</i> , 2007 , 18, 39-51	4.6	9
75	Influence of particle size and concentration on the second-harmonic signal generated at colloidal surfaces. <i>Applied Physics B: Lasers and Optics</i> , 2007 , 87, 333-339	1.9	35
74	Chapter 13 Enabling Nanomilling through Control of Particulate Interfaces. <i>Handbook of Powder Technology</i> , 2007 , 12, 551-603		2
73	Modelling titania formation at typical industrial process conditions: effect of surface shielding and surface energy on relevant growth mechanisms. <i>Chemical Engineering Science</i> , 2006 , 61, 18-32	4.4	15
72	Strukturierung von Oberflähen mit Hilfe polymerer Stempelstrukturen. <i>Chemie-Ingenieur-Technik</i> , 2006 , 78, 115-119	0.8	1
71	Die Bedeutung des zweiten osmotischen Virialkoeffizienten fildie Proteinkristallisation. <i>Chemie-Ingenieur-Technik</i> , 2006 , 78, 273-278	0.8	8
70	First Studies on the Rheological Behavior of Suspensions in Ionic Liquids. <i>Chemical Engineering and Technology</i> , 2006 , 29, 1347-1354	2	28
69	Design of a new invertible polymer coating on a solid surface and its effect on dispersion colloidal stability. <i>Langmuir</i> , 2006 , 22, 6498-506	4	34
68	Invertible architectures from amphiphilic polyesters. <i>Langmuir</i> , 2006 , 22, 1946-8	4	36
67	Second Harmonic Generation Spectroscopy as a Method for In Situ and Online Characterization of Particle Surface Properties. <i>Particle and Particle Systems Characterization</i> , 2006 , 23, 351-359	3.1	26
66	Predictive simulation of nanoparticle precipitation based on the population balance equation. <i>Chemical Engineering Science</i> , 2006 , 61, 167-181	4.4	91
65	Evolution of the fractal dimension for simultaneous coagulation and sintering. <i>Chemical Engineering Science</i> , 2006 , 61, 293-305	4.4	51
64	Agglomeration and breakage of nanoparticles in stirred media mills comparison of different methods and models. <i>Chemical Engineering Science</i> , 2006 , 61, 135-148	4.4	96
63	Precipitation of nanoparticles in a T-mixer: Coupling the particle population dynamics with hydrodynamics through direct numerical simulation. <i>Chemical Engineering and Processing: Process Intensification</i> , 2006 , 45, 908-916	3.7	110
62	London-van der Waals adhesiveness of rough particles. <i>Powder Technology</i> , 2006 , 161, 248-255	5.2	122
61	Microstructure formation in dip-coated particulate films. <i>Journal of Colloid and Interface Science</i> , 2006 , 294, 309-20	9.3	9
60	Simulation of the hydrodynamic drag of aggregated particles. <i>Journal of Colloid and Interface Science</i> , 2006 , 301, 155-67	9.3	54

59	On the impact of accessible surface and surface energy on particle formation and growth from the vapour phase. <i>Journal of Aerosol Science</i> , 2005 , 36, 147-172	4.3	37
58	The influence of suspension properties on the grinding behavior of alumina particles in the submicron size range in stirred media mills. <i>Powder Technology</i> , 2005 , 156, 103-110	5.2	74
57	General concepts in nanoparticle technology and their possible implication on cultural science and philosophy. <i>Powder Technology</i> , 2005 , 158, 133-140	5.2	7
56	Identification of material specific attrition mechanisms for polymers in dilute phase pneumatic conveying. <i>Chemical Engineering and Processing: Process Intensification</i> , 2005 , 44, 175-185	3.7	10
55	Control of aggregation in production and handling of nanoparticles. <i>Chemical Engineering and Processing: Process Intensification</i> , 2005 , 44, 245-252	3.7	83
54	Prediction of aggregation kinetics based on surface properties of nanoparticles. <i>Chemical Engineering Science</i> , 2005 , 60, 11-25	4.4	61
53	Nanomilling in stirred media mills. Chemical Engineering Science, 2005, 60, 4557-4565	4.4	134
52	From single particle impact behaviour to modelling of impact mills. <i>Chemical Engineering Science</i> , 2005 , 60, 5164-5176	4.4	103
51	Prediction of thermodynamic properties from pure compound information: Characterization of fullerenes. <i>Applied Surface Science</i> , 2005 , 252, 512-518	6.7	3
50	Process modeling of in situ-adsorption of a bacterial lipase. <i>Biotechnology and Bioengineering</i> , 2005 , 92, 789-801	4.9	6
49	Integrierte Prozesse filnanoskalige Produkte mit neuen Anwendungseigenschaften. <i>Chemie-Ingenieur-Technik</i> , 2005 , 77, 1222-1222	0.8	
48	Untersuchung der Partikelsynthese in einem Niederdruckplasmareaktor mittels zeitaufgel\(\mathbb{B}\)ter laserinduzierter Gl\(\mathbb{B}\)technik (TIRE-LII). Chemie-Ingenieur-Technik, 2005, 77, 1231-1231	0.8	
47	Perikinetische und orthokinetische Aggregationskinetik einer nanoskaligen Modelldispersion mit Anwendung in der Zerkleinerung in R\u00dfrwerkskugelm\u00dflen. Chemie-Ingenieur-Technik, 2005, 77, 1218-121	9.8	
46	Entstehung und Nutzung von SolidSim-Modulen am Beispiel der Wirbelschicht-Sprfigranulation, der Zerkleinerung und der Sichtung. <i>Chemie-Ingenieur-Technik</i> , 2005 , 77, 1082-1083	0.8	
45	Adsorption Isotherms and Irreversible Binding of Proteins on Commercially Available Hydrophobic Adsorbents. <i>Chemical Engineering and Technology</i> , 2005 , 28, 756-761	2	6
44	Prediction of Adsorption Equilibria from Physical Properties of the Pure Components. <i>Adsorption</i> , 2005 , 11, 43-47	2.6	4
43	Effect of Functionalization of Colloidal Gold on Controlled Flocculation by the Ligand-Receptor Mechanism. <i>Russian Journal of Applied Chemistry</i> , 2005 , 78, 1559-1565	0.8	
42	Organization of Functionalized Gold Nanoparticles by Controlled Protein Interactions. <i>Particle and Particle Systems Characterization</i> , 2005 , 22, 329-335	3.1	11

(2003-2004)

41	Reactor system for the study of high-temperature short-time sintering of nanoparticles. <i>Review of Scientific Instruments</i> , 2004 , 75, 4833-4840	1.7	15
40	Progress in the understanding of bulk solids attrition in dilute phase pneumatic conveying. <i>Powder Technology</i> , 2004 , 143-144, 308-320	5.2	9
39	Production of sub-micron particles by wet comminution in stirred media mills. <i>Journal of Materials Science</i> , 2004 , 39, 5223-5226	4.3	30
38	Determination of material properties relevant to grinding by practicable labscale milling tests. <i>International Journal of Mineral Processing</i> , 2004 , 74, S329-S338		63
37	Dispersing nanoparticles in liquids. International Journal of Mineral Processing, 2004, 74, S31-S41		73
36	Monte Carlo simulation of aggregate morphology for simultaneous coagulation and sintering. <i>Journal of Nanoparticle Research</i> , 2004 , 6, 613-626	2.3	49
35	Mechano-Chemical Changes of Nano Sized Al2O3 During Wet Dispersion in Stirred Ball Mills. <i>Particle and Particle Systems Characterization</i> , 2004 , 21, 31-38	3.1	28
34	Combined experimental/numerical study on the precipitation of nanoparticles. <i>AICHE Journal</i> , 2004 , 50, 3234-3247	3.6	144
33	Transfer of fracture mechanical concepts to bulk solids attrition in pneumatic conveying. <i>International Journal of Mineral Processing</i> , 2004 , 74, S279-S289		4
32	Material properties in fine grinding. International Journal of Mineral Processing, 2004, 74, S3-S17		41
31	TAILORING PARTICLE SIZE THROUGH NANOPARTICLE PRECIPITATION. <i>Chemical Engineering Communications</i> , 2004 , 191, 580-606	2.2	66
30	Particle adhesion force distributions on rough surfaces. <i>Langmuir</i> , 2004 , 20, 5298-303	4	142
29	Modelling of Grinding in an Air Classifier Mill Based on a Fundamental Material Function. <i>KONA Powder and Particle Journal</i> , 2003 , 21, 109-120	3.4	19
28	Control of particle interfaces the critical issue in nanoparticle technology. <i>Advanced Powder Technology</i> , 2003 , 14, 411-426	4.6	23
27	The influence of particle charge and roughness on particleBubstrate adhesion. <i>Powder Technology</i> , 2003 , 135-136, 82-91	5.2	67
26	Breakage behaviour of different materialsBonstruction of a mastercurve for the breakage probability. <i>Powder Technology</i> , 2003 , 129, 101-110	5.2	215
25	Dispersive forces of particleBurface interactions: direct AFM measurements and modelling. <i>Powder Technology</i> , 2003 , 130, 102-109	5.2	93
24	Mechanical production and stabilization of submicron particles in stirred media mills. <i>Powder Technology</i> , 2003 , 132, 64-73	5.2	147

23	Zusammenhang zwischen rheologischen Eigenschaften konzentrierter kolloidaler Suspensionen und der Struktur tauchgezogener Schichten. <i>Chemie-Ingenieur-Technik</i> , 2003 , 75, 1274-1280	0.8	6
22	Herausforderungen fīldie Lehre am Beispiel der mechanischen Verfahrenstechnik. <i>Chemie-Ingenieur-Technik</i> , 2003 , 75, 177-183	0.8	1
21	GVC-Dezember-Tagung: Grenzflühen in der Feststoffverfahrenstechnik. <i>Chemie-Ingenieur-Technik</i> , 2003 , 75, 769-771	0.8	
20	The Role of Particle Interactions on Suspension Rheology [Application to Submicron Grinding in Stirred Ball Mills. <i>Chemical Engineering and Technology</i> , 2003 , 26, 177-183	2	29
19	Inorganic Layers on Polymeric Films Influence of Defects and Morphology on Barrier Properties. <i>Chemical Engineering and Technology</i> , 2003 , 26, 605-614	2	76
18	Control of coating properties by tailored particle interactions: relation between suspension rheology and film structure. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2003 , 225, 49-61	5.1	27
17	Molecular dynamics simulations of the contact between two NaCl nano-crystals: adhesion, jump to contact and indentation. <i>Nanotechnology</i> , 2003 , 14, 371-376	3.4	22
16	On the relevance of accounting for the evolution of the fractal dimension in aerosol process simulations. <i>Journal of Aerosol Science</i> , 2003 , 34, 511-534	4.3	66
15	Experimental Investigation into the Influence of Mixing on Nanoparticle Precipitation. <i>Chemical Engineering and Technology</i> , 2002 , 25, 657	2	99
14	Use of COSMO-RS for the prediction of adsorption equilibria. <i>AICHE Journal</i> , 2002 , 48, 1093-1099	3.6	45
13	Novel concepts for characterisation of heterogeneous particulate surfaces. <i>Applied Surface Science</i> , 2002 , 196, 30-40	6.7	16
12	Combination of a Dielectric Continuum Model with Inverse Gas Chromatography for the Characterization of Solid Surfaces. <i>Adsorption Science and Technology</i> , 2002 , 20, 835-848	3.6	1
11	Attrition of Bulk Solids in Pneumatic Conveying: Mechanisms and Material Properties. <i>Particulate Science and Technology</i> , 2002 , 20, 267-282	2	16
10	Henry coefficients of adsorption predicted from solid Hamaker constants. <i>Chemical Engineering Science</i> , 2001 , 56, 3443-3453	4.4	33
9	Industrial separation of fine particles with difficult dust properties. <i>Powder Technology</i> , 2001 , 118, 136	-1 <u>4</u> 8	84
8	Industrial classification in a new impeller wheel classifier. <i>Powder Technology</i> , 1999 , 105, 186-189	5.2	53
7	High temperature filtration in the process industry. Filtration and Separation, 1998, 35, 461-464	0.1	37
6	Influence of temperature on particle separation in granular bed filters. <i>Powder Technology</i> , 1991 , 68, 263-270	5.2	31

LIST OF PUBLICATIONS

5	Kombinierte Abscheidung von Feinstaub und gasffmigen Schadstoffen in Schlütschichtfiltern bei hohen Temperaturen. <i>Chemie-Ingenieur-Technik</i> , 1990 , 62, 557-559	0.8	
4	Emission Control of Particles and Gaseous Pollutants with a High-Temperature Granular Bed Filter. <i>KONA Powder and Particle Journal</i> , 1990 , 8, 155-159	3.4	
3	Phase evolution of Cu2ZnSnS4 (CZTS) nanoparticles from in situ formed binary sulphides under solvothermal conditions. <i>CrystEngComm</i> ,	3.3	3
2	Bioactive Glass Flakes as Innovative Fillers in Chitosan Membranes for Guided Bone Regeneration. <i>Advanced Engineering Materials</i> ,2101042	3.5	O
1	SiO 2 GeO 2 GlassGeramic Flakes as an Anode Material for High-Performance Lithium-Ion Batteries. <i>Energy Technology</i> ,2200072	3.5	1