Brian D Robertson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/375824/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Innate Immune Responses of Galleria mellonella to Mycobacterium bovis BCG Challenge Identified Using Proteomic and Molecular Approaches. Frontiers in Cellular and Infection Microbiology, 2021, 11, 619981.	1.8	10
2	A broad spectrum anti-bacterial peptide with an adjunct potential for tuberculosis chemotherapy. Scientific Reports, 2021, 11, 4201.	1.6	8
3	A novel biosafety level 2 compliant tuberculosis infection model using a Δ <i>leuD</i> î" <i>panCD</i> double auxotroph of <i>Mycobacterium tuberculosis</i> H37Rv and <i>Galleria mellonella</i> . Virulence, 2020, 11, 811-824.	1.8	9
4	Ultra-Short Antimicrobial Peptoids Show Propensity for Membrane Activity Against Multi-Drug Resistant Mycobacterium tuberculosis. Frontiers in Microbiology, 2020, 11, 417.	1.5	18
5	Mammalian lectin arrays for screening host–microbe interactions. Journal of Biological Chemistry, 2020, 295, 4541-4555.	1.6	12
6	Genetic and pharmacological inhibition of inflammasomes reduces the survival of Mycobacterium tuberculosis strains in macrophages. Scientific Reports, 2020, 10, 3709.	1.6	19
7	Approaches to treating tuberculosis by encapsulating metal ions and anti-mycobacterial drugs utilizing nano- and microparticle technologies. Emerging Topics in Life Sciences, 2020, 4, 581-600.	1.1	11
8	Understanding the evolution of Mycobacterium tuberculosis lineages using an integrated genomics and metabolomics approach. Access Microbiology, 2020, 2, .	0.2	0
9	Use of the Invertebrate Galleria mellonella as an Infection Model to Study the Mycobacterium tuberculosis Complex. Journal of Visualized Experiments, 2019, , .	0.2	7
10	An Auto-luminescent Fluorescent BCG Whole Blood Assay to Enable Evaluation of Paediatric Mycobacterial Responses Using Minimal Blood Volumes. Frontiers in Pediatrics, 2019, 7, 151.	0.9	9
11	Effective delivery of the anti-mycobacterial peptide NZX in mesoporous silica nanoparticles. PLoS ONE, 2019, 14, e0212858.	1.1	66
12	Galleria mellonella: An Infection Model for Screening Compounds Against the Mycobacterium tuberculosis Complex. Frontiers in Microbiology, 2019, 10, 2630.	1.5	20
13	Characterization of Two New Multidrug-Resistant Strains of Mycobacterium smegmatis: Tools for Routine In Vitro Screening of Novel Anti-Mycobacterial Agents. Antibiotics, 2019, 8, 4.	1.5	15
14	Inhalable poly(lactic-co-glycolic acid) (PLGA) microparticles encapsulating all-trans-Retinoic acid (ATRA) as a host-directed, adjunctive treatment for Mycobacterium tuberculosis infection. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 134, 153-165.	2.0	40
15	Platelets Regulate Pulmonary Inflammation and Tissue Destruction in Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 245-255.	2.5	45
16	A novel derivative of the fungal antimicrobial peptide plectasin is active against Mycobacterium tuberculosis. Tuberculosis, 2018, 113, 231-238.	0.8	31
17	<i>Galleria mellonella -</i> a novel infection model for the <i>Mycobacterium tuberculosis</i> complex. Virulence, 2018, 9, 1126-1137.	1.8	26
18	Rifampin- or Capreomycin-Induced Remodeling of the <i>Mycobacterium smegmatis</i> Mycolic Acid Layer Is Mitigated in Synergistic Combinations with Cationic Antimicrobial Peptides. MSphere, 2018, 3, .	1.3	11

#	Article	IF	CITATIONS
19	Characterising resuscitation promoting factor fluorescent-fusions in mycobacteria. BMC Microbiology, 2018, 18, 30.	1.3	5
20	Analysis of ParAB dynamics in mycobacteria shows active movement of ParB and differential inheritance of ParA. PLoS ONE, 2018, 13, e0199316.	1.1	4
21	Disruption of drug-resistant biofilms using de novo designed short α-helical antimicrobial peptides with idealized facial amphiphilicity. Acta Biomaterialia, 2017, 57, 103-114.	4.1	77
22	Susceptibility of <i>Mycobacterium tuberculosis</i> -infected host cells to phospho-MLKL driven necroptosis is dependent on cell type and presence of TNFα. Virulence, 2017, 8, 1820-1832.	1.8	18
23	Mycobacteria Modify Their Cell Size Control under Sub-Optimal Carbon Sources. Frontiers in Cell and Developmental Biology, 2017, 5, 64.	1.8	48
24	Unnatural amino acid analogues of membrane-active helical peptides with anti-mycobacterial activity and improved stability. Journal of Antimicrobial Chemotherapy, 2016, 71, 2181-2191.	1.3	55
25	Deciphering the metabolic response of <scp><i>M</i></scp> <i>ycobacterium tuberculosis</i> to nitrogen stress. Molecular Microbiology, 2015, 97, 1142-1157.	1.2	49
26	Population Genomics of Mycobacterium tuberculosis in Ethiopia Contradicts the Virgin Soil Hypothesis for Human Tuberculosis in Sub-Saharan Africa. Current Biology, 2015, 25, 3260-3266.	1.8	94
27	The Extracellular Matrix Regulates Granuloma Necrosis in Tuberculosis. Journal of Infectious Diseases, 2015, 212, 463-473.	1.9	90
28	Investigation of the high rates of extrapulmonary tuberculosis in Ethiopia reveals no single driving factor and minimal evidence for zoonotic transmission of Mycobacterium bovis infection. BMC Infectious Diseases, 2015, 15, 112.	1.3	46
29	Mycobacterial Growth. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a021097.	2.9	7
30	Cell Electrospinning: An In Vitro and In Vivo Study. Small, 2014, 10, 78-82.	5.2	81
31	Pathways of IL-1Î ² secretion by macrophages infected with clinical Mycobacterium tuberculosis strains. Tuberculosis, 2013, 93, 538-547.	0.8	33
32	Deciphering the response of Mycobacterium smegmatis to nitrogen stress using bipartite active modules. BMC Genomics, 2013, 14, 436.	1.2	14
33	Genome wide analysis of the complete GlnR nitrogen-response regulon in Mycobacterium smegmatis. BMC Genomics, 2013, 14, 301.	1.2	66
34	Mycobacterium tuberculosis antigen 85B and ESAT-6 expressed as a recombinant fusion protein in Mycobacterium smegmatis elicits cell-mediated immune response in a murine vaccination model. Molecular Immunology, 2013, 54, 278-283.	1.0	8
35	Adenylylation of mycobacterial Glnk (PII) protein is induced byÂnitrogen limitation. Tuberculosis, 2013, 93, 198-206.	0.8	12
36	Database resources for the tuberculosis community. Tuberculosis, 2013, 93, 12-17.	0.8	27

3

#	Article	IF	CITATIONS
37	Mycobacterial Lineages Causing Pulmonary and Extrapulmonary Tuberculosis, Ethiopia. Emerging Infectious Diseases, 2013, 19, 460-463.	2.0	215
38	Rapid in vivo assessment of drug efficacy against Mycobacterium tuberculosis using an improved firefly luciferase. Journal of Antimicrobial Chemotherapy, 2013, 68, 2118-2127.	1.3	59
39	Rapid measurement of antituberculosis drug activity in vitro and in macrophages using bioluminescence. Journal of Antimicrobial Chemotherapy, 2012, 67, 404-414.	1.3	86
40	A new in vivo model to test anti-tuberculosis drugs using fluorescence imaging. Journal of Antimicrobial Chemotherapy, 2012, 67, 1948-1960.	1.3	78
41	Bioinformatic and Empirical Analysis of Novel Hypoxia-Inducible Targets of the Human Antituberculosis T Cell Response. Journal of Immunology, 2012, 189, 5867-5876.	0.4	44
42	Free Glucosylglycerate Is a Novel Marker of Nitrogen Stress in <i>Mycobacterium smegmatis</i> . Journal of Proteome Research, 2012, 11, 3888-3896.	1.8	21
43	Detection and treatment of subclinical tuberculosis. Tuberculosis, 2012, 92, 447-452.	0.8	33
44	Cell Division Site Placement and Asymmetric Growth in Mycobacteria. PLoS ONE, 2012, 7, e44582.	1.1	104
45	In Vitro and In Vivo Interrogation of Bioâ€sprayed Cells. Small, 2012, 8, 2495-2500.	5.2	19
46	Aspartate D48 is essential for the GlnR-mediated transcriptional response to nitrogen limitation in Mycobacterium smegmatis. FEMS Microbiology Letters, 2012, 330, 38-45.	0.7	21
47	The influence of cattle breed on susceptibility to bovine tuberculosis in Ethiopia. Comparative Immunology, Microbiology and Infectious Diseases, 2012, 35, 227-232.	0.7	92
48	The Balance of Apoptotic and Necrotic Cell Death in Mycobacterium tuberculosis Infected Macrophages Is Not Dependent on Bacterial Virulence. PLoS ONE, 2012, 7, e47573.	1.1	59
49	Optimisation of inhaled tuberculosis therapies and implications for host–pathogen interactions. Tuberculosis, 2011, 91, 64.	0.8	2
50	The Mycobacterium tuberculosis β-oxidation genes echA5 and fadB3 are dispensable for growth inÂvitro and inÂvivo. Tuberculosis, 2011, 91, 549-555.	0.8	31
51	A modified agar pad method for mycobacterial live-cell imaging. BMC Research Notes, 2011, 4, 73.	0.6	28
52	MMP-1 drives immunopathology in human tuberculosis and transgenic mice. Journal of Clinical Investigation, 2011, 121, 1827-1833.	3.9	197
53	Mycobacterium tuberculosis Lineage Influences Innate Immune Response and Virulence and Is Associated with Distinct Cell Envelope Lipid Profiles. PLoS ONE, 2011, 6, e23870.	1.1	110
54	Improved mycobacterial tetracycline inducible vectors. Plasmid, 2010, 64, 69-73.	0.4	41

#	Article	IF	CITATIONS
55	The mechanisms and consequences of the extra-pulmonary dissemination of Mycobacterium tuberculosis. Tuberculosis, 2010, 90, 361-366.	0.8	139
56	Optimisation of Bioluminescent Reporters for Use with Mycobacteria. PLoS ONE, 2010, 5, e10777.	1.1	289
57	Targeting the chromosome partitioning protein ParA in tuberculosis drug discovery. Journal of Antimicrobial Chemotherapy, 2010, 65, 2347-2358.	1.3	27
58	Sensitive Detection of Gene Expression in Mycobacteria under Replicating and Non-Replicating Conditions Using Optimized Far-Red Reporters. PLoS ONE, 2010, 5, e9823.	1.1	167
59	Virulence, immunopathology and transmissibility of selected strains of <i>Mycobacterium tuberculosis</i> in a murine model. Immunology, 2009, 128, 123-133.	2.0	75
60	Bioluminescent Monitoring of In Vivo Colonization and Clearance Dynamics by Light-Emitting Bacteria. Methods in Molecular Biology, 2009, 574, 137-153.	0.4	17
61	The Burden of Mycobacterial Disease in Ethiopian Cattle: Implications for Public Health. PLoS ONE, 2009, 4, e5068.	1.1	136
62	Molecular Analysis of Mycobacterium tuberculosis Strains with an Intact pks15/1 Gene in a Rural Community of Mexico. Archives of Medical Research, 2008, 39, 809-814.	1.5	13
63	Unusual features of the cell cycle in mycobacteria: Polar-restricted growth and the snapping-model of cell division. Tuberculosis, 2007, 87, 231-236.	0.8	127
64	Systems biology and its impact on anti-infective drug development. , 2007, 64, 1-20.		3
65	Modelling infectious disease — time to think outside the box?. Nature Reviews Microbiology, 2006, 4, 307-312.	13.6	54
66	Comparative investigation of the pathogenicity of three Mycobacterium tuberculosis mutants defective in the synthesis of p-hydroxybenzoic acid derivatives. Microbes and Infection, 2006, 8, 2245-2253.	1.0	25
67	Tetracycline-inducible gene regulation in mycobacteria. Nucleic Acids Research, 2005, 33, e22-e22.	6.5	162
68	Mycobacterial Mutants with Defective Control of Phagosomal Acidification. PLoS Pathogens, 2005, 1, e33.	2.1	180
69	Alternative Luciferase for Monitoring Bacterial Cells under Adverse Conditions. Applied and Environmental Microbiology, 2005, 71, 3427-3432.	1.4	53
70	The OtsAB Pathway Is Essential for Trehalose Biosynthesis in Mycobacterium tuberculosis. Journal of Biological Chemistry, 2005, 280, 14524-14529.	1.6	143
71	The stress-responsive chaperone α-crystallin 2 is required for pathogenesis of Mycobacterium tuberculosis. Molecular Microbiology, 2004, 55, 1127-1137.	1.2	77
72	Analysis of the function of mycobacterial DnaJ proteins by overexpression and microarray profiling. Tuberculosis, 2004, 84, 180-187.	0.8	19

#	Article	IF	CITATIONS
73	Visualization of microarray results to assist interpretation. Tuberculosis, 2004, 84, 275-281.	0.8	2
74	Tuberculosis: a problem with persistence. Nature Reviews Microbiology, 2003, 1, 97-105.	13.6	330
75	Analysis of Pathogen-Host Cell Interactions in Purpura Fulminans: Expression of Capsule, Type IV Pili, and PorA by Neisseria meningitidis In Vivo. Infection and Immunity, 2002, 70, 5193-5201.	1.0	64
76	Genomics: Leprosy — a degenerative disease of the genome. Current Biology, 2001, 11, R381-R383.	1.8	10
77	Comparison ofMycobacterium tuberculosisGenomes Reveals Frequent Deletions in a 20 kb Variable Region in Clinical Isolates. Yeast, 2000, 1, 272-282.	0.8	74
78	The Lipopolysaccharide Structures of Salmonella enterica Serovar Typhimurium and Neisseria gonorrhoeae Determine the Attachment of Human Mannose-Binding Lectin to Intact Organisms. Infection and Immunity, 2000, 68, 3894-3899.	1.0	89
79	Three pathways for trehalose biosynthesis in mycobacteria. Microbiology (United Kingdom), 2000, 146, 199-208.	0.7	235
80	A Postgenomic Approach to Identification of Mycobacterium leprae -Specific Peptides as T-Cell Reagents. Infection and Immunity, 2000, 68, 5846-5855.	1.0	40
81	Analysis of post-translational modification of mycobacterial proteins using a cassette expression system. FEBS Letters, 2000, 473, 358-362.	1.3	50
82	MICROBIOLOGY:TB Vaccines: Global Solutions for Global Problems. Science, 1999, 284, 1479-1480.	6.0	17
83	Approaches to combat tuberculosis. Current Opinion in Biotechnology, 1998, 9, 650-652.	3.3	2
84	Rapid detection of multidrug-resistant tuberculosis. European Respiratory Journal, 1997, 10, 1120-1124.	3.1	33
85	Induction of human endothelial tissue factor expression byNeisseria meningitidis: the influence of bacterial killing and adherence to the endothelium. Microbial Pathogenesis, 1997, 22, 265-274.	1.3	41
86	Involvement of the gonococcal MtrE protein in the resistance of Neisseria gonorrhoeae to toxic hydrophobic agents. Microbiology (United Kingdom), 1997, 143, 2127-2133.	0.7	86
87	Genes associated with meningococcal capsule complex are also found in Neisseria gonorrhoeae. Journal of Bacteriology, 1996, 178, 3342-3345.	1.0	26
88	Gonococcal rfaF mutants express Rd2chemotype LPS and do not enter epithelial host cells. Molecular Microbiology, 1995, 15, 267-275.	1.2	49
89	Molecular mechanisms and implications for infection of lipopolysaccharide variation in Neisseria. Molecular Microbiology, 1995, 16, 847-853.	1.2	71
90	An Abundant, trans-spliced mRNA from Toxocara canis Infective Larvae Encodes a 26-kDa Protein with Homology to Phosphatidylethanolamine-binding Proteins. Journal of Biological Chemistry, 1995, 270, 18517-18522.	1.6	88

#	Article	IF	CITATIONS
91	The identification of cryptic rhamnose biosynthesis genes in Neisseria gonorrhoeae and their relationship to lipopolysaccharide biosynthesis. Journal of Bacteriology, 1994, 176, 6915-6920.	1.0	32
92	Contribution of genes from the capsule gene complex (cps) to lipooligosaccharide biosynthesis and serum resistance in Neisseria meningitidis. Molecular Microbiology, 1994, 11, 885-896.	1.2	140
93	The role of galE in the biosynthesis and function of gonococcal lipopolysaccharide. Molecular Microbiology, 1993, 8, 891-901.	1.2	75
94	Genetic variation in pathogenic bacteria. Trends in Genetics, 1992, 8, 422-427.	2.9	142
95	Developmentally regulated expression and secretion of a polymorphic antigen by Onchocerca infective-stage larvae. Molecular and Biochemical Parasitology, 1990, 39, 203-211.	0.5	26
96	Toxocara canis: Proteolytic enzymes secreted by the infective larvae in vitro. Experimental Parasitology, 1989, 69, 30-36.	0.5	51
97	Secretory acetylcholinesterases from Brugia malayi adult and microfilarial parasites. Molecular and Biochemical Parasitology, 1987, 26, 257-265.	0.5	49