
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3757883/publications.pdf Version: 2024-02-01

Μλελριι Κλτο

#	Article	IF	CITATIONS
1	<i>In situ</i> fluorescence yield soft X-ray absorption spectroscopy of electrochemical nickel deposition processes with and without ethylene glycol. RSC Advances, 2022, 12, 10425-10430.	3.6	1
2	<i>In situ</i> X-ray Absorption Spectroscopy at Platinum Group Metal (PGM) and Non-PGM Electrocatalysts. Denki Kagaku, 2022, 90, 16-20.	0.0	0
3	Structural Transformation of Pt–Ni Nanowires as Oxygen Reduction Electrocatalysts to Branched Nanostructures during Potential Cycles. ACS Catalysis, 2022, 12, 259-264.	11.2	7
4	Electrocatalytic nitrate and nitrous oxide reduction at interfaces between Pt-Pd nanoparticles and fluorine-doped tin oxide. Electrochimica Acta, 2022, 425, 140628.	5.2	2
5	(Invited, Digital Presentation) Cooperative Effects of Fe and Cu Sites in N-Doped Carbon Nanotubes on Oxygen Reduction Activity and Selectivity. ECS Meeting Abstracts, 2022, MA2022-01, 882-882.	0.0	0
6	(Digital Presentation) Oxygen Reduction Activity, Durability and Structural Transformation of Pt-Ni Nanowires in the Presence and Absence of Pt-Ni Nanoparticles. ECS Meeting Abstracts, 2022, MA2022-01, 1543-1543.	0.0	0
7	(Digital Presentation) Improving Oxygen Evolution Reaction Performance and Durability Using Rhombic Dodecahedral Pt ₃ (Ni,X) Nanoparticles with Metal Oxide Supports. ECS Meeting Abstracts, 2022, MA2022-01, 1358-1358.	0.0	0
8	Impact of Heterometallic Cooperativity of Iron and Copper Active Sites on Electrocatalytic Oxygen Reduction Kinetics. ACS Catalysis, 2021, 11, 2356-2365.	11.2	40
9	Impact of membrane protein-lipid interactions on formation of bilayer lipid membranes on SAM-modified gold electrode. Electrochimica Acta, 2021, 373, 137888.	5.2	8
10	Electrocatalytic activity and volatile product selectivity for nitrate reduction at tin-modified Pt(100), Pd(100) and Pd–Pt(100) single crystal electrodes in acidic media. Electrochimica Acta, 2021, 398, 139281.	5.2	9
11	Electrochemically Driven Specific Alkaline Metal Cation Adsorption on a Graphene Interface. Journal of Physical Chemistry C, 2021, 125, 22154-22162.	3.1	11
12	Oneâ€step Preparation of Fe/N/C Singleâ€atom Catalysts Containing Feâ^'N4 Sites from an Iron Complex Precursor with 5,6,7,8â€Tetraphenylâ€1,12â€diazatriphenylene Ligands. Chemistry - A European Journal, 2021, , .	3.3	2
13	Terahertz Raman Spectroscopy of Ligand-Protected Au ₈ Clusters. Journal of Physical Chemistry Letters, 2020, 11, 7996-8001.	4.6	19
14	Electrocatalytic Oxygen Reduction at Multinuclear Metal Active Sites Inspired by Metalloenzymes. E-Journal of Surface Science and Nanotechnology, 2020, 18, 81-93.	0.4	10
15	Electronic Effects of Nitrogen Atoms of Supports on Pt–Ni Rhombic Dodecahedral Nanoframes for Oxygen Reduction. ACS Applied Energy Materials, 2020, 3, 6768-6774.	5.1	19
16	Confinement of Hydrogen Molecules at Graphene–Metal Interface by Electrochemical Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2020, 124, 5300-5307.	3.1	17
17	Real-Time Monitoring of Low Pressure Oxygen Molecules over Wide Temperature Range: Feasibility of Ultrathin Hybrid Films of Iridium(III) Complexes and Clay Nanosheets. Bulletin of the Chemical Society of Japan, 2020, 93, 194-199.	3.2	6
18	(Invited) Oxygen Reduction Reactivity at Fe- and Cu-Codoped Carbon Nanostructures. ECS Meeting Abstracts, 2020, MA2020-01, 875-875.	0.0	0

#	Article	IF	CITATIONS
19	Electrocatalytic Activity and Durability of Pt–Ni Nanowires for Oxygen Reduction. ECS Meeting Abstracts, 2020, MA2020-02, 2314-2314.	0.0	0
20	Improving Electrochemical Activity of Rhombic Dodecahedral Pt3(Ni,X) Nanoparticles Using Transition Metal Additions. ECS Meeting Abstracts, 2020, MA2020-02, 2295-2295.	0.0	0
21	Synthesis and Electrocatalytic Activity of Pt-Ni Nanowire. ECS Meeting Abstracts, 2020, MA2020-02, 2294-2294.	0.0	0
22	Host–guest chemistry between cyclodextrin and a hydrogen evolution catalyst cobaloxime. New Journal of Chemistry, 2019, 43, 10087-10092.	2.8	8
23	(Invited) Electrochemical Oxygen Reduction Catalyzed at Pt–Ni Nanostructured Electrocatalysts Immobilized on Nitrogen-Doped Carbon Supports. ECS Meeting Abstracts, 2019, , .	0.0	0
24	Effects of Nitrogen-Doped Carbon Support on Oxygen Reduction Reaction Activity of Pt–Ni Nanoframe. ECS Meeting Abstracts, 2019, , .	0.0	0
25	Co-Doping Effects of Iron and Copper into Carbon Nanotubes on Oxygen Reduction Reaction Activity. ECS Meeting Abstracts, 2019, , .	0.0	0
26	Non-PGM Electrocatalysts for Oxygen Reduction Reaction Inspired By Metalloenzyme Active Sites. ECS Meeting Abstracts, 2019, , .	0.0	1
27	Mechanistic Insights into Enzymatic Nitric Oxide Reduction Revealed By Surface-Enhanced Infrared Absorption Spectroscopy. ECS Meeting Abstracts, 2019, , .	0.0	Ο
28	Incorporation of Multinuclear Copper Active Sites into Nitrogen-Doped Graphene for Electrochemical Oxygen Reduction. ACS Applied Energy Materials, 2018, 1, 2358-2364.	5.1	15
29	Bio-inorganic hybrid photoanodes of photosystem II and ferricyanide-intercalated layered double hydroxide for visible-light-driven water oxidation. Electrochimica Acta, 2018, 264, 386-392.	5.2	8
30	Cathodic Arc-plasma Deposition of Platinum Nanoparticles on Fluorine-doped Tin Oxide for Electrocatalytic Nitrate Reduction Reaction. Electrochemistry, 2018, 86, 220-222.	1.4	3
31	Enhancement of Electrocatalytic Oxygen Reduction Activity and Durability of Pt–Ni Rhombic Dodecahedral Nanoframes by Anchoring to Nitrogen-Doped Carbon Support. ACS Omega, 2018, 3, 9052-9059.	3.5	16
32	Surface-Enhanced Infrared Absorption Spectroscopy of Bacterial Nitric Oxide Reductase under Electrochemical Control Using a Vibrational Probe of Carbon Monoxide. Journal of Physical Chemistry Letters, 2018, 9, 5196-5200.	4.6	17
33	Electrocatalytic nitrate reduction on well-defined surfaces of tin-modified platinum, palladium and platinum-palladium single crystalline electrodes in acidic and neutral media. Journal of Electroanalytical Chemistry, 2017, 800, 46-53.	3.8	42
34	Development of a spectro-electrochemical cell for soft X-ray photon-in photon-out spectroscopy. Review of Scientific Instruments, 2017, 88, 104101.	1.3	17
35	Bioinspired Iron- and Copper-incorporated Carbon Electrocatalysts for Oxygen Reduction Reaction. Chemistry Letters, 2016, 45, 1213-1215.	1.3	12
36	Oxygen Reduction Reaction Catalyzed by Self-Assembled Monolayers of Copper-Based Electrocatalysts on a Polycrystalline Gold Surface. Journal of Physical Chemistry C, 2016, 120, 15814-15822.	3.1	24

#	Article	IF	CITATIONS
37	Deprotonation of a dinuclear copper complex of 3,5-diamino-1,2,4-triazole for high oxygen reduction activity. Physical Chemistry Chemical Physics, 2015, 17, 8638-8641.	2.8	25
38	Energy transfer in hybrid Langmuir–Blodgett films of iridium complexes and synthetic saponite: dependence of transfer efficiency on the interlayer distance. New Journal of Chemistry, 2014, 38, 5715-5720.	2.8	13
39	Comparison of photoelectrochemical water oxidation activity of a synthetic photocatalyst system with photosystem II. Faraday Discussions, 2014, 176, 199-211.	3.2	19
40	Lattice Water-Induced Helical Stacking of Tartrate-Bridged Dinuclear Palladium(II) Complexes: The Role of Hydrogen Bonding. Crystal Growth and Design, 2014, 14, 3675-3679.	3.0	9
41	Protein film photoelectrochemistry of the water oxidation enzyme photosystem II. Chemical Society Reviews, 2014, 43, 6485-6497.	38.1	148
42	Covalent Immobilization of Oriented Photosystem II on a Nanostructured Electrode for Solar Water Oxidation. Journal of the American Chemical Society, 2013, 135, 10610-10613.	13.7	112
43	Preferential Behavior on Donating Atoms of an Ambidentate Ligand 2-Methylisothiazol-3(2 <i>H</i>)-one in Its Metal Complexes. Inorganic Chemistry, 2013, 52, 13375-13383.	4.0	3
44	Electron Transfer in Dyeâ€6ensitised Semiconductors Modified with Molecular Cobalt Catalysts: Photoreduction of Aqueous Protons. Chemistry - A European Journal, 2012, 18, 15464-15475.	3.3	112
45	Colloidal metal oxide particles loaded with synthetic catalysts for solar H2production. Faraday Discussions, 2012, 155, 191-205.	3.2	24
46	Innenrücktitelbild: Selective Reduction of Aqueous Protons to Hydrogen with a Synthetic Cobaloxime Catalyst in the Presence of Atmospheric Oxygen (Angew. Chem. 37/2012). Angewandte Chemie, 2012, 124, 9591-9591.	2.0	0
47	Selective Reduction of Aqueous Protons to Hydrogen with a Synthetic Cobaloxime Catalyst in the Presence of Atmospheric Oxygen. Angewandte Chemie - International Edition, 2012, 51, 9381-9384.	13.8	123
48	Photoelectrochemical Water Oxidation with Photosystem II Integrated in a Mesoporous Indium–Tin Oxide Electrode. Journal of the American Chemical Society, 2012, 134, 8332-8335.	13.7	199
49	Ferromagnetic Spin Ladder System: Stack of Chloridoâ€Bridged Dinuclear Copper(II) Complexes with 2â€Methylisothiazolâ€3(2 <i>H</i>)â€one. European Journal of Inorganic Chemistry, 2011, 2011, 495-502.	2.0	12
50	Electronic structure calculation study of metal complexes with a phytosiderophore mugineic acid. Inorganica Chimica Acta, 2011, 370, 304-310.	2.4	12
51	Structural and electrochemical studies on uranyl(VI) complex with pentadentate Schiff base ligand: A guide to stable uranyl(V). IOP Conference Series: Materials Science and Engineering, 2010, 9, 012030.	0.6	4
52	Molecular Structure and Electrochemical Behavior of Uranyl(VI) Complex with Pentadentate Schiff Base Ligand: Prevention of Uranyl(V) Cationâ~'Cation Interaction by Fully Chelating Equatorial Coordination Sites. Inorganic Chemistry, 2010, 49, 2349-2359.	4.0	65
53	Linkage isomerism of pentaammine(dimethylsulfoxide)ruthenium(II/III) complexes: A theoretical study. Inorganica Chimica Acta, 2009, 362, 1199-1203.	2.4	12
54	Anion influence on the coordination polymer structures of silver(I) complexes with 2-methylisothiazol-3(2H)-one. CrystEngComm, 2008, 10, 1460.	2.6	22

#	Article	IF	CITATIONS
55	(â^') ₅₄₅ - <i>fac</i> -Δ-Tris(<scp>L</scp> -prolinato)cobalt(III) trihydrate. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, m684-m684.	0.2	3
56	3-Hydroxy-2-methylisothiazolium chloride monohydrate: an intermolecular three-dimensional networkviaO—H…O and O—H…Cl hydrogen bonds. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o1839-o1841.	0.2	1
57	5-Chloro-2-methylisothiazolin-3-one: intermolecular two-dimensional networksviaunusual C—ClO=C interactions. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o3097-o3097.	0.2	0
58	Tetra-n-propylammonium perchlorate. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o1439-o1440.	0.2	2