
Jacqueline Freeman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3756662/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Loss of TalRX9b gene function in wheat decreases chain length and amount of arabinoxylan in grain but increases crossâ€inking. Plant Biotechnology Journal, 2020, 18, 2316-2327.	8.3	16
2	Identification of a major QTL and associated molecular marker for high arabinoxylan fibre in white wheat flour. PLoS ONE, 2020, 15, e0227826.	2.5	20
3	Suppression of a single <scp>BAHD</scp> gene in <i>Setaria viridis</i> causes large, stable decreases in cell wall feruloylation and increases biomass digestibility. New Phytologist, 2018, 218, 81-93.	7.3	91
4	Response of cell-wall composition and RNA-seq transcriptome to methyl-jasmonate in Brachypodium distachyon callus. Planta, 2018, 248, 1213-1229.	3.2	7
5	Feruloylation and structure of arabinoxylan in wheat endosperm cell walls from <scp>RNA</scp> i lines with suppression of genes responsible for backbone synthesis and decoration. Plant Biotechnology Journal, 2017, 15, 1429-1438.	8.3	37
6	Effect of suppression of arabinoxylan synthetic genes in wheat endosperm on chain length of arabinoxylan and extract viscosity. Plant Biotechnology Journal, 2016, 14, 109-116.	8.3	18
7	Improving wheat as a source of dietary fibre for human health. Proceedings of the Nutrition Society, 2015, 74, .	1.0	1
8	Optimising the Content and Composition of Dietary Fibre in Wheat Grain for End-use Quality. , 2014, , 455-466.		3
9	RNA Interference Suppression of Genes in Glycosyl Transferase Families 43 and 47 in Wheat Starchy Endosperm Causes Large Decreases in Arabinoxylan Content. Plant Physiology, 2013, 163, 95-107.	4.8	80
10	Grass cell wall feruloylation: distribution of bound ferulate and candidate gene expression in Brachypodium distachyon. Frontiers in Plant Science, 2013, 4, 50.	3.6	63
11	Cell Walls of Developing Wheat Starchy Endosperm: Comparison of Composition and RNA-Seq Transcriptome Â. Plant Physiology, 2012, 158, 612-627.	4.8	110
12	Glycosyl transferases in family 61 mediate arabinofuranosyl transfer onto xylan in grasses. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 989-993.	7.1	263
13	An integrated study of grain development of wheat (cv. Hereward). Journal of Cereal Science, 2012, 56, 21-30.	3.7	85
14	Temporal and spatial control of transgene expression using a heatâ€inducible promoter in transgenic wheat. Plant Biotechnology Journal, 2011, 9, 788-796.	8.3	26
15	Temporal and spatial changes in cell wall composition in developing grains of wheat cv. Hereward. Planta, 2010, 232, 677-689.	3.2	49
16	Challenges and Opportunities for Using Wheat for Biofuel Production. RSC Energy and Environment Series, 2010, , 13-26.	0.5	4
17	Down-Regulation of the <i>CSLF6</i> Gene Results in Decreased (1,3;1,4)- <i>β</i> - <scp>d</scp> -Glucan in Endosperm of Wheat. Plant Physiology, 2010, 152, 1209-1218.	4.8	110
18	The origin and early development of wheat glutenin particles. Journal of Cereal Science, 2008, 48, 870-877.	3.7	16

JACQUELINE FREEMAN

#	Article	IF	CITATIONS
19	Methods for studying population structure, including sensitivity to the fungicide silthiofam, of the cereal take-all fungus, Gaeumannomyces graminis var. tritici. Plant Pathology, 2005, 54, 686-698.	2.4	18
20	Changes in Protein Secondary Structure during Gluten Deformation Studied by Dynamic Fourier Transform Infrared Spectroscopy. Biomacromolecules, 2005, 6, 255-261.	5.4	251
21	Gaeumannomyces graminis, the take-all fungus and its relatives. Molecular Plant Pathology, 2004, 5, 235-252.	4.2	98
22	Detection of airborne fungal spores sampled by rotating-arm and Hirst-type spore traps using polymerase chain reaction assays. Journal of Aerosol Science, 2002, 33, 283-296.	3.8	58
23	Detection of airborne inoculum of Leptosphaeria maculans and Pyrenopeziza brassicae in oilseed rape crops by polymerase chain reaction (PCR) assays. Plant Pathology, 2002, 51, 303-310.	2.4	46
24	A Polymerase Chain Reaction (PCR) Assay for the Detection of Inoculum of Sclerotinia sclerotiorum. European Journal of Plant Pathology, 2002, 108, 877-886.	1.7	70
25	Molecular analysis of barley mutants deficient in chloroplast glutamine synthetase. Plant Molecular Biology, 1990, 14, 297-311.	3.9	39
26	Nuclear factors interact with conserved A/T-rich elements upstream of a nodule-enhanced glutamine synthetase gene from French bean Plant Cell, 1990, 2, 925-939.	6.6	76
27	Primary structure and differential expression of beta-amylase in normal and mutant barleys. FEBS Journal, 1987, 169, 517-525.	0.2	153
28	Differential gene expression in the developing barley endosperm. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1986, 314, 355-365.	2.3	25
29	Nucleotide sequence of a B1 hordein gene and the identification of possible upstream regulatory elements in endosperm storage protein genes from barley, wheat and maize. Nucleic Acids Research, 1985, 13, 7327-7339.	14.5	263
30	Sub-families of hordein mRNA encoded at the Hor 2 locus of barley. Molecular Genetics and Genomics, 1983, 191, 194-200.	2.4	44