Edward E Morrisey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/375660/publications.pdf

Version: 2024-02-01

12330 14759 17,918 142 69 127 citations h-index g-index papers 150 150 150 19792 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	HDAC1/2 Control Proliferation and Survival in Adult Epidermis and Preâ€'Basal Cell Carcinoma through p16 and p53. Journal of Investigative Dermatology, 2022, 142, 77-87.e10.	0.7	12
2	In Utero Gene Editing for Inherited Lung Diseases. Current Stem Cell Reports, 2022, 8, 44-52.	1.6	1
3	FZD2 Regulates Murine Hair Follicle Function and Maintenance. Journal of Investigative Dermatology, 2022, 142, 2260-2263.e2.	0.7	0
4	A census of the lung: CellCards from LungMAP. Developmental Cell, 2022, 57, 112-145.e2.	7.0	67
5	Human distal airways contain a multipotent secretory cell that can regenerate alveoli. Nature, 2022, 604, 120-126.	27.8	128
6	Microstructured Hydrogels to Guide Selfâ€Assembly and Function of Lung Alveolospheres. Advanced Materials, 2022, 34, e2202992.	21.0	21
7	GSK3 inhibition rescues growth and telomere dysfunction in dyskeratosis congenita iPSC-derived type II alveolar epithelial cells. ELife, 2022, 11 , .	6.0	6
8	It takes a lot of nerve to form the lung alveolus. Developmental Cell, 2022, 57, 1559-1560.	7.0	0
9	Klf5 defines alveolar epithelial type 1 cell lineage commitment during lung development and regeneration. Developmental Cell, 2022, 57, 1742-1757.e5.	7.0	14
10	Genomic, epigenomic, and biophysical cues controlling the emergence of the lung alveolus. Science, 2021, 371, .	12.6	108
11	Drug repurposing screens reveal cell-type-specific entry pathways and FDA-approved drugs active against SARS-Cov-2. Cell Reports, 2021, 35, 108959.	6.4	176
12	SARS-CoV-2 induces double-stranded RNA-mediated innate immune responses in respiratory epithelial-derived cells and cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	159
13	Activation of STING Signaling Pathway Effectively Blocks Human Coronavirus Infection. Journal of Virology, 2021, 95, .	3.4	40
14	Age-dependent alveolar epithelial plasticity orchestrates lung homeostasis and regeneration. Cell Stem Cell, 2021, 28, 1775-1789.e5.	11.1	79
15	Alveolar epithelial cell fate is maintained in a spatially restricted manner to promote lung regeneration after acute injury. Cell Reports, 2021, 35, 109092.	6.4	66
16	Type II alveolar cell MHCII improves respiratory viral disease outcomes while exhibiting limited antigen presentation. Nature Communications, 2021, 12, 3993.	12.8	25
17	National Heart, Lung, and Blood Institute and Building Respiratory Epithelium and Tissue for Health (BREATH) Consortium Workshop Report: Moving Forward in Lung Regeneration. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 22-29.	2.9	2
18	Organoid models: assessing lung cell fate decisions and disease responses. Trends in Molecular Medicine, 2021, 27, 1159-1174.	6.7	26

#	Article	IF	CITATIONS
19	Lung regeneration: a tale of mice and men. Seminars in Cell and Developmental Biology, 2020, 100, 88-100.	5.0	39
20	STAT3–BDNF–TrkB signalling promotes alveolar epithelial regeneration after lung injury. Nature Cell Biology, 2020, 22, 1197-1210.	10.3	71
21	mTORC1 activation in lung mesenchyme drives sex- and age-dependent pulmonary structure and function decline. Nature Communications, 2020, 11, 5640.	12.8	23
22	Direct Comparison of Mononucleated and Binucleated Cardiomyocytes Reveals Molecular Mechanisms Underlying Distinct Proliferative Competencies. Cell Reports, 2020, 30, 3105-3116.e4.	6.4	41
23	The in vivo genetic program of murine primordial lung epithelial progenitors. Nature Communications, 2020, 11, 635.	12.8	46
24	The Cellular and Physiological Basis for Lung Repair and Regeneration: Past, Present, and Future. Cell Stem Cell, 2020, 26, 482-502.	11.1	230
25	Defining the role of pulmonary endothelial cell heterogeneity in the response to acute lung injury. ELife, 2020, 9, .	6.0	151
26	Endothelial Foxp1 Suppresses Atherosclerosis via Modulation of Nlrp3 Inflammasome Activation. Circulation Research, 2019, 125, 590-605.	4.5	109
27	Hedgehog and WNT Signaling Hubs in Tracheal Morphogenesis. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 1202-1204.	5.6	1
28	Mesenchyme-free expansion and transplantation of adult alveolar progenitor cells: steps toward cell-based regenerative therapies. Npj Regenerative Medicine, 2019, 4, 17.	5.2	60
29	Cellular crosstalk in the development and regeneration of the respiratory system. Nature Reviews Molecular Cell Biology, 2019, 20, 551-566.	37.0	157
30	Dnmt1 is required for proximal-distal patterning of the lung endoderm and for restraining alveolar type 2 cell fate. Developmental Biology, 2019, 454, 108-117.	2.0	21
31	Endothelial Forkhead Box Transcription Factor P1 Regulates Pathological Cardiac Remodeling Through Transforming Growth Factor-β1–Endothelin-1 Signal Pathway. Circulation, 2019, 140, 665-680.	1.6	53
32	<scp>BASC</scp> â€ing in the glow: bronchioalveolar stem cells get their place in the lung. EMBO Journal, 2019, 38, .	7.8	6
33	In utero gene editing for monogenic lung disease. Science Translational Medicine, 2019, 11, .	12.4	83
34	The long noncoding RNA Falcor regulates Foxa2 expression to maintain lung epithelial homeostasis and promote regeneration. Genes and Development, 2019, 33, 656-668.	5.9	30
35	Cell-Specific Effects of GATA (GATA Zinc Finger Transcription Factor Family)-6 in Vascular Smooth Muscle and Endothelial Cells on Vascular Injury Neointimal Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 888-901.	2.4	19
36	Early lineage specification defines alveolar epithelial ontogeny in the murine lung. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4362-4371.	7.1	116

#	Article	IF	CITATIONS
37	Yap/Taz regulate alveolar regeneration and resolution of lung inflammation. Journal of Clinical Investigation, 2019, 129, 2107-2122.	8.2	178
38	Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature, 2018, 555, 251-255.	27.8	537
39	Single-Cell Transcriptomic Profiling of Pluripotent Stem Cell-Derived SCGB3A2+ Airway Epithelium. Stem Cell Reports, 2018, 10, 1579-1595.	4.8	78
40	Novel Molecular and Phenotypic Insights into Congenital Lung Malformations. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 1328-1339.	5.6	42
41	Basal Cells in Lung Development and Repair. Developmental Cell, 2018, 44, 653-654.	7. 0	19
42	Repairing the lungs one breath at a time: How dedicated or facultative are you?. Genes and Development, 2018, 32, 1461-1471.	5.9	47
43	In utero CRISPR-mediated therapeutic editing of metabolic genes. Nature Medicine, 2018, 24, 1513-1518.	30.7	169
44	Elevated Expression of miR302-367 in Endothelial Cells Inhibits Developmental Angiogenesis via CDC42/CCND1 Mediated Signaling Pathways. Theranostics, 2018, 8, 1511-1526.	10.0	14
45	Protein kinase R-like endoplasmic reticulum kinase is a mediator of stretch in ventilator-induced lung injury. Respiratory Research, 2018, 19, 157.	3.6	12
46	The Lung and Esophagus: Developmental and Regenerative Overlap. Trends in Cell Biology, 2018, 28, 738-748.	7.9	27
47	Lack of MTTP Activity in Pluripotent Stem Cell-Derived Hepatocytes and Cardiomyocytes Abolishes apoB Secretion and Increases Cell Stress. Cell Reports, 2017, 19, 1456-1466.	6.4	36
48	WNT10A mutation causes ectodermal dysplasia by impairing progenitor cell proliferation and KLF4-mediated differentiation. Nature Communications, 2017, 8, 15397.	12.8	104
49	The NANCl–Nkx2.1 gene duplex buffers Nkx2.1 expression to maintain lung development and homeostasis. Genes and Development, 2017, 31, 889-903.	5.9	49
50	ATP-Binding Cassette Transporter A1 Deficiency in Human Induced Pluripotent Stem Cell-Derived Hepatocytes Abrogates HDL Biogenesis and Enhances Triglyceride Secretion. EBioMedicine, 2017, 18, 139-145.	6.1	23
51	A Drug Screen using Human iPSC-Derived Hepatocyte-like Cells Reveals Cardiac Glycosides as a Potential Treatment for Hypercholesterolemia. Cell Stem Cell, 2017, 20, 478-489.e5.	11.1	92
52	Large, Diverse Population Cohorts of hiPSCs and Derived Hepatocyte-like Cells Reveal Functional Genetic Variation at Blood Lipid-Associated Loci. Cell Stem Cell, 2017, 20, 558-570.e10.	11.1	138
53	Developmental pathways in lung regeneration. Cell and Tissue Research, 2017, 367, 677-685.	2.9	34
54	Differentiation of Human Pluripotent Stem Cells into Functional Lung Alveolar Epithelial Cells. Cell Stem Cell, 2017, 21, 472-488.e10.	11.1	406

#	Article	IF	CITATIONS
55	Genome-Nuclear Lamina Interactions Regulate Cardiac Stem Cell Lineage Restriction. Cell, 2017, 171, 573-587.e14.	28.9	162
56	Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis. Developmental Cell, 2017, 43, 274-289.e5.	7.0	114
57	Distinct Mesenchymal Lineages and Niches Promote Epithelial Self-Renewal and Myofibrogenesis in the Lung. Cell, 2017, 170, 1134-1148.e10.	28.9	430
58	Deep RNA Sequencing Uncovers a Repertoire of Human Macrophage Long Intergenic Noncoding RNAs Modulated by Macrophage Activation and Associated With Cardiometabolic Diseases. Journal of the American Heart Association, 2017, 6, .	3.7	36
59	A MicroRNA302-367-Erk1/2-Klf2-S1pr1 Pathway Prevents Tumor Growth via Restricting Angiogenesis and Improving Vascular Stability. Circulation Research, 2017, 120, 85-98.	4.5	37
60	Sustained miRNA delivery from an injectable hydrogel promotes cardiomyocyte proliferation and functional regeneration after ischaemic injury. Nature Biomedical Engineering, 2017, 1, 983-992.	22.5	184
61	Heterogeneity in readouts of canonical wnt pathway activity within intestinal crypts. Developmental Dynamics, 2016, 245, 822-833.	1.8	14
62	Neutrophils promote alveolar epithelial regeneration by enhancing type II pneumocyte proliferation in a model of acid-induced acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L1062-L1075.	2.9	50
63	Expression of histone deacetylase 3 instructs alveolar type I cell differentiation by regulating a Wnt signaling niche in the lung. Developmental Biology, 2016, 414, 161-169.	2.0	30
64	Ezh2 restricts the smooth muscle lineage during mouse lung mesothelial development. Development (Cambridge), 2016, 143, 3733-3741.	2.5	27
65	Emergence of a Wave of Wnt Signaling that Regulates Lung Alveologenesis by Controlling Epithelial Self-Renewal and Differentiation. Cell Reports, 2016, 17, 2312-2325.	6.4	234
66	Early Development of the Mammalian Lung-Branching Morphogenesis., 2016,, 22-33.		3
67	Foxp transcription factors suppress a non-pulmonary gene expression program to permit proper lung development. Developmental Biology, 2016, 416, 338-346.	2.0	27
68	Modulating pulmonary inflammation. Science, 2016, 351, 662-663.	12.6	2
69	HDAC3-Dependent Epigenetic Pathway Controls Lung Alveolar Epithelial Cell Remodeling and Spreading via miR-17-92 and TGF-β Signaling Regulation. Developmental Cell, 2016, 36, 303-315.	7.0	85
70	DAAM1 and DAAM2 are co-required for myocardial maturation and sarcomere assembly. Developmental Biology, 2015, 408, 126-139.	2.0	44
71	Integration of Bmp and Wnt signaling by Hopx specifies commitment of cardiomyoblasts. Science, 2015, 348, aaa6071.	12.6	132
72	Functional Analysis and Transcriptomic Profiling of iPSC-Derived Macrophages and Their Application in Modeling Mendelian Disease. Circulation Research, 2015, 117, 17-28.	4.5	120

#	Article	IF	Citations
73	A microRNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Science Translational Medicine, 2015, 7, 279ra38.	12.4	311
74	Hedgehog actively maintains adult lung quiescence and regulates repair and regeneration. Nature, 2015, 526, 578-582.	27.8	182
75	Hippo and Cardiac Hypertrophy. Circulation Research, 2015, 117, 832-834.	4.5	14
76	Lung Endoderm Morphogenesis: Gasping for Form and Function. Annual Review of Cell and Developmental Biology, 2015, 31, 553-573.	9.4	80
77	Ezh2 represses the basal cell lineage during lung endoderm development. Development (Cambridge), 2015, 142, 108-117.	2.5	52
78	Generation of iPSCs as a Pooled Culture Using Magnetic Activated Cell Sorting of Newly Reprogrammed Cells. PLoS ONE, 2015, 10, e0134995.	2.5	30
79	Lung development: orchestrating the generation and regeneration of a complex organ. Development (Cambridge), 2014, 141, 502-513.	2.5	469
80	Wnt ligand/Frizzled 2 receptor signaling regulates tube shape and branch-point formation in the lung through control of epithelial cell shape. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12444-12449.	7.1	79
81	Repair and Regeneration of the Respiratory System: Complexity, Plasticity, and Mechanisms of Lung Stem Cell Function. Cell Stem Cell, 2014, 15, 123-138.	11.1	748
82	Lung regeneration: mechanisms, applications and emerging stem cell populations. Nature Medicine, 2014, 20, 822-832.	30.7	416
83	Long noncoding RNAs are spatially correlated with transcription factors and regulate lung development. Genes and Development, 2014, 28, 1363-1379.	5.9	148
84	Balancing the developmental niches within the lung. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18029-18030.	7.1	3
85	Development and Regeneration of Sox2+ Endoderm Progenitors Are Regulated by a HDAC1/2-Bmp4/Rb1 Regulatory Pathway. Developmental Cell, 2013, 24, 345-358.	7.0	94
86	Molecular Determinants of Lung Development. Annals of the American Thoracic Society, 2013, 10, S12-S16.	3.2	73
87	Coordination of heart and lung co-development by a multipotent cardiopulmonary progenitor. Nature, 2013, 500, 589-592.	27.8	200
88	Development of the Pulmonary Vasculature: Current Understanding and Concepts for the Future. Pulmonary Circulation, 2013, 3, 176-178.	1.7	33
89	High Throughput Genomic Screen Identifies Multiple Factors That Promote Cooperative Wnt Signaling. PLoS ONE, 2013, 8, e55782.	2.5	2
90	Importance of Myocyte-Nonmyocyte Interactions in Cardiac Development and Disease. Circulation Research, 2012, 110, 1023-1034.	4.5	119

#	Article	IF	CITATIONS
91	Wnt5a and Wnt11 are essential for second heart field progenitor development. Development (Cambridge), 2012, 139, 1931-1940.	2.5	135
92	Wnt ligands signal in a cooperative manner to promote foregut organogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15348-15353.	7.1	54
93	Foxp1/4 control epithelial cell fate during lung development and regeneration through regulation of anterior gradient 2. Development (Cambridge), 2012, 139, 2500-2509.	2.5	93
94	Directing Lung Endoderm Differentiation in Pluripotent Stem Cells. Cell Stem Cell, 2012, 10, 355-361.	11.1	59
95	Highly Efficient miRNA-Mediated Reprogramming of Mouse and Human Somatic Cells to Pluripotency. Cell Stem Cell, 2011, 8, 376-388.	11.1	1,121
96	Rewind to Recover: Dedifferentiation after Cardiac Injury. Cell Stem Cell, 2011, 9, 387-388.	11.1	13
97	Wnt2 signaling is necessary and sufficient to activate the airway smooth muscle program in the lung by regulating myocardin/Mrtf-B and Fgf10 expression. Developmental Biology, 2011, 356, 541-552.	2.0	83
98	Regulation of lung endoderm progenitor cell behavior by miR302/367. Development (Cambridge), 2011, 138, 1235-1245.	2.5	85
99	Not Too Large and Not Too Small–Just the Right Size: A Hippo-Sized Heart. Circulation Research, 2011, 109, 614-615.	4.5	5
100	The three R's of lung health and disease: repair, remodeling, and regeneration. Journal of Clinical Investigation, 2011, 121, 2065-2073.	8.2	267
101	The Importance of Wnt Signaling in Cardiovascular Development. Pediatric Cardiology, 2010, 31, 342-348.	1.3	58
102	Foxp1/2/4-NuRD Interactions Regulate Gene Expression and Epithelial Injury Response in the Lung via Regulation of Interleukin-6. Journal of Biological Chemistry, 2010, 285, 13304-13313.	3.4	57
103	Foxp1 coordinates cardiomyocyte proliferation through both cell-autonomous and nonautonomous mechanisms. Genes and Development, 2010, 24, 1746-1757.	5.9	88
104	Regulation of cardiomyocyte proliferation by Foxp1. Cell Cycle, 2010, 9, 4251-4252.	2.6	8
105	Wnt signaling and specification of the respiratory endoderm. Cell Cycle, 2010, 9, 10-11.	2.6	12
106	Preparing for the First Breath: Genetic and Cellular Mechanisms in Lung Development. Developmental Cell, 2010, 18, 8-23.	7.0	801
107	Characterization and In Vivo Pharmacological Rescue of a Wnt2-Gata6 Pathway Required for Cardiac Inflow Tract Development. Developmental Cell, 2010, 18, 275-287.	7.0	108
108	Hdac1 and Hdac2 Act Redundantly to Control p63 and p53 Functions in Epidermal Progenitor Cells. Developmental Cell, 2010, 19, 807-818.	7.0	218

#	Article	IF	Citations
109	The magic and mystery of miR-21. Journal of Clinical Investigation, 2010, 120, 3817-3819.	8.2	37
110	Wnt2/2b and \hat{l}^2 -Catenin Signaling Are Necessary and Sufficient to Specify Lung Progenitors in the Foregut. Developmental Cell, 2009, 17, 290-298.	7.0	407
111	Wnt signaling regulates smooth muscle precursor development in the mouse lung via a tenascin C/PDGFR pathway. Journal of Clinical Investigation, 2009, 119, 2538-2549.	8.2	164
112	A Gata6-Wnt pathway required for epithelial stem cell development and airway regeneration. Nature Genetics, 2008, 40, 862-870.	21.4	254
113	Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm. Development (Cambridge), 2007, 134, 2521-2531.	2.5	463
114	GATA and Nkx factors synergistically regulate tissue-specific gene expression and development in vivo. Development (Cambridge), 2007, 134, 189-198.	2.5	64
115	Foxp2 and Foxp1 cooperatively regulate lung and esophagus development. Development (Cambridge), 2007, 134, 1991-2000.	2.5	265
116	GLP-1: A novel zinc finger protein required in somatic cells of the gonad for germ cell development. Developmental Biology, 2007, 301, 106-116.	2.0	23
117	Wnt/β-catenin signaling promotes expansion of Isl-1–positive cardiac progenitor cells through regulation of FGF signaling. Journal of Clinical Investigation, 2007, 117, 1794-1804.	8.2	252
118	Hop functions downstream of Nkx2.1 and GATA6 to mediate HDAC-dependent negative regulation of pulmonary gene expression. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 291, L191-L199.	2.9	74
119	LMCD1/Dyxin Is a Novel Transcriptional Cofactor That Restricts GATA6 Function by Inhibiting DNA Binding. Molecular and Cellular Biology, 2005, 25, 8864-8873.	2.3	57
120	Wnt7b Activates Canonical Signaling in Epithelial and Vascular Smooth Muscle Cells through Interactions with Fzd1, Fzd10, and LRP5. Molecular and Cellular Biology, 2005, 25, 5022-5030.	2.3	164
121	Wnt∫î²-catenin signaling acts upstream of N-myc, BMP4, and FGF signaling to regulate proximal–distal patterning in the lung. Developmental Biology, 2005, 283, 226-239.	2.0	286
122	Transcriptional and DNA Binding Activity of the Foxp1/2/4 Family Is Modulated by Heterotypic and Homotypic Protein Interactions. Molecular and Cellular Biology, 2004, 24, 809-822.	2.3	288
123	Wnt Signaling and Pulmonary Fibrosis. American Journal of Pathology, 2003, 162, 1393-1397.	3.8	105
124	\hat{l}^2 -Catenin Is Required for Specification of Proximal/Distal Cell Fate during Lung Morphogenesis. Journal of Biological Chemistry, 2003, 278, 40231-40238.	3.4	298
125	Midkine. American Journal of Respiratory Cell and Molecular Biology, 2003, 28, 5-8.	2.9	7
126	The WNT7b Promoter Is Regulated by TTF-1, GATA6, and Foxa2 in Lung Epithelium. Journal of Biological Chemistry, 2002, 277, 21061-21070.	3.4	110

#	Article	IF	CITATIONS
127	Foxp4: a novel member of the Foxp subfamily of winged-helix genes co-expressed with Foxp1 and Foxp2 in pulmonary and gut tissues. Mechanisms of Development, 2002, 119, S197-S202.	1.7	80
128	CATA-6 is required for maturation of the lung in late gestation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 283, L468-L475.	2.9	65
129	Wnt7b regulates mesenchymal proliferation and vascular development in the lung. Development (Cambridge), 2002, 129, 4831-4842.	2.5	300
130	GATA6 regulates differentiation of distal lung epithelium. Development (Cambridge), 2002, 129, 2233-2246.	2.5	104
131	GATA6 regulates differentiation of distal lung epithelium. Development (Cambridge), 2002, 129, 2233-46.	2.5	64
132	Wnt7b regulates mesenchymal proliferation and vascular development in the lung. Development (Cambridge), 2002, 129, 4831-42.	2.5	136
133	The bone morphogenic protein antagonist gremlin regulates proximal-distal patterning of the lung. Developmental Dynamics, 2001, 222, 667-680.	1.8	96
134	Characterization of a New Subfamily of Winged-helix/Forkhead (Fox) Genes That Are Expressed in the Lung and Act as Transcriptional Repressors. Journal of Biological Chemistry, 2001, 276, 27488-27497.	3.4	298
135	The Gene Encoding the Mitogen-responsive Phosphoprotein Dab2 Is Differentially Regulated by GATA-6 and GATA-4 in the Visceral Endoderm. Journal of Biological Chemistry, 2000, 275, 19949-19954.	3.4	78
136	GATA-6 Activates Transcription of Surfactant Protein A. Journal of Biological Chemistry, 2000, 275, 1043-1049.	3.4	79
137	GATA-6: The Proliferation Stops Here. Circulation Research, 2000, 87, 638-640.	4.5	20
138	GATA-4 Activates Transcription Via Two Novel Domains That Are Conserved within the GATA-4/5/6 Subfamily. Journal of Biological Chemistry, 1997, 272, 8515-8524.	3.4	120
139	GATA-5: A Transcriptional Activator Expressed in a Novel Temporally and Spatially-Restricted Pattern during Embryonic Development. Developmental Biology, 1997, 183, 21-36.	2.0	234
140	GATA-6: A Zinc Finger Transcription Factor That Is Expressed in Multiple Cell Lineages Derived from Lateral Mesoderm. Developmental Biology, 1996, 177, 309-322.	2.0	427
141	Structure and Expression of a Smooth Muscle Cell-specific Gene, SM22α. Journal of Biological Chemistry, 1995, 270, 13460-13469.	3.4	240
142	Isolation and culture of human alveolar epithelial progenitor cells. Protocol Exchange, 0, , .	0.3	9