List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3756573/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Overview of radiation induced point defects in silica-based optical fibers. Reviews in Physics, 2019, 4, 100032.	4.4	208
2	Recent advances in radiation-hardened fiber-based technologies for space applications. Journal of Optics (United Kingdom), 2018, 20, 093001.	1.0	153
3	Bright Visible Luminescence in Silica Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 19476-19481.	1.5	74
4	Combined High Dose and Temperature Radiation Effects on Multimode Silica-Based Optical Fibers. IEEE Transactions on Nuclear Science, 2013, 60, 4305-4313.	1.2	71
5	Qualification and Calibration of Single-Mode Phosphosilicate Optical Fiber for Dosimetry at CERN. Journal of Lightwave Technology, 2019, 37, 4643-4649.	2.7	62
6	Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels. Optics Letters, 2014, 39, 5313.	1.7	54
7	Compaction in Optical Fibres and Fibre Bragg Gratings Under Nuclear Reactor High Neutron and Gamma Fluence. IEEE Transactions on Nuclear Science, 2016, 63, 2317-2322.	1.2	50
8	Influence of neutron and gamma-ray irradiations on rad-hard optical fiber. Optical Materials Express, 2015, 5, 898.	1.6	39
9	Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments. IEEE Transactions on Nuclear Science, 2017, 64, 68-73.	1.2	27
10	Radiation hardened high-power Er ³⁺ /Yb ³⁺ -codoped fiber amplifiers for free-space optical communications. Optics Letters, 2018, 43, 3049.	1.7	25
11	Novel Gd3+-doped silica-based optical fiber material for dosimetry in proton therapy. Scientific Reports, 2019, 9, 16376.	1.6	25
12	Radiation Vulnerability of Fiber Bragg Gratings in Harsh Environments. Journal of Lightwave Technology, 2015, 33, 2646-2651.	2.7	22
13	Potential of Copper- and Cerium-Doped Optical Fiber Materials for Proton Beam Monitoring. IEEE Transactions on Nuclear Science, 2017, 64, 567-573.	1.2	20
14	Origin of the visible absorption in radiation-resistant optical fibers. Optical Materials Express, 2013, 3, 1769.	1.6	19
15	Influence of photo-inscription conditions on the radiation-response of fiber Bragg gratings. Optics Express, 2015, 23, 8659.	1.7	18
16	X-rays, Î ³ -rays, electrons and protons radiation-induced changes on the lifetimes of Er 3+ and Yb 3+ ions in silica-based optical fibers. Journal of Luminescence, 2018, 195, 402-407.	1.5	18
17	Study of Fiber Bragg Grating Samples Exposed to High Fast Neutron Fluences. IEEE Transactions on Nuclear Science, 2018, 65, 2494-2501.	1.2	17
18	Origins of radiation-induced attenuation in pure-silica-core and Ge-doped optical fibers under pulsed x-ray irradiation. Journal of Applied Physics, 2020, 128, .	1.1	17

#	Article	IF	CITATIONS
19	Extreme Radiation Sensitivity of Ultra-Low Loss Pure-Silica-Core Optical Fibers at Low Dose Levels and Infrared Wavelengths. Sensors, 2020, 20, 7254.	2.1	17
20	Combined Temperature and Radiation Effects on Radiation-Sensitive Single-Mode Optical Fibers. IEEE Transactions on Nuclear Science, 2020, 67, 1643-1649.	1.2	16
21	Near-IR- and UV-femtosecond laser waveguide inscription in silica glasses. Optical Materials Express, 2019, 9, 4624.	1.6	15
22	Gamma Radiation Tests of Radiation-Hardened Fiber Bragg Grating-Based Sensors for Radiation Environments. IEEE Transactions on Nuclear Science, 2017, 64, 2307-2311.	1.2	14
23	Steady-State Radiation-Induced Effects on the Performances of BOTDA and BOTDR Optical Fiber Sensors. IEEE Transactions on Nuclear Science, 2018, 65, 111-118.	1.2	14
24	Influence of fluorine on the fiber resistance studied through the nonbridging oxygen hole center related luminescence. Journal of Applied Physics, 2013, 113, 193107.	1.1	12
25	On-site Regeneration Technique for Hole-Assisted Optical Fibers Used In Nuclear Facilities. IEEE Transactions on Nuclear Science, 2015, 62, 2941-2947.	1.2	12
26	Investigation of Coating Impact on OFDR Optical Remote Fiber-Based Sensors Performances for Their Integration in High Temperature and Radiation Environments. Journal of Lightwave Technology, 2016, 34, 4460-4465.	2.7	12
27	X-Ray, Proton, and Electron Radiation Effects on Type I Fiber Bragg Gratings. IEEE Transactions on Nuclear Science, 2018, 65, 1632-1638.	1.2	12
28	Radiation Resistant Single-Mode Fiber With Different Coatings for Sensing in High Dose Environments. IEEE Transactions on Nuclear Science, 2019, 66, 1657-1662.	1.2	12
29	Operating Temperature Range of Phosphorous-Doped Optical Fiber Dosimeters Exploiting Infrared Radiation-Induced Attenuation. IEEE Transactions on Nuclear Science, 2021, 68, 906-912.	1.2	12
30	Radiation Effects on Type I Fiber Bragg Gratings: Influence of Recoating and Irradiation Conditions. Journal of Lightwave Technology, 2018, 36, 998-1004.	2.7	11
31	X-Rays, <inline-formula> <tex-math notation="LaTeX">\$gamma\$ </tex-math> </inline-formula> -Rays, and Proton Beam Monitoring With Multimode Nitrogen-Doped Optical Fiber. IEEE Transactions on Nuclear Science, 2019, 66, 306-311.	1.2	11
32	Performances of Radiation-Hardened Single-Ended Raman Distributed Temperature Sensors Using Commercially Available Fibers. IEEE Transactions on Nuclear Science, 2020, 67, 305-311.	1.2	10
33	Radiation Effects on Pure-Silica Multimode Optical Fibers in the Visible and Near-Infrared Domains: Influence of OH Groups. Applied Sciences (Switzerland), 2021, 11, 2991.	1.3	10
34	Investigation of the Incorporation of Cerium Ions in MCVD-Silica Glass Preforms for Remote Optical Fiber Radiation Dosimetry. Sensors, 2021, 21, 3362.	2.1	10
35	Dependence of the Voids-Fiber Bragg Grating Radiation Response on Temperature, Dose, and Dose Rate. IEEE Transactions on Nuclear Science, 2018, 65, 1619-1623.	1.2	9
36	Atmospheric Neutron Monitoring through Optical Fiber-Based Sensing. Sensors, 2020, 20, 4510.	2.1	9

#	Article	IF	CITATIONS
37	Steady-State X-Ray Radiation-Induced Attenuation in Canonical Optical Fibers. IEEE Transactions on Nuclear Science, 2020, 67, 1650-1657.	1.2	9
38	Photobleaching Effect on Infrared Radiation-Induced Attenuation of Germanosilicate Optical Fibers at MGy Dose Levels. IEEE Transactions on Nuclear Science, 2021, 68, 1688-1693.	1.2	9
39	Gd ³⁺ -doped sol-gel silica glass for remote ionizing radiation dosimetry. OSA Continuum, 2019, 2, 715.	1.8	9
40	Temperature Dependence of Low-Dose Radiation-Induced Attenuation of Germanium-Doped Optical Fiber at Infrared Wavelengths. IEEE Transactions on Nuclear Science, 2022, 69, 512-517.	1.2	9
41	Dose Rate Effect Comparison on the Radiation Response of Type I Fiber Bragg Gratings Written With UV cw Laser. IEEE Transactions on Nuclear Science, 2016, 63, 2046-2050.	1.2	8
42	6-MeV Electron Exposure Effects on OFDR-Based Distributed Fiber-Based Sensors. IEEE Transactions on Nuclear Science, 2018, 65, 1598-1603.	1.2	8
43	Radiation and High Temperature Effects on Regenerated Fiber Bragg Grating. Journal of Lightwave Technology, 2019, 37, 4763-4769.	2.7	8
44	Cu/Ce-co-Doped Silica Glass as Radioluminescent Material for Ionizing Radiation Dosimetry. Materials, 2020, 13, 2611.	1.3	8
45	Remote Measurements of X-Rays Dose Rate Using a Cerium-Doped Air-Clad Optical Fiber. IEEE Transactions on Nuclear Science, 2020, 67, 1658-1662.	1.2	8
46	Sol–Gel Waveguide-Based Sensor for Structural Health Monitoring on Large Surfaces in Aerospace Domain. Aerospace, 2021, 8, 109.	1.1	8
47	Temperature Influence on the Radiation Responses of Erbiumâ€Đoped Fiber Amplifiers. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100002.	0.8	8
48	Combined Temperature and Radiation Effects on the Gain of Er- and Er–Yb-Doped Fiber Amplifiers. IEEE Transactions on Nuclear Science, 2021, 68, 793-800.	1.2	8
49	Transient and Steady-State Radiation Response of Phosphosilicate Optical Fibers: Influence of H ₂ Loading. IEEE Transactions on Nuclear Science, 2020, 67, 289-295.	1.2	7
50	IR femtosecond pulsed laser-based fiber Bragg grating inscription in a photonic crystal fiber using a phase mask and a short focal length lens. Optics Express, 2018, 26, 14741.	1.7	6
51	Distributed Optical Fiber Sensor Allowing Temperature and Strain Discrimination in Radiation Environments. IEEE Transactions on Nuclear Science, 2019, 66, 1651-1656.	1.2	6
52	Photobleaching Effect on the Radiationâ€Induced Attenuation of an Ultralow Loss Optical Fiber at Telecommunication Wavelengths. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, 2100518.	0.8	6
53	Distributed detection of hydrogen and deuterium diffusion into a single-mode optical fiber with chirped-pulse phase-sensitive optical time-domain reflectometry. Optics Letters, 2019, 44, 5286.	1.7	6
54	Optical Fiber-Based Monitoring of X-ray Pulse Series from a Linear Accelerator. Radiation, 2022, 2, 17-32.	0.6	6

#	Article	IF	CITATIONS
55	Monitoring of Ultra-High Dose Rate Pulsed X-ray Facilities with Radioluminescent Nitrogen-Doped Optical Fiber. Sensors, 2022, 22, 3192.	2.1	6
56	Radiation-Response of Fiber Bragg Gratings at Low Temperatures. IEEE Transactions on Nuclear Science, 2020, 67, 1637-1642.	1.2	5
57	Temperature Effect on the Radioluminescence of Cu-, Ce-, and CuCe-Doped Silica-Based Fiber Materials. IEEE Transactions on Nuclear Science, 2021, 68, 1782-1787.	1.2	5
58	Radioluminescence Response of Ce-, Cu-, and Gd-Doped Silica Glasses for Dosimetry of Pulsed Electron Beams. Sensors, 2021, 21, 7523.	2.1	5
59	Irradiation Campaign in the EOLE Critical Facility of Fiber Optic Bragg Gratings Dedicated to the Online Temperature Measurement in Zero Power Research Reactors. IEEE Transactions on Nuclear Science, 2016, 63, 2887-2894.	1.2	4
60	Regeneration of Fiber Bragg Gratings and Their Responses Under X-Rays. IEEE Transactions on Nuclear Science, 2021, 68, 1681-1687.	1.2	4
61	Temperature Dependence of Radiation Induced Attenuation of Aluminosilicate Optical Fiber. IEEE Transactions on Nuclear Science, 2022, 69, 1515-1520.	1.2	4
62	Radiation-Induced Effects on Fiber Bragg Gratings Inscribed in Highly Birefringent Photonic Crystal Fiber. IEEE Transactions on Nuclear Science, 2019, 66, 120-124.	1.2	3
63	Comparison between the UV and X-ray Photosensitivities of Hybrid TiO2-SiO2 Thin Layers. Materials, 2020, 13, 3730.	1.3	3
64	Ultraviolet-visible light-induced solarisation in silica-based optical fibres for indoor solar applications. Journal of Non-Crystalline Solids, 2021, 552, 120458.	1.5	3
65	Impact of \hat{I}^3 -rays Irradiation on Hybrid TiO2-SiO2 Sol-Gel Films Doped with RHODAMINE 6G. Materials, 2021, 14, 5754.	1.3	3
66	Regenerated Fiber Bragg Gratings under High Temperature and Radiations. , 2018, , .		3
67	Pulsed Xâ€Ray Radiation Response of Ultralow Loss Pureâ€Silicaâ€Core Optical Fibers. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, 2100519.	0.8	3
68	X-Ray Radioluminescence in Diversely Doped Multimode Silica-Based Optical Fibers. IEEE Transactions on Nuclear Science, 2022, 69, 1625-1632.	1.2	3
69	Femtosecond Direct Laser Writing of Silver Clusters in Phosphate Glasses for X-ray Spatially-Resolved Dosimetry. Chemosensors, 2022, 10, 110.	1.8	3
70	Radiation vulnerability of standard and radiation-hardened optical glasses at MGy dose: Towards the design of tolerant optical systems. Journal of Non-Crystalline Solids, 2022, 585, 121531.	1.5	3
71	Radiation Effects on WDM and DWDM Architectures of Preamplifier and Boost-Amplifier. IEEE Transactions on Nuclear Science, 2020, 67, 278-283.	1.2	2
72	Radiation Response of Distributed Feedback Bragg Gratings for Space Applications. IEEE Transactions on Nuclear Science, 2020, 67, 284-288.	1.2	2

#	Article	IF	CITATIONS
73	Distributed Temperature and Strain Fiber-Based Sensing in Radiation Environment. IEEE Transactions on Nuclear Science, 2021, 68, 1675-1680.	1.2	2
74	Combined Radiations and Temperature Effects on FBGs Photo-inscribed by Femtosecond Laser in Radiation-Hardened Optical Fibers. , 2018, , .		2
75	Dose-Rate Dependence of Fiber Bragg Gratings' Responses. , 2015, , .		1
76	Spectral properties and lifetime of green emission in ^ĵ a-ray irradiated bismuth-doped silica photonic crystal fibers. Journal of Non-Crystalline Solids, 2018, 482, 100-104.	1.5	1
77	Investigation by Thermoluminescence of the Ionization and Annealing Processes in Irradiated Ge-Doped Silica Fiber Preform. IEEE Transactions on Nuclear Science, 2021, 68, 1556-1564.	1.2	1
78	Structural and optical changes in silica-based optical fibers exposed to high neutron and gamma fluences. Journal of Non-Crystalline Solids, 2021, 574, 121150.	1.5	1
79	Recent Advances on Radiation-Hardened Optical Fiber Technologies. , 2020, , .		1
80	Coupled radiation and temperature effects on Erbium-doped fiber amplifiers. , 2020, , .		1
81	Multi-Mode Interferometry: Application to TiO2–SiO2 Sol-Gel Waveguide-Based Sensing in the Aerospace Domain. Aerospace, 2021, 8, 401.	1.1	1
82	Combined effect of radiation and temperature: towards optical fibers suited to distributed sensing in extreme radiation environments. , 2019, , .		1
83	Structured blue emission in Bismuth doped fibers. Optical Materials, 2018, 84, 663-667.	1.7	Ο
84	Statistical analysis of the 800 nm fs-laser inscription conditions on the characteristics and thermal stability of FBGs inscribed in fluorine-doped optical fibers. , 2018, , .		0
85	Recent Advances in Radiation-Hardened Fiber-Optic Amplifiers for Space-based Laser Communications. , 2021, , .		Ο
86	Optimization of the Radiation Response of Backup Optical Fiber Amplifiers for Space Missions. IEEE Transactions on Nuclear Science, 2022, 69, 1500-1505.	1.2	0
87	<i>In Situ</i> Optical Characterization of Bulk Optical Glasses Under Protons and X-Rays. IEEE Transactions on Nuclear Science, 2022, 69, 1492-1499.	1.2	0
88	Comments by the Senior Editor. IEEE Transactions on Nuclear Science, 2022, 69, 647-647.	1.2	0