
Hui Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3756543/publications.pdf Version: 2024-02-01

Hui Xu

#	Article	IF	CITATIONS
1	Encapsulating silicon into conjugated N-doped carbon with multifunctional citric acid binder for lithium-ion battery. Solid State Ionics, 2022, 376, 115857.	2.7	5
2	A novel multi-functional binder based on double dynamic bonds for silicon anode of lithium-ion batteries. Electrochimica Acta, 2022, 425, 140620.	5.2	13
3	Direct laser writing of pure lignin on carbon cloth for highly flexible supercapacitors with enhanced areal capacitance. Sustainable Energy and Fuels, 2021, 5, 3744-3754.	4.9	8
4	Novel constructive self-healing binder for silicon anodes with high mass loading in lithium-ion batteries. Energy Storage Materials, 2021, 38, 121-129.	18.0	102
5	<i>Hericium erinaceus</i> -like Copper-Based MOFs as Anodes for High Performance Lithium Ion Batteries. ACS Applied Energy Materials, 2021, 4, 11400-11407.	5.1	19
6	A green-synthetic spiderweb-like Si@Graphene-oxide anode material with multifunctional citric acid binder for high energy-density Li-ion batteries. Carbon, 2020, 157, 330-339.	10.3	90
7	Novel construction of nanostructured carbon materials as sulfur hosts for advanced lithiumâ€sulfur batteries. International Journal of Energy Research, 2020, 44, 70-91.	4.5	25
8	Low-Cost Synthetic Honeycomb-like Carbon Derived from Cotton as a Sulfur Host for the Enhanced Electrochemical Performances of Lithium–Sulfur Batteries. Energy & Fuels, 2020, 34, 13096-13103.	5.1	8
9	The synergetic effects of a multifunctional citric acid and rice husk derived honeycomb carbon matrix on a silicon anode for high-performance lithium ion batteries. Sustainable Energy and Fuels, 2020, 4, 2583-2592.	4.9	12
10	Advances in transition-metal (Zn, Mn, Cu)-based MOFs and their derivatives for anode of lithium-ion batteries. Coordination Chemistry Reviews, 2020, 410, 213221.	18.8	141
11	A robust hierarchical 3D Si/CNTs composite with void and carbon shell as Li-ion battery anodes. Chemical Engineering Journal, 2019, 360, 974-981.	12.7	78
12	Synthesis of porous carbon nano-onions derived from rice husk for high-performance supercapacitors. Applied Surface Science, 2019, 488, 593-599.	6.1	57
13	Micro-structured Si@Cu3Si@C ternary composite anodes for high-performance Li-ion batteries. Ionics, 2019, 25, 4667-4673.	2.4	9
14	<i>In Situ</i> Synthesis of Multilayer Carbon Matrix Decorated with Copper Particles: Enhancing the Performance of Si as Anode for Li-Ion Batteries. ACS Nano, 2019, 13, 3054-3062.	14.6	135
15	Cotton as a sustainable source of CuxO/C anode for high-performance Li-ion battery. Ionics, 2019, 25, 2519-2524.	2.4	2
16	Three-dimensional interconnected porous graphitic carbon derived from rice straw for high performance supercapacitors. Journal of Power Sources, 2018, 384, 270-277.	7.8	62
17	Flower-like carbon with embedded silicon nano particles as an anode material for Li-ion batteries. RSC Advances, 2017, 7, 30032-30037.	3.6	17
18	An Investigation of Process Parameters for Electrophoretic Deposition of Yttria-Stabilized Zirconia Using Design of Experiments. International Journal of Applied Ceramic Technology, 2011, 8, 1320-1333.	2.1	3

Hui Xu

#	Article	IF	CITATIONS
19	The influence of pH on particle packing in YSZ coatings electrophoretically deposited from a non-aqueous suspension. Journal of the European Ceramic Society, 2010, 30, 1105-1114.	5.7	38
20	Study of machinable silicon carbide–boron nitride ceramic composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 483-484, 214-217.	5.6	19
21	Preparation of glass-infiltrated 3Y-TZP/Al2O3/glass composites. Materials Letters, 2004, 58, 1750-1753.	2.6	25
22	Monitoring Constrained Sintering of YSZ Coatings Using Fluorescence Spectroscopy and Micro-Hardness. Key Engineering Materials, 0, 412, 177-182.	0.4	0
23	pH Effect on Electrophoretic Deposition in Non-Aqueous Suspensions and Sintering of YSZ Coatings. Key Engineering Materials, 0, 412, 165-170.	0.4	1