List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3756455/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selfâ€Healing Polymer Coatings Based on Crosslinked Metallosupramolecular Copolymers. Advanced Materials, 2013, 25, 1634-1638.	21.0	319
2	Raman and CARS microspectroscopy of cells and tissues. Analyst, The, 2009, 134, 1046.	3.5	275
3	Mitochondria Targeted Protein-Ruthenium Photosensitizer for Efficient Photodynamic Applications. Journal of the American Chemical Society, 2017, 139, 2512-2519.	13.7	272
4	Heteroleptic diimine–diphosphine Cu(I) complexes as an alternative towards noble-metal based photosensitizers: Design strategies, photophysical properties and perspective applications. Coordination Chemistry Reviews, 2018, 356, 127-146.	18.8	243
5	Photochemical Fate: The First Step Determines Efficiency of H ₂ Formation with a Supramolecular Photocatalyst. Angewandte Chemie - International Edition, 2010, 49, 3981-3984.	13.8	162
6	From molecular structure to tissue architecture: collagen organization probed by SHG microscopy. Journal of Biophotonics, 2013, 6, 129-142.	2.3	150
7	Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis. Journal of Biomedical Optics, 2011, 16, 021113.	2.6	138
8	Raman and coherent anti-Stokes Raman scattering microspectroscopy for biomedical applications. Journal of Biomedical Optics, 2012, 17, 040801.	2.6	137
9	A comprehensive comparison of dye-sensitized NiO photocathodes for solar energy conversion. Physical Chemistry Chemical Physics, 2016, 18, 10727-10738.	2.8	135
10	Photophysics of an Intramolecular Hydrogenâ€Evolving Ru–Pd Photocatalyst. Chemistry - A European Journal, 2009, 15, 7678-7688.	3.3	132
11	A Heteroleptic Bis(tridentate) Ruthenium(II) Complex of a Clickâ€Derived Abnormal Carbene Pincer Ligand with Potential for Photosensitzer Application. Chemistry - A European Journal, 2011, 17, 5494-5498.	3.3	117
12	Noninvasive Imaging of Intracellular Lipid Metabolism in Macrophages by Raman Microscopy in Combination with Stable Isotopic Labeling. Analytical Chemistry, 2012, 84, 8549-8556.	6.5	114
13	Palladium versus Platinum: The Metal in the Catalytic Center of a Molecular Photocatalyst Determines the Mechanism of the Hydrogen Production with Visible Light. Angewandte Chemie - International Edition, 2015, 54, 5044-5048.	13.8	112
14	A comparative Raman and CARS imaging study of colon tissue. Journal of Biophotonics, 2009, 2, 303-312.	2.3	110
15	Waterâ€Soluble Polymeric Carbon Nitride Colloidal Nanoparticles for Highly Selective Quasiâ€Homogeneous Photocatalysis. Angewandte Chemie - International Edition, 2020, 59, 487-495.	13.8	107
16	Multicore fiber with integrated fiber Bragg gratings for background-free Raman sensing. Optics Express, 2012, 20, 20156.	3.4	104
17	All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion. Optics Express, 2012, 20, 4484.	3.4	98
18	Intrinsic self-healing polymers with a high E-modulus based on dynamic reversible urea bonds. NPG Asia Materials, 2017, 9, e420-e420.	7.9	97

2

#	Article	IF	CITATIONS
19	Optimization of Hydrogenâ€Evolving Photochemical Molecular Devices. Angewandte Chemie - International Edition, 2015, 54, 6627-6631.	13.8	96
20	Analysis and characterization of coordination compounds by resonance Raman spectroscopy. Coordination Chemistry Reviews, 2012, 256, 1479-1508.	18.8	95
21	Tuning of Photocatalytic Hydrogen Production and Photoinduced Intramolecular Electron Transfer Rates by Regioselective Bridging Ligand Substitution. ChemPhysChem, 2011, 12, 2101-2109.	2.1	93
22	Ru(II) Dyads Derived from 2-(1-Pyrenyl)-1 <i>H</i> -imidazo[4,5- <i>f</i>][1,10]phenanthroline: Versatile Photosensitizers for Photodynamic Applications. Journal of Physical Chemistry A, 2014, 118, 10507-10521.	2.5	90
23	Physicochemical Analysis of Ruthenium(II) Sensitizers of 1,2,3-Triazole-Derived Mesoionic Carbene and Cyclometalating Ligands. Inorganic Chemistry, 2014, 53, 2083-2095.	4.0	81
24	Fluorescence-based fixative and vital staining of lipid droplets in Caenorhabditis elegans reveal fat stores using microscopy and flow cytometry approaches. Journal of Lipid Research, 2011, 52, 1281-1293.	4.2	79
25	Polymeric Halogenâ€Bondâ€Based Donor Systems Showing Selfâ€Healing Behavior in Thin Films. Angewandte Chemie - International Edition, 2017, 56, 4047-4051.	13.8	79
26	Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing. Optics Express, 2012, 20, 21010.	3.4	78
27	Appearance of coherent artifact signals in femtosecond transient absorption spectroscopy in dependence on detector design. Laser Physics Letters, 2007, 4, 38-43.	1.4	76
28	Fiber optic probes for linear and nonlinear Raman applications – Current trends and future development. Laser and Photonics Reviews, 2013, 7, 698-731.	8.7	71
29	Spectroscopic Investigation of the Ultrafast Photoinduced Dynamics in π onjugated Terpyridines. ChemPhysChem, 2009, 10, 910-919.	2.1	68
30	A photosensitizer–polyoxometalate dyad that enables the decoupling of light and dark reactions for delayed on-demand solar hydrogen production. Nature Chemistry, 2022, 14, 321-327.	13.6	66
31	A Heteroleptic Bis(tridentate) Ruthenium(II) Platform Featuring an Anionic 1,2,3-Triazolate-Based Ligand for Application in the Dye-Sensitized Solar Cell. Inorganic Chemistry, 2014, 53, 1637-1645.	4.0	65
32	Mechanisms of Molecular Response in the Optimal Control of Photoisomerization. Physical Review Letters, 2006, 97, 258301.	7.8	64
33	Transient absorption microscopy: advances in chemical imaging of photoinduced dynamics. Laser and Photonics Reviews, 2016, 10, 62-81.	8.7	64
34	Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering microscopy. Optics Express, 2012, 20, 26583.	3.4	63
35	Substitution-controlled ultrafast excited-state processes in Ru–dppz-derivatives. Physical Chemistry Chemical Physics, 2010, 12, 1357-1368.	2.8	62
36	In Vivo Characterization of Atherosclerotic Plaque Depositions by Raman-Probe Spectroscopy and in Vitro Coherent Anti-Stokes Raman Scattering Microscopic Imaging on a Rabbit Model. Analytical Chemistry, 2012, 84, 7845-7851.	6.5	61

#	Article	IF	CITATIONS
37	Ruthenium(II) Photosensitizers of Tridentate Clickâ€Derived Cyclometalating Ligands: A Joint Experimental and Computational Study. Chemistry - A European Journal, 2012, 18, 4010-4025.	3.3	61
38	The molecular mechanism of dual emission in terpyridine transition metal complexes—ultrafast investigations of photoinduced dynamics. Physical Chemistry Chemical Physics, 2011, 13, 1606-1617.	2.8	59
39	Ultrafast Excited-State Excitation Dynamics in a Quasi-Two-Dimensional Light-Harvesting Antenna Based on Ruthenium(II) and Palladium(II) Chromophores. Chemistry - A European Journal, 2006, 12, 5105-5115.	3.3	57
40	Monitoring the chemistry of self-healing by vibrational spectroscopy – current state and perspectives. Materials Today, 2014, 17, 57-69.	14.2	57
41	Expanding Multimodal Microscopy by High Spectral Resolution Coherent Anti-Stokes Raman Scattering Imaging for Clinical Disease Diagnostics. Analytical Chemistry, 2013, 85, 6703-6715.	6.5	55
42	Protonation effects on the resonance Raman properties of a novel (terpyridine)Ru(4H-imidazole) complex: an experimental and theoretical case study. Physical Chemistry Chemical Physics, 2011, 13, 15580.	2.8	54
43	Self-healing mechanism of metallopolymers investigated by QM/MM simulations and Raman spectroscopy. Physical Chemistry Chemical Physics, 2014, 16, 12422.	2.8	53
44	Multimodal imaging to study the morphochemistry of basal cell carcinoma. Journal of Biophotonics, 2010, 3, 728-736.	2.3	52
45	Analysis of the cytochrome distribution via linear and nonlinear Raman spectroscopy. Analyst, The, 2010, 135, 908.	3.5	52
46	Determination of side products in the photocatalytic generation of hydrogen with copper photosensitizers by resonance Raman spectroelectrochemistry. RSC Advances, 2016, 6, 105801-105805.	3.6	52
47	Protochlorophyllide a: A Comprehensive Photophysical Picture. ChemPhysChem, 2009, 10, 144-150.	2.1	51
48	Detection and Discrimination of Non-Melanoma Skin Cancer by Multimodal Imaging. Healthcare (Switzerland), 2013, 1, 64-83.	2.0	51
49	Dual Emission from Highly Conjugated 2,2′:6′:2″â€Terpyridine Complexes—A Potential Route to White Emitters. Macromolecular Rapid Communications, 2010, 31, 883-888.	3.9	50
50	Cu(<scp>i</scp>) <i>vs.</i> Ru(<scp>ii</scp>) photosensitizers: elucidation of electron transfer processes within a series of structurally related complexes containing an extended π-system. Physical Chemistry Chemical Physics, 2018, 20, 24843-24857.	2.8	50
51	Synthesis, Characterization, and Electroâ€Optical Properties of Zn ^{II} Complexes with Ï€â€Conjugated Terpyridine Ligands. ChemPhysChem, 2009, 10, 787-798.	2.1	49
52	Different contrast information obtained from CARS and nonresonant FWM images. Journal of Raman Spectroscopy, 2009, 40, 941-947.	2.5	49
53	Covalent Photosensitizer–Polyoxometalateâ€Catalyst Dyads for Visibleâ€Lightâ€Driven Hydrogen Evolution. Chemistry - A European Journal, 2016, 22, 12002-12005.	3.3	49
54	Synthesis and Resonance Energy Transfer Study on a Random Terpolymer Containing a 2-(Pyridine-2-yl)thiazole Donor-Type Ligand and a Luminescent [Ru(bpy) ₂ (2-(triazol-4-yl)pyridine)] ²⁺ Chromophore. Macromolecules, 2011, 44, 6277-6287.	4.8	48

#	Article	IF	CITATIONS
55	Resonance-Raman spectro-electrochemistry of intermediates in molecular artificial photosynthesis of bimetallic complexes. Chemical Communications, 2014, 50, 5227.	4.1	48
56	An artificial photosynthetic system for photoaccumulation of two electrons on a fused dipyridophenazine (dppz)–pyridoquinolinone ligand. Chemical Science, 2018, 9, 4152-4159.	7.4	48
57	Synthesis and characterization of regioselective substituted tetrapyridophenazine ligands and their Ru(ii) complexes. Dalton Transactions, 2010, 39, 2359.	3.3	45
58	Selfâ€Healing Polymer Networks Based on Reversible Michael Addition Reactions. Macromolecular Chemistry and Physics, 2016, 217, 2541-2550.	2.2	45
59	A compact microscope setup for multimodal nonlinear imaging in clinics and its application to disease diagnostics. Analyst, The, 2013, 138, 4048.	3.5	44
60	Multimodal nonlinear microscopic investigations on head and neck squamous cell carcinoma: Toward intraoperative imaging. Head and Neck, 2013, 35, E280-7.	2.0	44
61	Quantitative detection of C-deuterated drugs by CARS microscopy and Raman microspectroscopy. Analyst, The, 2011, 136, 3686.	3.5	43
62	Fiber-based optical parametric oscillator for high resolution coherent anti-Stokes Raman scattering (CARS) microscopy. Optics Express, 2014, 22, 21921.	3.4	43
63	[FeFe]-Hydrogenase H-cluster mimics mediated by naphthalene monoimide derivatives of peri-substituted dichalcogenides. Dalton Transactions, 2017, 46, 11180-11191.	3.3	43
64	Interpreting CARS images of tissue within the C–Hâ€ s tretching region. Journal of Biophotonics, 2012, 5, 729-733.	2.3	41
65	Watching Ultrafast Barrierless Excited-State Isomerization of Pseudocyanine in Real Time. Journal of Physical Chemistry B, 2007, 111, 4520-4526.	2.6	40
66	Photoinduced Charge Accumulation and Prolonged Multielectron Storage for the Separation of Light and Dark Reaction. Journal of the American Chemical Society, 2020, 142, 15722-15728.	13.7	40
67	Zinc(II) Bisterpyridine Complexes: The Influence of the Cation on the π-Conjugation between Terpyridine and the Lateral Phenyl Substituent. Journal of Physical Chemistry C, 2008, 112, 18651-18660.	3.1	39
68	The switch that wouldn't switch – unexpected luminescence from a ruthenium(ii)-dppz-complex in water. Dalton Transactions, 2010, 39, 2768.	3.3	39
69	Disruption-free imaging by Raman spectroscopy reveals a chemical sphere with antifouling metabolites around macroalgae. Biofouling, 2012, 28, 687-696.	2.2	39
70	Excited-State Planarization as Free Barrierless Motion in a π-Conjugated Terpyridine. Journal of Physical Chemistry C, 2010, 114, 6841-6848.	3.1	38
71	Immuno-Surface-Enhanced Coherent Anti-Stokes Raman Scattering Microscopy: Immunohistochemistry with Target-Specific Metallic Nanoprobes and Nonlinear Raman Microscopy. Analytical Chemistry, 2011, 83, 7081-7085.	6.5	38
72	Structural Control of Photoinduced Dynamics in 4 <i>H</i> -Imidazole-Ruthenium Dyes. Journal of Physical Chemistry C, 2012, 116, 25664-25676.	3.1	38

#	Article	IF	CITATIONS
73	Trapped in Imidazole: How to Accumulate Multiple Photoelectrons on a Blackâ€Absorbing Ruthenium Complex. Chemistry - A European Journal, 2014, 20, 3793-3799.	3.3	38
74	Two-dimensional Raman correlation spectroscopy reveals molecular structural changes during temperature-induced self-healing in polymers based on the Diels–Alder reaction. Physical Chemistry Chemical Physics, 2015, 17, 22587-22595.	2.8	38
75	Quantitative CARS Microscopic Detection of Analytes and Their Isotopomers in a Two hannel Microfluidic Chip. Small, 2009, 5, 2816-2818.	10.0	37
76	A Concept to Tailor Electron Delocalization: Applying QTAIM Analysis to Phenylâ^'Terpyridine Compounds. Journal of Physical Chemistry A, 2010, 114, 13163-13174.	2.5	37
77	Characterization of collagen and cholesterol deposition in atherosclerotic arterial tissue using nonâ€linear microscopy. Journal of Biophotonics, 2014, 7, 135-143.	2.3	36
78	Photoredox-active Dyads Based on a Ru(II) Photosensitizer Equipped with Electron Donor or Acceptor Polymer Chains: A Spectroscopic Study of Light-Induced Processes toward Efficient Charge Separation. Journal of Physical Chemistry C, 2015, 119, 4742-4751.	3.1	36
79	Resonance Raman studies of photochemical molecular devices for multielectron storage. Journal of Raman Spectroscopy, 2008, 39, 557-559.	2.5	35
80	Ruthenium polypyridine complexes of tris-(2-pyridyl)-1,3,5-triazine—unusual building blocks for the synthesis of photochemical molecular devices. Dalton Transactions, 2009, , 4012.	3.3	35
81	Sterically induced distortions of nickel(II) porphyrins – Comprehensive investigation by DFT calculations and resonance Raman spectroscopy. Coordination Chemistry Reviews, 2018, 360, 1-16.	18.8	35
82	Photophysical Dynamics of a Ruthenium Polypyridine Dye Controlled by Solvent pH. Journal of Physical Chemistry C, 2012, 116, 1274-1281.	3.1	34
83	How Does Peripheral Functionalization of Ruthenium(II)–Terpyridine Complexes Affect Spatial Charge Redistribution after Photoexcitation at the Franck–Condon Point?. ChemPhysChem, 2015, 16, 1395-1404.	2.1	34
84	Plant Protochlorophyllide Oxidoreductases A and B. Journal of Biological Chemistry, 2015, 290, 28530-28539.	3.4	34
85	Photophysics of Ru(II) Dyads Derived from Pyrenyl-Substitued Imidazo[4,5- <i>f</i>][1,10]phenanthroline Ligands. Journal of Physical Chemistry A, 2015, 119, 3986-3994.	2.5	34
86	Photocatalytic Hydrogen Evolution Driven by [FeFe] Hydrogenase Models Tethered to Fluorene and Silafluorene Sensitizers. Chemistry - A European Journal, 2017, 23, 334-345.	3.3	34
87	Excited State Dynamics of a Photobiologically Active Ru(II) Dyad Are Altered in Biologically Relevant Environments. Journal of Physical Chemistry A, 2017, 121, 5635-5644.	2.5	34
88	Unraveling the Lightâ€Activated Reaction Mechanism in a Catalytically Competent Key Intermediate of a Multifunctional Molecular Catalyst for Artificial Photosynthesis. Angewandte Chemie - International Edition, 2019, 58, 13140-13148.	13.8	34
89	Pump-Shaped Dump Optimal Control Reveals the Nuclear Reaction Pathway of Isomerization of a Photoexcited Cyanine Dye. Journal of the American Chemical Society, 2007, 129, 13014-13021.	13.7	33
90	Aqueous Photocurrent Measurements Correlated to Ultrafast Electron Transfer Dynamics at Ruthenium Tris Diimine Sensitized NiO Photocathodes. Journal of Physical Chemistry C, 2017, 121, 5891-5904.	3.1	33

#	Article	IF	CITATIONS
91	Dye-sensitized PS- <i>b</i> -P2VP-templated nickel oxide films for photoelectrochemical applications. Interface Focus, 2015, 5, 20140083.	3.0	32
92	ZnO nanoflowers-based photoanodes: aqueous chemical synthesis, microstructure and optical properties. Open Chemistry, 2016, 14, 158-169.	1.9	32
93	New approaches in component design for dye-sensitized solar cells. Sustainable Energy and Fuels, 2021, 5, 367-383.	4.9	32
94	Active repair of a dinuclear photocatalyst for visible-light-driven hydrogen production. Nature Chemistry, 2022, 14, 500-506.	13.6	32
95	Coherent anti-Stokes Raman scattering and two photon excited fluorescence for neurosurgery. Clinical Neurology and Neurosurgery, 2015, 131, 42-46.	1.4	31
96	Controlling Electronic Transitions in Fullerene van der Waals Aggregates via Supramolecular Assembly. ACS Applied Materials & Interfaces, 2016, 8, 21512-21521.	8.0	31
97	Blueâ€Emitting Polymers Based on 4â€Hydroxythiazoles Incorporated in a Methacrylate Backbone. Macromolecular Chemistry and Physics, 2011, 212, 840-848.	2.2	30
98	A Novel Ru(II) Polypyridine Black Dye Investigated by Resonance Raman Spectroscopy and TDDFT Calculations. Journal of Physical Chemistry C, 2012, 116, 19968-19977.	3.1	30
99	Ultrafast Circular Dichroism Study of the Ring Opening of 7-Dehydrocholesterol. Journal of Physical Chemistry Letters, 2012, 3, 182-185.	4.6	30
100	Recent advances in ultrafast time-resolved chirality measurements: perspective and outlook. Laser and Photonics Reviews, 2013, 7, 495-505.	8.7	30
101	Lightâ€Induced Dynamics in Conjugated Bis(terpyridine) Ligands – A Case Study Toward Photoactive Coordination Polymers. Macromolecular Rapid Communications, 2012, 33, 481-497.	3.9	29
102	Accumulating advantages, reducing limitations: Multimodal nonlinear imaging in biomedical sciences – The synergy of multiple contrast mechanisms. Journal of Biophotonics, 2013, 6, 887-904.	2.3	29
103	Influence of Protonation State on the Excited State Dynamics of a Photobiologically Active Ru(II) Dyad. Journal of Physical Chemistry A, 2016, 120, 6379-6388.	2.5	29
104	Electron transfer in a covalent dye–cobalt catalyst assembly – a transient absorption spectroelectrochemistry perspective. Chemical Communications, 2018, 54, 10594-10597.	4.1	29
105	Predictive Strength of Photophysical Measurements for in Vitro Photobiological Activity in a Series of Ru(II) Polypyridyl Complexes Derived from π-Extended Ligands. Inorganic Chemistry, 2019, 58, 3156-3166.	4.0	29
106	Influence of Multiple Protonation on the Initial Excitation in a Black Dye. Journal of Physical Chemistry C, 2011, 115, 24004-24012.	3.1	28
107	Tuning the polarity and surface activity of hydroxythiazoles – extending the applicability of highly fluorescent self-assembling chromophores to supra-molecular photonic structures. Journal of Materials Chemistry C, 2016, 4, 958-971.	5.5	28
108	The Excited-State Chemistry of Protochlorophyllide a: A Time-Resolved Fluorescence Study. ChemPhysChem, 2006, 7, 1727-1733.	2.1	27

#	Article	IF	CITATIONS
109	Ultrafast plasmon dynamics and evanescent field distribution of reproducible surface-enhanced Raman-scattering substrates. Analytical and Bioanalytical Chemistry, 2009, 394, 1811-1818.	3.7	27
110	Direct Observation of Temperature-Dependent Excited-State Equilibrium in Dinuclear Ruthenium Terpyridine Complexes Bearing Electron-Poor Bridging Ligands. Journal of Physical Chemistry C, 2011, 115, 12677-12688.	3.1	27
111	Towards automated segmentation of cells and cell nuclei in nonlinear optical microscopy. Journal of Biophotonics, 2012, 5, 878-888.	2.3	27
112	Synthesis and photophysics of a novel photocatalyst for hydrogen production based on a tetrapyridoacridine bridging ligand. Chemical Physics, 2012, 393, 65-73.	1.9	27
113	Synthesis and characterization of ruthenium and rhenium dyes with phosphonate anchoring groups. Dalton Transactions, 2016, 45, 9216-9228.	3.3	27
114	Energy transfer and formation of long-lived 3MLCT states in multimetallic complexes with extended highly conjugated bis-terpyridyl ligands. Physical Chemistry Chemical Physics, 2016, 18, 2350-2360.	2.8	26
115	Self-healing Functional Polymers: Optical Property Recovery of Conjugated Polymer Films by Uncatalyzed Imine Metathesis. Macromolecules, 2017, 50, 3789-3795.	4.8	26
116	Investigation of substitution effects on novel Ru–dppz complexes by Raman spectroscopy in combination with DFT methods. Journal of Raman Spectroscopy, 2010, 41, 922-932.	2.5	25
117	Fluorescence quenching in Zn2+-bis-terpyridine coordination polymers: a single molecule study. Journal of Materials Chemistry, 2012, 22, 16041.	6.7	25
118	Protonationâ€Dependent Luminescence of an Iridium(III) Bibenzimidazole Chromophore. European Journal of Inorganic Chemistry, 2015, 2015, 3730-3739.	2.0	25
119	New Ruthenium Bis(terpyridine) Methanofullerene and Pyrrolidinofullerene Complexes: Synthesis and Electrochemical and Photophysical Properties. Inorganic Chemistry, 2015, 54, 3159-3171.	4.0	25
120	Effect of annealing on the sub-bandgap, defects and trapping states of ZnO nanostructures. Chemical Physics, 2017, 483-484, 112-121.	1.9	25
121	Photophysics of BODIPY Dyes as Readily-Designable Photosensitisers in Light-Driven Proton Reduction. Inorganics, 2017, 5, 21.	2.7	25
122	Selfâ€Assembled Graphene/MWCNT Bilayers as Platinumâ€Free Counter Electrode in Dyeâ€Sensitized Solar Cells. ChemPhysChem, 2019, 20, 3336-3345.	2.1	25
123	Photodoping and Fast Charge Extraction in Ionic Carbon Nitride Photoanodes. Advanced Functional Materials, 2021, 31, 2105369.	14.9	25
124	Ultrafast Intramolecular Relaxation and Waveâ€Packet Motion in a Rutheniumâ€Based Supramolecular Photocatalyst. Chemistry - A European Journal, 2015, 21, 7668-7674.	3.3	24
125	Ultrafast Excited-State Isomerization Dynamics of 1,1â€~-Diethyl-2,2â€~-Cyanine Studied by Four-Wave Mixing Spectroscopy. Journal of Physical Chemistry B, 2007, 111, 5396-5404.	2.6	23
126	Visualizing overdamped wavepacket motion: Excited-state isomerization of pseudocyanine in viscous solvents. Chemical Physics, 2009, 357, 54-62.	1.9	23

#	Article	IF	CITATIONS
127	Toward in Vivo Chemical Imaging of Epicuticular Waxes Â. Plant Physiology, 2010, 154, 604-610.	4.8	23
128	Tuning of photocatalytic activity by creating a tridentate coordination sphere for palladium. Dalton Transactions, 2014, 43, 11676.	3.3	23
129	Hole injection dynamics from two structurally related Ru–bipyridine complexes into NiOx is determined by the substitution pattern of the ligands. Physical Chemistry Chemical Physics, 2015, 17, 7823-7830.	2.8	23
130	Oxygenâ€Đependent Photocatalytic Water Reduction with a Ruthenium(imidazolium) Chromophore and a Cobaloxime Catalyst. Chemistry - A European Journal, 2016, 22, 8240-8253.	3.3	23
131	Appearance of intramolecular high-frequency vibrations in two-dimensional, time-integrated three-pulse photon echo data. Physical Chemistry Chemical Physics, 2007, 9, 701-710.	2.8	22
132	Catalytic Efficiency of a Photoenzyme—An Adaptation to Natural Light Conditions. ChemPhysChem, 2012, 13, 2013-2015.	2.1	22
133	Light-harvesting of polymerizable 4-hydroxy-1,3-thiazole monomers by energy transfer toward photoactive Os(<scp>ii</scp>) metal complexes in linear polymers. Polymer Chemistry, 2014, 5, 2715-2724.	3.9	22
134	Synthesis and characterization of an immobilizable photochemical molecular device for H2-generation. Dalton Transactions, 2015, 44, 5577-5586.	3.3	22
135	Visible-light sensitized photocatalytic hydrogen generation using a dual emissive heterodinuclear cyclometalated iridium(III)/ruthenium(II) complex. Journal of Organometallic Chemistry, 2016, 821, 163-170.	1.8	22
136	On the Control of Chromophore Orientation, Supramolecular Structure, and Thermodynamic Stability of an Amphiphilic Pyridyl-Thiazol upon Lateral Compression and Spacer Length Variation. ACS Applied Materials & Interfaces, 2017, 9, 44181-44191.	8.0	22
137	Direct detection of the photoinduced charge-separated state in a Ru(<scp>ii</scp>) bis(terpyridine)–polyoxometalate molecular dyad. Chemical Communications, 2018, 54, 2970-2973.	4.1	21
138	Photodriven Charge Accumulation and Carrier Dynamics in a Waterâ€Soluble Carbon Nitride Photocatalyst. ChemSusChem, 2021, 14, 1728-1736.	6.8	21
139	Outpacing conventional nicotinamide hydrogenation catalysis by a strongly communicating heterodinuclear photocatalyst. Nature Communications, 2022, 13, 2538.	12.8	21
140	Tracking Ultrafast Excited-State Bond-Twisting Motion in Solution Close to the Franckâ^'Condon Point. Journal of Physical Chemistry B, 2007, 111, 6034-6041.	2.6	20
141	Insights into the Mechanism of Polymer Coating Self-Healing Using Raman Spectroscopy. Applied Spectroscopy, 2014, 68, 541-548.	2.2	20
142	Optimized Photoinitiator for Fast Twoâ€Photon Absorption Polymerization of Polyesterâ€Macromers for Tissue Engineering. Advanced Engineering Materials, 2017, 19, 1600686.	3.5	20
143	Energy versus Electron Transfer: Controlling the Excitation Transfer in Molecular Triads. Chemistry - A European Journal, 2017, 23, 4917-4922.	3.3	20
144	Polymeric carbon nitride coupled with a molecular thiomolybdate catalyst: exciton and charge dynamics in light-driven hydrogen evolution. Sustainable Energy and Fuels, 2020, 4, 6085-6095.	4.9	20

#	Article	IF	CITATIONS
145	Yield—not only Lifetime—of the Photoinduced Chargeâ€Separated State in Iridium Complex–Polyoxometalate Dyads Impact Their Hydrogen Evolution Reactivity. Chemistry - A European Journal, 2020, 26, 8045-8052.	3.3	20
146	The Excited-State Dynamics of Phycocyanobilin in Dependence on the Excitation Wavelength. ChemPhysChem, 2004, 5, 1171-1177.	2.1	19
147	Resonance Raman Spectral Imaging of Intracellular Uptake of β arotene Loaded Poly(D, <scp>L</scp> ″actideâ€ <i>co</i> â€glycolide) Nanoparticles. ChemPhysChem, 2013, 14, 155-161.	2.1	19
148	Self-Healing Functional Polymeric Materials. Advances in Polymer Science, 2015, , 247-283.	0.8	19
149	A ππ* State Enables Photoaccumulation of Charges on a π-Extended Dipyridophenazine Ligand in a Ru(II) Polypyridine Complex. Journal of Physical Chemistry C, 2018, 122, 83-95.	3.1	19
150	Molecular Scylla and Charybdis: Maneuvering between pH Sensitivity and Excited-State Localization in Ruthenium Bi(benz)imidazole Complexes. Inorganic Chemistry, 2020, 59, 12097-12110.	4.0	19
151	Spectroscopic Investigations Provide a Rationale for the Hydrogen-Evolving Activity of Dye-Sensitized Photocathodes Based on a Cobalt Tetraazamacrocyclic Catalyst. ACS Catalysis, 2021, 11, 3662-3678.	11.2	19
152	Fluorescence upconversion by triplet–triplet annihilation in all-organic poly(methacrylate)-terpolymers. Physical Chemistry Chemical Physics, 2020, 22, 4072-4079.	2.8	19
153	Dynamics of charge separation in the excited-state chemistry of protochlorophyllide. Chemical Physics Letters, 2010, 492, 157-163.	2.6	18
154	Separation of CARS image contributions with a Gaussian mixture model. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2010, 27, 1361.	1.5	18
155	Ruthenium dye functionalized gold nanoparticles and their spectral responses. RSC Advances, 2012, 2, 4463.	3.6	18
156	Synthesis and Characterization of Poly(methyl methacrylate) Backbone Polymers Containing Sideâ€Chain Pendant Ruthenium(II) Bisâ€Terpyridine Complexes With an Elongated Conjugated System. Macromolecular Chemistry and Physics, 2012, 213, 808-819.	2.2	18
157	Efficient Energy Transfer and Metal Coupling in Cyanide-Bridged Heterodinuclear Complexes Based on (Bipyridine)(terpyridine)ruthenium(II) and (Phenylpyridine)iridium(III) Complexes. Inorganic Chemistry, 2016, 55, 5152-5167.	4.0	18
158	Do You Get What You See? Understanding Molecular Selfâ€Healing. Chemistry - A European Journal, 2018, 24, 2493-2502.	3.3	18
159	Controlling Intermolecular Interactions at Interfaces: Case of Supramolecular Tuning of Fullerene's Electronic Structure. Advanced Energy Materials, 2018, 8, 1801737.	19.5	18
160	Investigating Light-Driven Hole Injection and Hydrogen Evolution Catalysis at Dye-Sensitized NiO Photocathodes: A Combined Experimental–Theoretical Study. Journal of Physical Chemistry C, 2019, 123, 17176-17184.	3.1	18
161	Excited-state dynamics of heteroleptic copper(i) photosensitizers and their electrochemically reduced forms containing a dipyridophenazine moiety – a spectroelectrochemical transient absorption study. Physical Chemistry Chemical Physics, 2019, 21, 10716-10725.	2.8	18
162	Protein-Induced Excited-State Dynamics of Protochlorophyllide. Journal of Physical Chemistry A, 2011, 115, 7873-7881.	2.5	17

BENJAMIN DIETZEK

#	Article	IF	CITATIONS
163	Classification of novel thiazole compounds for sensitizing Ru–polypyridine complexes for artificial light harvesting. Journal of Luminescence, 2011, 131, 1149-1153.	3.1	17
164	Towards Hydrogen Evolution Initiated by LED Light: 2â€(1 <i>H</i> â€1,2,3â€Triazolâ€4â€yl)pyridineâ€Containing Polymers as Photocatalyst. Macromolecular Rapid Communications, 2015, 36, 671-677.	3.9	17
165	Increased Charge Separation Rates with Increasing Donor–Acceptor Distance in Molecular Triads: The Effect of Solvent Polarity. Journal of Physical Chemistry C, 2017, 121, 9220-9229.	3.1	17
166	A Double Selfâ€Assembly Process for Versatile Reducedâ€Grapheneâ€Oxide Layer Deposition and Conformal Coating on 3D Structures. Advanced Materials Interfaces, 2017, 4, 1700758.	3.7	17
167	Arylic versus Alkylic—Hydrophobic Linkers Determine the Supramolecular Structure and Optoelectronic Properties of Tripodal Amphiphilic Push–Pull Thiazoles. Langmuir, 2019, 35, 2561-2570.	3.5	17
168	A Dinuclear Osmium(II) Complex Near-Infrared Nanoscopy Probe for Nuclear DNA. Journal of the American Chemical Society, 2021, 143, 20442-20453.	13.7	17
169	Automated classification of healthy and keloidal collagen patterns based on processing of SHG images of human skin. Journal of Biophotonics, 2011, 4, 627-636.	2.3	16
170	Blue emitting side-chain pendant 4-hydroxy-1,3-thiazoles in polystyrenes synthesized by RAFT polymerization. European Polymer Journal, 2012, 48, 1339-1347.	5.4	16
171	In situ spectroelectrochemical and theoretical study on the oxidation of a 4H-imidazole-ruthenium dye adsorbed on nanocrystalline TiO ₂ thin film electrodes. Physical Chemistry Chemical Physics, 2015, 17, 29637-29646.	2.8	16
172	And yet they glow: thiazole based push–pull fluorophores containing nitro groups and the influence of regioisomerism. Methods and Applications in Fluorescence, 2015, 3, 025005.	2.3	16
173	ZnO Nanostructures for Dye‧ensitized Solar Cells Using the TEMPO ⁺ /TEMPO Redox Mediator and Ruthenium(II) Photosensitizers with 1,2,3â€Triazoleâ€Derived Ligands. ChemPlusChem, 2016, 81, 1281-1291.	2.8	16
174	Excited State Properties of Heteroleptic Cu(I) 4 <i>H</i> -Imidazolate Complexes. Inorganic Chemistry, 2017, 56, 12978-12986.	4.0	16
175	Extending Longâ€lived Charge Separation Between Donor and Acceptor Blocks in Novel Copolymer Architectures Featuring a Sensitizer Core. Chemistry - A European Journal, 2017, 23, 16484-16490.	3.3	16
176	Probing the dye–semiconductor interface in dye-sensitized NiO solar cells. Journal of Chemical Physics, 2020, 153, 184704.	3.0	16
177	1,7,9,10â€Tetrasubstituted PMIs Accessible through Decarboxylative Bromination: Synthesis, Characterization, Photophysical Studies, and Hydrogen Evolution Catalysis. Chemistry - A European Journal, 2021, 27, 4081-4088.	3.3	16
178	Photophysics of Ruthenium(II) Complexes with Thiazole π-Extended Dipyridophenazine Ligands. Inorganic Chemistry, 2021, 60, 760-773.	4.0	16
179	Hydrogen Production at a NiO Photocathode Based on a Ruthenium Dye–Cobalt Diimine Dioxime Catalyst Assembly: Insights from Advanced Spectroscopy and Post-operando Characterization. ACS Applied Materials & Interfaces, 2021, 13, 49802-49815.	8.0	16
180	<i>N</i> -Methyl deuterated rhodamines for protein labelling in sensitive fluorescence microscopy. Chemical Science, 2022, 13, 8605-8617.	7.4	16

#	Article	IF	CITATIONS
181	Synthesis and characterization of polymethacrylates containing conjugated oligo(phenylene) Tj ETQq1 1 0	.784314_rgBT 2.gBT	/Overlock 10
182	Ruthenium Imidazophenanthrolinium Complexes with Prolonged Excited‣tate Lifetimes. European Journal of Inorganic Chemistry, 2015, 2015, 3932-3939.	2.0	15
183	Ultrafast in cellulo photoinduced dynamics processes of the paradigm molecular light switch [Ru(bpy)2dppz]2+. Scientific Reports, 2016, 6, 33547.	3.3	15
184	Introducing double polar heads to highly fluorescent Thiazoles: Influence on supramolecular structures and photonic properties. Journal of Colloid and Interface Science, 2018, 526, 410-418.	9.4	15
185	Remendable polymers via reversible Diels–Alder cycloaddition of anthraceneâ€containing copolymers with fullerenes. Journal of Applied Polymer Science, 2018, 135, 45916.	2.6	15
186	Waterâ€Soluble Polymeric Carbon Nitride Colloidal Nanoparticles for Highly Selective Quasiâ€Homogeneous Photocatalysis. Angewandte Chemie, 2020, 132, 495-503.	2.0	15
187	Excitation Energy-Dependent Branching Dynamics Determines Photostability of Iron(II)–Mesoionic Carbene Complexes. Inorganic Chemistry, 2021, 60, 9157-9173.	4.0	15
188	Sensitization of NOâ€Releasing Ruthenium Complexes to Visible Light. Chemistry - A European Journal, 2015, 21, 15554-15563.	3.3	14
189	Photophysics of a Ruthenium 4 <i>H</i> â€Imidazole Panchromatic Dye in Interaction with Titanium Dioxide. ChemPhysChem, 2015, 16, 1061-1070.	2.1	14
190	Intermolecular exciton–exciton annihilation in phospholipid vesicles doped with [Ru(bpy)2dppz]2+. Chemical Physics Letters, 2016, 644, 56-61.	2.6	14
191	Molecular self-healing mechanisms between C ₆₀ -fullerene and anthracene unveiled by Raman and two-dimensional correlation spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 17973-17982.	2.8	14
192	Tailoring Cellular Uptake and Fluorescence of Poly(2-oxazoline)-Based Nanogels. Bioconjugate Chemistry, 2017, 28, 1229-1235.	3.6	14
193	Absorption and Fluorescence Features of an Amphiphilic <i>meso</i> -Pyrimidinylcorrole: Experimental Study and Quantum Chemical Calculations. Journal of Physical Chemistry A, 2017, 121, 8614-8624.	2.5	14
194	Polymerbasierte Halogenbrückendonoren mit selbstheilenden Eigenschaften in Filmen. Angewandte Chemie, 2017, 129, 4105-4110.	2.0	14
195	Optimal control of peridinin excited-state dynamics. Chemical Physics, 2010, 373, 129-136.	1.9	13
196	Utilizing Ancillary Ligands to Optimize the Photophysical Properties of 4 <i>H</i> â€Imidazole Ruthenium Dyes. ChemPhysChem, 2013, 14, 2973-2983.	2.1	13
197	Evidence for SERRS Enhancement in the Spectra of Ruthenium Dye–Metal Nanoparticle Conjugates. Journal of Physical Chemistry C, 2013, 117, 1121-1129.	3.1	13
198	Ru dye functionalized Au–SiO2@TiO2 and Au/Pt–SiO2@TiO2 nanoassemblies for surface-plasmon-induced visible light photocatalysis. Journal of Colloid and Interface Science, 2014, 421, 114-121.	9.4	13

#	Article	IF	CITATIONS
199	Porous NiOx nanostructures templated by polystyrene-block-poly(2-vinylpyridine) diblock copolymer micelles. Journal of Materials Chemistry A, 2014, 2, 6158.	10.3	13
200	Role of MLCT States in the Franck–Condon Region of Neutral, Heteroleptic Cu(l)–4 <i>H</i> -imidazolate Complexes: A Spectroscopic and Theoretical Study. Journal of Physical Chemistry A, 2020, 124, 6607-6616.	2.5	13
201	Covalent Linkage of BODIPYâ€Photosensitizers to Andersonâ€Type Polyoxometalates Using CLICK Chemistry. Chemistry - A European Journal, 2021, 27, 17181-17187.	3.3	13
202	On the excited-state multi-dimensionality in cyanines. Chemical Physics Letters, 2008, 455, 13-19.	2.6	12
203	Photometric Detection of Nitric Oxide Using a Dissolved Iron(III) Corrole as a Sensitizer. ChemPlusChem, 2016, 81, 594-603.	2.8	12
204	Impact of drying procedure on the morphology and structure of TiO2 xerogels and the performance of dye sensitized solar cells. Journal of Sol-Gel Science and Technology, 2017, 81, 693-703.	2.4	12
205	Is electron ping-pong limiting the catalytic hydrogen evolution activity in covalent photosensitizer–polyoxometalate dyads?. Chemical Communications, 2020, 56, 10485-10488.	4.1	12
206	It Takes Three to Tango: The Length of the Oligothiophene Chain Determines the Nature of the Longâ€Lived Excited State and the Resulting Photocytotoxicity of a Ruthenium(II) Photodrug. ChemPhotoChem, 2021, 5, 421-425.	3.0	12
207	Excited-state annihilation in a homodinuclear ruthenium complex. Chemical Communications, 2011, 47, 3820.	4.1	11
208	Excited-State Dynamics of Protochlorophyllide Revealed by Subpicosecond Infrared Spectroscopy. Biophysical Journal, 2011, 100, 260-267.	0.5	11
209	Incorporation of Polymerizable Osmium(II) Bis-terpyridine Complexes into PMMA Backbones. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 74-80.	3.7	11
210	Redox State Sensitive Spectroscopy of the Model Compound [(H-dcbpy) ₂ Ru ^{II} (NCS) ₂] ^{2–} (dcbpy =) Tj ETQq0 0 0 rgBT /0	Dv erli ock 1	0 Th£50 297 T
211	Assembly of T-Shaped Amphiphilic Thiazoles on the Air–Water Interface: Impact of Polar Chromophore Moieties, as Well as Dipolarity and π-Extension of the Chromophore on the Supramolecular Structure. Langmuir, 2019, 35, 2587-2600.	3.5	11
212	Switching the Mechanism of NADH Photooxidation by Supramolecular Interactions. Chemistry - A European Journal, 2021, 27, 16840-16845.	3.3	11
213	Resonance-Raman microspectroscopy for quality assurance of dye-sensitized NiOx films with respect to dye desorption kinetics in water. Physical Chemistry Chemical Physics, 2012, 14, 15185.	2.8	10
214	Automated seeding-based nuclei segmentation in nonlinear optical microscopy. Applied Optics, 2013, 52, 6979.	1.8	10
215	Synthesis of three series of ruthenium tris-diimine complexes containing acridine-based π-extended ligands using an efficient "chemistry on the complex―approach. Dalton Transactions, 2016, 45, 16298-16308.	3.3	10
216	Photophysics of a Ruthenium Complex with a π-Extended Dipyridophenazine Ligand for DNA Quadruplex Labeling. Journal of Physical Chemistry A, 2018, 122, 6558-6569.	2.5	10

#	Article	lF	CITATIONS
217	Autonomous Supramolecular Interface Selfâ€Healing Monitored by Restoration of UV/Vis Absorption Spectra of Selfâ€Assembled Thiazole Layers. Chemistry - A European Journal, 2019, 25, 8630-8634.	3.3	10
218	Intracellular Photophysics of an Osmium Complex bearing an Oligothiophene Extended Ligand. Chemistry - A European Journal, 2020, 26, 14844-14851.	3.3	10
219	A Highly Fluorescent Dinuclear Aluminium Complex with Nearâ€Unity Quantum Yield**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	10
220	Raman Spectroscopic Insights into the Chemical Gradients within the Wound Plug of the Green Alga <i>Caulerpa taxifolia</i> . ChemBioChem, 2013, 14, 727-732.	2.6	9
221	Fluorescence Study of Energy Transfer in PMMA Polymers with Pendant Oligoâ€Phenyleneâ€Ethynylenes. ChemPhysChem, 2013, 14, 170-178.	2.1	9
222	A program for automatically predicting supramolecular aggregates and its application to urea and porphin. Journal of Computational Chemistry, 2018, 39, 763-772.	3.3	9
223	Unraveling the Lightâ€Activated Reaction Mechanism in a Catalytically Competent Key Intermediate of a Multifunctional Molecular Catalyst for Artificial Photosynthesis. Angewandte Chemie, 2019, 131, 13274-13282.	2.0	9
224	Resonance Raman Spectro-Electrochemistry to Illuminate Photo-Induced Molecular Reaction Pathways. Molecules, 2019, 24, 245.	3.8	9
225	String-Attached Oligothiophene Substituents Determine the Fate of Excited States in Ruthenium Complexes for Photodynamic Therapy. Journal of Physical Chemistry A, 2021, 125, 6985-6994.	2.5	9
226	Superconducting single-photon counting system for optical experiments requiring time-resolution in the picosecond range. Review of Scientific Instruments, 2012, 83, 123103.	1.3	8
227	Spectroelectrochemical Investigation of the Oneâ€Electron Reduction of Nonplanar Nickel(II) Porphyrins. ChemPhysChem, 2016, 17, 3480-3493.	2.1	8
228	Coexistence of distinct intramolecular electron transfer pathways in polyoxometalate based molecular triads. Physical Chemistry Chemical Physics, 2018, 20, 11740-11748.	2.8	8
229	Photoannealing of Merocyanine Aggregates. Journal of Physical Chemistry A, 2018, 122, 9821-9832.	2.5	8
230	Investigating Light-Induced Processes in Covalent Dye-Catalyst Assemblies for Hydrogen Production. Catalysts, 2020, 10, 1340.	3.5	8
231	Structure of Diethylâ€Phosphonic Acid Anchoring Group Affects the Chargeâ€5eparated State on an Iridium(III) Complex Functionalized NiO Surface. ChemPhotoChem, 2020, 4, 618-629.	3.0	8
232	Quinoline Photobasicity: Investigation within Waterâ€Soluble Lightâ€Responsive Copolymers. Chemistry - A European Journal, 2021, 27, 1072-1079.	3.3	8
233	Influence of the Protonation State on the Excited-State Dynamics of Ruthenium(II) Complexes with Imidazole ÏE-Extended Dipyridophenazine Ligands. Journal of Physical Chemistry A, 2021, 125, 5911-5921.	2.5	8
234	Supramolecular Reorientation During Deposition Onto Metal Surfaces of Quasi-Two-Dimensional Langmuir Monolayers Composed of Bifunctional Amphiphilic, Twisted Perylenes. Langmuir, 2021, 37, 11018-11026.	3.5	8

#	Article	IF	CITATIONS
235	Triplet–Triplet Annihilation Upconversion by Polymeric Sensitizers. Journal of Physical Chemistry C, 2022, 126, 4057-4066.	3.1	8
236	Monitoring intra-cellular lipid metabolism in macrophages by Raman- and CARS-microscopy. , 2010, , .		7
237	The impact of bromine substitution on the photophysical properties of a homodinuclear Ru–tpphz–Ru complex. Chemical Physics Letters, 2011, 516, 45-50.	2.6	7
238	Mechanism of protonation induced changes in Raman spectra of a trisheteroleptic ruthenium complex revealed by DFT calculations. RSC Advances, 2013, 3, 5597.	3.6	7
239	Multimodal nonlinear imaging of atherosclerotic plaques differentiation of triglyceride and cholesterol deposits. Journal of Innovative Optical Health Sciences, 2014, 07, 1450027.	1.0	7
240	Synthesis and Characterization of Poly(phenylacetylene)s with Ru(II) <i>Bis</i> â€Terpyridine Complexes in the Sideâ€Chain. Macromolecular Rapid Communications, 2014, 35, 747-751.	3.9	7
241	Hydrogel-Embedded Model Photocatalytic System Investigated by Raman and IR Spectroscopy Assisted by Density Functional Theory Calculations and Two-Dimensional Correlation Analysis. Journal of Physical Chemistry A, 2018, 122, 2677-2687.	2.5	7
242	Enhancing the supramolecular stability of monolayers by combining dipolar with amphiphilic motifs: a case of amphiphilic push–pull-thiazole. Physical Chemistry Chemical Physics, 2019, 21, 13241-13247.	2.8	7
243	Photocathodes beyond NiO: charge transfer dynamics in a π-conjugated polymer functionalized with Ru photosensitizers. Scientific Reports, 2021, 11, 2787.	3.3	7
244	Probing the structure and Franck–Condon region of protochlorophyllide <i>a</i> through analysis of the Raman and resonance Raman spectra. Journal of Raman Spectroscopy, 2010, 41, 414-423.	2.5	6
245	Ruthenium(II)-bis(4′-(4-ethynylphenyl)-2,2′:6′, 2″-terpyridine) — A versatile synthon in supramolecula chemistry. Synthesis and characterization. Open Chemistry, 2011, 9, 990-999.	r 1.9	6
246	Chelating Fluorene Dyes as Mono- and Ditopic 2-(1H-1,2,3-Triazol-4-yl)pyridine Ligands and Their Corresponding Ruthenium(II) Complexes. Synthesis, 2012, 44, 2287-2294.	2.3	6
247	Förster resonance energy transfer in poly(methyl methacrylates) copolymers bearing donor-acceptor 1,3-thiazole dyes. Journal of Polymer Science Part A, 2013, 51, 4765-4773.	2.3	6
248	Modified bibenzimidazole ligands as spectator ligands in photoactive molecular functional Ru-polypyridine units? Implications from spectroscopy. Dalton Transactions, 2014, 43, 17659-17665.	3.3	6
249	Thermally triggered optical tuning of π-conjugated graft copolymers based on reversible Diels–Alder reaction. RSC Advances, 2016, 6, 98221-98227.	3.6	6
250	Resonance Raman Study of New Pyrroleâ€Anchoring Dyes for NiOâ€Sensitized Solar Cells. ChemPhysChem, 2017, 18, 406-414.	2.1	6
251	Thermally Switchable Fluorescence Resonance Energy Transfer via Reversible Diels–Alder Reaction of Ï€â€Conjugated Oligoâ€(Phenylene Ethynylene)s. Macromolecular Rapid Communications, 2018, 39, e1700789.	3.9	6
252	Fate of Photoexcited Molecular Antennae - Intermolecular Energy Transfer versus Photodegradation Assessed by Quantum Dynamics. Journal of Physical Chemistry C, 2018, 122, 3273-3285.	3.1	6

#	Article	IF	CITATIONS
253	Remote control of electronic coupling – modification of excited-state electron-transfer rates in Ru(tpy) ₂ -based donor–acceptor systems by remote ligand design. Chemical Communications, 2019, 55, 2273-2276.	4.1	6
254	Monitoring excited-state relaxation in a molecular marker in live cells–a case study on astaxanthin. Chemical Communications, 2021, 57, 6392-6395.	4.1	6
255	<i>In situ</i> photothermal deflection spectroscopy revealing intermolecular interactions upon self-assembly of dye monolayers. Analyst, The, 2021, 146, 5033-5036.	3.5	6
256	A Molecular Photosensitizer in a Porous Block Copolymer Matrixâ€Implications for the Design of Photocatalytically Active Membranes. Chemistry - A European Journal, 2021, 27, 17049-17058.	3.3	6
257	Multifunctional Polyoxometalate Platforms for Supramolecular Lightâ€Driven Hydrogen Evolution**. Chemistry - A European Journal, 2021, 27, 16846-16852.	3.3	6
258	Interaction with a Biomolecule Facilitates the Formation of the Function-Determining Long-Lived Triplet State in a Ruthenium Complex for Photodynamic Therapy. Journal of Physical Chemistry A, 2022, 126, 1336-1344.	2.5	6
259	Activating a [FeFe] Hydrogenase Mimic for Hydrogen Evolution under Visible Light**. Angewandte Chemie - International Edition, 2022, , .	13.8	6
260	Unravelling the Mystery: Enlightenment of the Uncommon Electrochemistry of Naphthalene Monoimide [FeFe] Hydrogenase Mimics. European Journal of Inorganic Chemistry, 2022, 2022, .	2.0	6
261	Influence of the Linker Chemistry on the Photoinduced Chargeâ€Transfer Dynamics of Heteroâ€dinuclear Photocatalysts. Chemistry - A European Journal, 2022, 28, .	3.3	6
262	Structure–Property Relationships in an Iridium(III) Bis(Terpyridine) Complex with Extended Conjugated Side chains. Journal of Physical Chemistry A, 2014, 118, 12137-12148.	2.5	5
263	Ultrafast transient absorption microscopy: Study of excited state dynamics in PtOEP crystals. Chemical Physics, 2016, 464, 69-77.	1.9	5
264	Directed Orientation of Oligo(phenylene ethynylene)s Using Ureas or Urethanes in Rod–Coil Copolymers. Macromolecular Chemistry and Physics, 2017, 218, 1700343.	2.2	5
265	Organic linkage controls the photophysical properties of covalent photosensitizer–polyoxometalate hydrogen evolution dyads. Sustainable Energy and Fuels, 2020, 4, 4688-4693.	4.9	5
266	Modulating the Excited-State Decay Pathways of Cu(I) 4 <i>H</i> -Imidazolate Complexes by Excitation Wavelength and Ligand Backbone. Journal of Physical Chemistry B, 2021, 125, 11498-11511.	2.6	5
267	A Combined Spectroscopic and Theoretical Study on a Ruthenium Complex Featuring a Ï€â€Extended dppz Ligand for Lightâ€Driven Accumulation of Multiple Reducing Equivalents. Chemistry - A European Journal, 2022, 28, e202103882.	3.3	5
268	Characterization of atherosclerotic plaque-depositions by infrared, Raman and CARS microscopy. Proceedings of SPIE, 2011, , .	0.8	4
269	Functional materials: making the world go round. Physical Chemistry Chemical Physics, 2019, 21, 8988-8991.	2.8	4
270	Silicon-rhodamine isothiocyanate for fluorescent labelling. Organic and Biomolecular Chemistry, 2021, 19, 574-578.	2.8	4

#	Article	IF	CITATIONS
271	Kinetic-Model-Free Analysis of Transient Absorption Spectra Enabled by 2D Correlation Analysis. Journal of Physical Chemistry Letters, 2021, 12, 4148-4153.	4.6	4
272	A Study in Red: The Overlooked Role of Azoâ€Moieties in Polymeric Carbon Nitride Photocatalysts with Strongly Extended Optical Absorption. Chemistry - A European Journal, 2021, 27, 17188-17202.	3.3	4
273	The electron that breaks the catalyst's back – excited state dynamics in intermediates of molecular photocatalysts. Physical Chemistry Chemical Physics, 2021, 23, 27397-27403.	2.8	4
274	Not that innocent – ammonium ions boost homogeneous light-driven hydrogen evolution. Chemical Communications, 2022, 58, 4603-4606.	4.1	4
275	Experimental Observation of Different-Order Components of a Vibrational Wave Packet in a Bulk Dielectric Using High-Order Raman Scattering. Physical Review Letters, 2007, 98, 187402.	7.8	3
276	Development of a fiber-based Raman probe for clinical diagnostics. , 2011, , .		3
277	Wavelength-dependent photoproduct formation of phycocyanobilin in solution – Indications for competing reaction pathways. Chemical Physics Letters, 2011, 515, 163-169.	2.6	3
278	Spectrally shaped light from supercontinuum fiber light sources. Optics Communications, 2011, 284, 1970-1974.	2.1	3
279	Superexchange in the fast lane – intramolecular electron transfer in a molecular triad occurs by conformationally gated superexchange. Chemical Communications, 2019, 55, 5251-5254.	4.1	3
280	Structure of Ni(OH)2 intermediates determines the efficiency of NiO-based photocathodes – a case study using novel mesoporous NiO nanostars. RSC Advances, 2019, 9, 39422-39433.	3.6	3
281	Photoactive ultrathin molecular nanosheets with reversible lanthanide binding terpyridine centers. Nanoscale, 2021, 13, 20583-20591.	5.6	3
282	Silicon Nanowires Decorated with Silver Nanoparticles for Photoassisted Hydrogen Generation. ACS Applied Energy Materials, 2022, 5, 7466-7472.	5.1	3
283	Link to glow - iEDDA conjugation of a Ruthenium(II) tetrazine complex leading to dihydropyrazine and pyrazine complexes with improved 1O2 formation ability. Journal of Photochemistry and Photobiology, 2022, 11, 100130.	2.5	3
284	Non-invasive label-free investigation and typing of head and neck cancers by multimodal nonlinear microscopy. Proceedings of SPIE, 2012, , .	0.8	2
285	Wound plug chemistry and morphology of two species of Caulerpa – a comparative Raman microscopy study. Botanica Marina, 2014, 57, 1-7.	1.2	2
286	Excitation Power Modulates Energyâ€Transfer Dynamics in a Supramolecular Ru ^{II} â€Fe ^{II} â€Ru ^{II} Triad. ChemPhysChem, 2017, 18, 2899-2907.	2.1	2
287	Unusually Short-Lived Solvent-Dependent Excited State in a Half-Sandwich Ru(II) Complex Induced by Low-Lying ³ MC States. Journal of Physical Chemistry A, 2018, 122, 1550-1559.	2.5	2
288	Photophysics of a Bisâ€Furanâ€Functionalized 4,7â€ <i>bis</i> (Phenylethynyl)â€2,1,3â€benzothiadiazole: A Building Block for Dynamic Polymers. ChemPhotoChem, 2019, 3, 54-60.	3.0	2

BENJAMIN DIETZEK

#	Article	IF	CITATIONS
289	Photo-induced processes in new materials for electro-optical applications. Proceedings of SPIE, 2010, ,	0.8	1
290	Nonlinear microscopy and infrared and Raman microspectroscopy for brain tumor analysis. Proceedings of SPIE, 2011, , .	0.8	1
291	Nonlinear optical imaging: toward chemical imaging during neurosurgery. Proceedings of SPIE, 2011, , .	0.8	1
292	Femtosecond Coherence Spectroscopic Study of the Onset of Chemical Denaturation of Myoglobin upon Addition of Minor Amounts of Urea. Zeitschrift Fur Physikalische Chemie, 2011, 225, 741-752.	2.8	1
293	Raman spectroscopy - An essential tool for biophotonics. , 2011, , .		1
294	Spectroscopic detection of chemotherapeutics and antioxidants. Proceedings of SPIE, 2012, , .	0.8	1
295	Fiber based optical parametric oscillator for high fidelity coherent anti-stokes Raman (CARS) microscopy. , 2013, , .		1
296	Ultrafast anisotropic exciton dynamics in a water-soluble ionic carbon nitride photocatalyst. Chemical Communications, 2021, 57, 10739-10742.	4.1	1
297	Localizing the initial excitation – A case study on NiO photocathodes using Ruthenium dipyridophenazine complexes as sensitizers. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 252, 119507.	3.9	1
298	Red-light sensitized hole-conducting polymer for energy conversion. Physical Chemistry Chemical Physics, 2021, 23, 18026-18034.	2.8	1
299	Twoâ€Dimensional Photosensitizer Nanosheets via Lowâ€Energy Electron Beam Induced Crossâ€Linking of Selfâ€Assembled Ru(II) Polypyridine Monolayers. Angewandte Chemie - International Edition, 2022, , .	13.8	1
300	Twoâ€Dimensional Photosensitizer Nanosheets via Lowâ€Energy Electron Beam Induced Crossâ€Linking of Selfâ€Assembled Ru(II) Polypyridine Monolayers. Angewandte Chemie, 0, , .	2.0	1
301	Existing and future challenges of multi-dimensional microscopy and imaging for life sciences and biomedicine. , 2009, , .		Ο
302	Raman meets medicine: Raman spectroscopy: a powerful tool in biophotonics. Proceedings of SPIE, 2009, , .	0.8	0
303	Raman Spectroscopic Characterization of Single Cells. , 2010, , .		Ο
304	Photophysics Of Protochlorophyllide. , 2010, , .		0
305	Comparative Study On The Composition Of Brain Tissue By Nonlinear Microscopy. , 2010, , .		0
306	Localization Of The [sup 1]MLCT State Of Novel Ruthenium Polypyridine Complexes Via Resonance Raman Spectroscopy. , 2010, , .		0

#	Article	IF	CITATIONS
307	Monitoring Collagen Structures In Basal Cell Carcinoma Using Multimodal Imaging. , 2010, , .		0
308	Mikrospektroskopie an lebenden Pilzen und Pflanzen. Nachrichten Aus Der Chemie, 2011, 59, 642-645.	0.0	0
309	Macromol. Chem. Phys. 8/2011. Macromolecular Chemistry and Physics, 2011, 212, .	2.2	0
310	Optimal control of coherent anti-Stokes Raman scattering image contrast. Applied Physics Letters, 2012, 100, 261106.	3.3	0
311	3D CARS image reconstruction and pattern recognition on SHG images. , 2012, , .		0
312	Monitoring the morphochemistry of laryngeal carcinoma by multimodal imaging. Proceedings of SPIE, 2012, , .	0.8	0
313	Interpreting CARS images of tissue within the C-H-stretching region. , 2014, , .		0
314	Photometric Detection of Nitric Oxide Using a Dissolved Iron(III) Corrole as a Sensitizer. ChemPlusChem, 2016, 81, 585-585.	2.8	0
315	Nonlinear Microspectroscopy for Biomedical Applications. , 2011, , .		0
316	A Highly Fluorescent Dinuclear Aluminium Complex with Nearâ€Unity Quantum Yield. Angewandte Chemie, 0, , .	2.0	0
317	Aktivierung eines biomimetischen [FeFe]â€Hydrogenaseâ€Komplexes für die H ₂ â€Produktion mit sichtbarem Licht**. Angewandte Chemie, 0, , .	t 2.0	0
318	Frontispiz: Aktivierung eines biomimetischen [FeFe]â€Hydrogenaseâ€Komplexes für die H ₂ â€₽roduktion mit sichtbarem Licht. Angewandte Chemie, 2022, 134, .	2.0	0
319	Frontispiece: Activating a [FeFe] Hydrogenase Mimic for Hydrogen Evolution under Visible Light. Angewandte Chemie - International Edition, 2022, 61, .	13.8	0
320	Photochemistry in Germany. ChemPhotoChem, 0, , .	3.0	0