Diego Baragaño

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3756275/publications.pdf Version: 2024-02-01

DIECO ΒΑΡΑCΑÃ+O

#	Article	IF	CITATIONS
1	Nanoremediation of As and metals polluted soils by means of graphene oxide nanoparticles. Scientific Reports, 2020, 10, 1896.	3.3	90
2	Zero valent iron and goethite nanoparticles as new promising remediation techniques for As-polluted soils. Chemosphere, 2020, 238, 124624.	8.2	79
3	Nanoremediation and long-term monitoring of brownfield soil highly polluted with As and Hg. Science of the Total Environment, 2019, 675, 165-175.	8.0	60
4	Magnetite nanoparticles for the remediation of soils co-contaminated with As and PAHs. Chemical Engineering Journal, 2020, 399, 125809.	12.7	48
5	Application of biochar, compost and ZVI nanoparticles for the remediation of As, Cu, Pb and Zn polluted soil. Environmental Science and Pollution Research, 2020, 27, 33681-33691.	5.3	33
6	Zero valent iron nanoparticles and organic fertilizer assisted phytoremediation in a mining soil: Arsenic and mercury accumulation and effects on the antioxidative system of Medicago sativa L Journal of Hazardous Materials, 2022, 433, 128748.	12.4	23
7	Bioaugmentation Treatment of a PAH-Polluted Soil in a Slurry Bioreactor. Applied Sciences (Switzerland), 2020, 10, 2837.	2.5	22
8	Arsenic release from pyrite ash waste over an active hydrogeological system and its effects on water quality. Environmental Science and Pollution Research, 2020, 27, 10672-10684.	5.3	21
9	Benzo[a]pyrene sourcing and abundance in a coal region in transition reveals historical pollution, rendering soil screening levels impractical. Environmental Pollution, 2020, 266, 115341.	7.5	20
10	Multiple pollution sources unravelled by environmental forensics techniques and multivariate statistics. Journal of Hazardous Materials, 2022, 424, 127413.	12.4	20
11	Effects of in situ Remediation With Nanoscale Zero Valence Iron on the Physicochemical Conditions and Bacterial Communities of Groundwater Contaminated With Arsenic. Frontiers in Microbiology, 2021, 12, 643589.	3.5	18
12	A multivariate examination of the timing and accumulation of potentially toxic elements at Las Conchas bog (NW Spain). Environmental Pollution, 2019, 254, 113048.	7.5	13
13	As sorption onto Fe-based nanoparticles and recovery from soils by means of wet high intensity magnetic separation. Chemical Engineering Journal, 2021, 408, 127325.	12.7	12
14	Short-term experiment for the in situ stabilization of a polluted soil using mining and biomass waste. Journal of Environmental Management, 2021, 296, 113179.	7.8	11
15	Interplay between arsenic and selenium biomineralization in Shewanella sp. O23S. Environmental Pollution, 2022, 306, 119451.	7.5	11
16	Effects of Different In Situ Remediation Strategies for an As-Polluted Soil on Human Health Risk, Soil Properties, and Vegetation. Agronomy, 2020, 10, 759.	3.0	9
17	Contribution of fluorite mining waste to mercury contamination in coastal systems. Marine Pollution Bulletin, 2019, 149, 110576.	5.0	7
18	Reuse of Dunite Mining Waste and Subproducts for the Stabilization of Metal(oid)s in Polluted Soils. Minerals (Basel, Switzerland), 2019, 9, 481.	2.0	6

#	Article	IF	CITATIONS
19	Nanomaterials for soil remediation: Pollutant immobilization and opportunities for hybrid technologies. , 2021, , 701-723.		6
20	Comparison of the effectiveness of biochar vs. magnesite amendments to immobilize metals and restore a polluted soil. Environmental Geochemistry and Health, 2021, 43, 5053-5064.	3.4	5
21	Environmental Forensic Study and Remediation Feasibility in an Abandoned Industrial Site. Proceedings (mdpi), 2018, 2, 1503.	0.2	3
22	Mineral Processing Technologies for the Remediation of Soils Polluted by Trace Elements. Proceedings (mdpi), 2018, 2, 1458.	0.2	0