
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3756037/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Water-soluble pillar[4]arene[1]quinone: Synthesis, host-guest property and application in the fluorescence turn-on sensing of ethylenediamine in aqueous solution, organic solvent and air. Chinese Chemical Letters, 2022, 33, 1475-1478.	9.0	21
2	Bubble-templated synthesis of nanocatalyst Co/C as NADH oxidase mimic. National Science Review, 2022, 9, nwab186.	9.5	25
3	Perspectives on the landscape and flux theory for describing emergent behaviors of the biological systems. Journal of Biological Physics, 2022, 48, 1-36.	1.5	3
4	Investigating the Conformational Dynamics of a Y-Family DNA Polymerase during Its Folding and Binding to DNA and a Nucleotide. Jacs Au, 2022, 2, 341-356.	7.9	5
5	A physical mechanism of heterogeneity and micro-metastasis in stem cell, cancer and cancer stem cell. Journal of Chemical Physics, 2022, 156, 075103.	3.0	0
6	The onset of dissipative chaos driven by nonequilibrium conditions. Journal of Chemical Physics, 2022, 156, 024103.	3.0	0
7	Facile one-step synthesis of NIR-Responsive siRNA-Inorganic hybrid nanoplatform for imaging-guided photothermal and gene synergistic therapy. Biomaterials, 2022, 282, 121404.	11.4	13
8	Uncovering the Quantitative Relationships Among Chromosome Fluctuations, Epigenetics, and Gene Expressions of Transdifferentiation on Waddington Landscape. Advanced Science, 2022, , 2103617.	11.2	1
9	ZnSe Nanorods–CsSnCl ₃ Perovskite Heterojunction Composite for Photocatalytic CO ₂ Reduction. ACS Nano, 2022, 16, 3332-3340.	14.6	179
10	Energy and entropy compensation, phase transition and kinetics of four dimensional charged Gauss-Bonnet Anti-de Sitter black holes on the underlying free energy landscape. Nuclear Physics B, 2022, 976, 115714.	2.5	10
11	Cadmium sulfide as bifunctional mimics of NADH oxidase and cytochrome c reductase takes effect at physiological pH. Nano Research, 2022, 15, 5256-5261.	10.4	12
12	Self-Supported Three-Dimensional Quantum Dot Aerogels as a Promising Photocatalyst for CO ₂ Reduction. Chemistry of Materials, 2022, 34, 2687-2695.	6.7	12
13	Metastable dynamics of neural circuits and networks. Applied Physics Reviews, 2022, 9, 011313.	11.3	25
14	The effect of nonequilibrium entropy production on the quantum Fisher information and correlations. Quantum Information Processing, 2022, 21, 1.	2.2	0
15	Dynamics and Pathways of Chromosome Structural Organizations during Cell Transdifferentiation. Jacs Au, 2022, 2, 116-127.	7.9	3
16	Laser-ablation assisted strain engineering of gold nanoparticles for selective electrochemical CO ₂ reduction. Nanoscale, 2022, 14, 7702-7710.	5.6	8
17	Mnâ€Doped Perovskite Nanocrystals for Photocatalytic CO ₂ Reduction: Insight into the Role of the Charge Carriers with Prolonged Lifetime. Solar Rrl, 2022, 6, .	5.8	24
18	Path integral and instantons for the dynamical process and phase transition rate of Reissner-Nordstr¶m-AdS black holes. Physical Review D, 2022, 105, .	4.7	10

#	Article	IF	CITATIONS
19	Kinetics of Hawking-Page phase transition with the non-Markovian effects. Journal of High Energy Physics, 2022, 2022, .	4.7	6
20	Rational Design of Metal Halide Perovskite Nanocrystals for Photocatalytic CO ₂ Reduction: Recent Advances, Challenges, and Prospects. ACS Energy Letters, 2022, 7, 2043-2059.	17.4	89
21	Equilibrium and nonequilibrium quantum correlations between two detectors in curved spacetime. European Physical Journal C, 2022, 82, .	3.9	0
22	Influence of sequence length and charged residues on Swc5 binding with histone H2Aâ€H2B. Proteins: Structure, Function and Bioinformatics, 2021, 89, 512-520.	2.6	5
23	The role of energy cost on accuracy, sensitivity, specificity, speed and adaptation of T cell foreign and self recognition. Physical Chemistry Chemical Physics, 2021, 23, 2860-2872.	2.8	3
24	Coupling CsPbBr ₃ Quantum Dots with Covalent Triazine Frameworks for Visibleâ€Lightâ€Driven CO ₂ Reduction. ChemSusChem, 2021, 14, 1131-1139.	6.8	52
25	Excitation-energy transfer under strong laser drive. Physical Review A, 2021, 103, .	2.5	7
26	NIR-II light triggered nitric oxide release nanoplatform combined chemo-photothermal therapy for overcoming multidrug resistant cancer. Journal of Materials Chemistry B, 2021, 9, 1698-1706.	5.8	35
27	Pillar[5]arene-Based 3D Hybrid Supramolecular Polymer for Green Catalysis in Water. Inorganic Chemistry, 2021, 60, 2883-2887.	4.0	34
28	Hawking radiation and Pâ€`â^`â€`v criticality of charged dynamical (Vaidya) black hole in anti-de Sitter space. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021, 813, 136035.	4.1	11
29	Quantifying the potential and flux landscapes for nonequilibrium multiverse, a new scenario for time arrow. Journal of High Energy Physics, 2021, 2021, 1.	4.7	6
30	Thermodynamic and sequential characteristics of phase separation and droplet formation for an intrinsically disordered region/protein ensemble. PLoS Computational Biology, 2021, 17, e1008672.	3.2	15
31	Activate Fe ₃ S ₄ Nanorods by Ni Doping for Efficient Dye-Sensitized Photocatalytic Hydrogen Production. ACS Applied Materials & Interfaces, 2021, 13, 14198-14206.	8.0	34
32	Islands and Page curves of Reissner-Nordström black holes. Journal of High Energy Physics, 2021, 2021, 1.	4.7	62
33	Recent development of pillar[n]arene-based amphiphiles. Chinese Chemical Letters, 2021, 32, 1267-1279.	9.0	60
34	Entanglement versus Bell nonlocality of quantum nonequilibrium steady states. Quantum Information Processing, 2021, 20, 1.	2.2	2
35	Interfacial Electron Engineering of Palladium and Molybdenum Carbide for Highly Efficient Oxygen Reduction. Journal of the American Chemical Society, 2021, 143, 6933-6941.	13.7	62
36	Platinum(II) Metallatriangle: Construction, Coassembly with Polypeptide, and Application in Combined Cancer Photodynamic and Chemotherapy. Inorganic Chemistry, 2021, 60, 7627-7631.	4.0	23

#	Article	lF	CITATIONS
37	Surface Defect Engineering of CsPbBr ₃ Nanocrystals for High Efficient Photocatalytic CO ₂ Reduction. Solar Rrl, 2021, 5, 2100154.	5.8	39
38	Unifying deterministic and stochastic ecological dynamics via a landscape-flux approach. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	10
39	Page curves for a family of exactly solvable evaporating black holes. Physical Review D, 2021, 103, .	4.7	33
40	Physical bioenergetics: Energy fluxes, budgets, and constraints in cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	52
41	New fluctuation theorems on Maxwell $\hat{a} \in \mathbb{M}$ s demon. Science Advances, 2021, 7, .	10.3	5
42	Landscape-Flux Framework for Nonequilibrium Dynamics and Thermodynamics of Open Hamiltonian Systems Coupled to Multiple Heat Baths. Journal of Physical Chemistry B, 2021, 125, 7809-7827.	2.6	3
43	Hawking radiation, local temperatures, and nonequilibrium thermodynamics of the black holes with non-Killing horizon. Physical Review D, 2021, 104, .	4.7	3
44	A global and physical mechanism of gastric cancer formation and progression. Journal of Theoretical Biology, 2021, 520, 110643.	1.7	5
45	Quantum fluctuation-dissipation theorem far from equilibrium. Physical Review B, 2021, 104, .	3.2	2
46	Effects of electrostatic interactions on global folding and local conformational dynamics of a multidomain Y-family DNA polymerase. Physical Chemistry Chemical Physics, 2021, 23, 20841-20847.	2.8	2
47	Fell4L4 tetrahedron binds and aggregates DNA G-quadruplexes. Chemical Science, 2021, 12, 14564-14569.	7.4	7
48	Searching for the physical origin of bifurcations in non-equilibrium economy. European Physical Journal B, 2021, 94, 1.	1.5	0
49	Kinetics and its turnover of Hawking-Page phase transition under the black hole evaporation. Physical Review D, 2021, 104, .	4.7	13
50	Probing black hole microstructure with the kinetic turnover of phase transition. Physical Review D, 2021, 104, .	4.7	13
51	Asymmetric steerability of quantum equilibrium and nonequilibrium steady states through entanglement detection. Physical Review A, 2021, 104, .	2.5	4
52	Physics of Biomolecular Recognition and Conformational Dynamics. Reports on Progress in Physics, 2021, 84, .	20.1	3
53	Island may not save the information paradox of Liouville black holes. Physical Review D, 2021, 104, .	4.7	14
54	Deciphering the molecular mechanism of the cancer formation by chromosome structural dynamics. PLoS Computational Biology, 2021, 17, e1009596.	3.2	12

#	Article	IF	CITATIONS
55	Free energy landscape and kinetics of phase transition in two coupled SYK models and the corresponding wormhole-two black hole switching. Journal of High Energy Physics, 2021, 2021, 1.	4.7	6
56	Equilibrium and nonequilibrium quantum correlations between two accelerated detectors. Physical Review D, 2021, 104, .	4.7	1
57	MOF-derived bimetallic Fe-Ni-P nanotubes with tunable compositions for dye-sensitized photocatalytic H2 and O2 production. Chemical Engineering Journal, 2020, 384, 123354.	12.7	57
58	Metal-organic frameworks-derived hollow-structured iron-cobalt bimetallic phosphide electrocatalysts for efficient oxygen evolution reaction. Journal of Alloys and Compounds, 2020, 821, 153463.	5.5	37
59	Ratiometric sensing of alkaline phosphatase based on the catalytical activity from Mn–Fe layered double hydroxide nanosheets. Nanoscale, 2020, 12, 2022-2027.	5.6	23
60	Immobilization of catalytic sites on quantum dots by ligand bridging for photocatalytic CO ₂ reduction. Nanoscale, 2020, 12, 2507-2514.	5.6	24
61	Quantifying the flux as the driving force for nonequilibrium dynamics and thermodynamics in non-Michaelis–Menten enzyme kinetics. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 923-930.	7.1	13
62	Simply synthesized nitrogen-doped graphene quantum dot (NGQD)-modified electrode for the ultrasensitive photoelectrochemical detection of dopamine. Nanophotonics, 2020, 9, 3831-3839.	6.0	36
63	Generalized Fluctuation-Dissipation Theorem for Non-equilibrium Spatially Extended Systems. Frontiers in Physics, 2020, 8, .	2.1	4
64	Stochastic epigenetic dynamics of gene switching. Physical Review E, 2020, 102, 042408.	2.1	10
65	Funneled energy landscape unifies principles of protein binding and evolution. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27218-27223.	7.1	11
66	Conformational state switching and pathways of chromosome dynamics in cell cycle. Applied Physics Reviews, 2020, 7, 031403.	11.3	19
67	Uncovering the Underlying Mechanisms of Cancer Metabolism through the Landscapes and Probability Flux Quantifications. IScience, 2020, 23, 101002.	4.1	17
68	Binding-Induced Conformational Changes Involved in Sliding Clamp PCNA and DNA Polymerase DPO4. IScience, 2020, 23, 101117.	4.1	4
69	Nonequilibrium dynamical transition process between excited states of holographic superconductors. Journal of High Energy Physics, 2020, 2020, 1.	4.7	6
70	Thermal dynamic phase transition of Reissner-Nordström Anti-de Sitter black holes on free energy landscape. Journal of High Energy Physics, 2020, 2020, 1.	4.7	40
71	The Nonequilibrium Back Reaction of Hawking Radiation to a Schwarzschild Black Hole. Advances in High Energy Physics, 2020, 2020, 1-11.	1.1	2
72	Thermodynamics and kinetics of Hawking-Page phase transition. Physical Review D, 2020, 102, .	4.7	51

#	Article	IF	CITATIONS
73	Microscopic Chromosomal Structural and Dynamical Origin of Cell Differentiation and Reprogramming. Advanced Science, 2020, 7, 2001572.	11.2	16
74	Wave–Particle–Entanglement–Ignorance Complementarity for General Bipartite Systems. Entropy, 2020, 22, 813.	2.2	2
75	Functionalized Graphene@Gold Nanostar/Lipid for Pancreatic Cancer Gene and Photothermal Synergistic Therapy under Photoacoustic/Photothermal Imaging Dualâ€Modal Guidance. Small, 2020, 16, e2003707.	10.0	57
76	The dynamic and thermodynamic origin of dissipative chaos: chemical Lorenz system. Physical Chemistry Chemical Physics, 2020, 22, 27896-27902.	2.8	11
77	Au–Nitrogen-Doped Graphene Quantum Dot Composites as "On–Off―Nanosensors for Sensitive Photo-Electrochemical Detection of Caffeic Acid. Nanomaterials, 2020, 10, 1972.	4.1	4
78	Nonequilibrium Thermodynamics in Cell Biology: Extending Equilibrium Formalism to Cover Living Systems. Annual Review of Biophysics, 2020, 49, 227-246.	10.0	31
79	Direct Z-Scheme 0D/2D Heterojunction of CsPbBr ₃ Quantum Dots/Bi ₂ WO ₆ Nanosheets for Efficient Photocatalytic CO ₂ Reduction. ACS Applied Materials & Interfaces, 2020, 12, 31477-31485.	8.0	222
80	A p-tert-Butyldihomooxacalix[4]arene Based Soft Gel for Sustained Drug Release in Water. Frontiers in Chemistry, 2020, 8, 33.	3.6	4
81	Boosting the photocatalytic CO ₂ reduction of metal–organic frameworks by encapsulating carbon dots. Nanoscale, 2020, 12, 9533-9540.	5.6	64
82	Investigations of the underlying mechanisms of HIF- $\hat{1}$ and CITED2 binding to TAZ1. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5595-5603.	7.1	14
83	Searching for the Mechanisms of Mammalian Cellular Aging Through Underlying Gene Regulatory Networks. Frontiers in Genetics, 2020, 11, 593.	2.3	4
84	Quantifying Waddington landscapes, paths, and kinetics of cell fate decision making of differentiation/development. , 2020, , 157-187.		1
85	Curl Flux as a Dynamical Origin of the Bifurcations/Phase Transitions of Nonequilibrium Systems: Cell Fate Decision Making. Journal of Physical Chemistry B, 2020, 124, 2549-2559.	2.6	11
86	Boosting Photocatalytic CO ₂ Reduction on CsPbBr ₃ Perovskite Nanocrystals by Immobilizing Metal Complexes. Chemistry of Materials, 2020, 32, 1517-1525.	6.7	197
87	Charge Interactions Modulate the Encounter Complex Ensemble of Two Differently Charged Disordered Protein Partners of KIX. Journal of Chemical Theory and Computation, 2020, 16, 3856-3868.	5.3	13
88	Confinement and Crowding Effects on Folding of a Multidomain Y-Family DNA Polymerase. Journal of Chemical Theory and Computation, 2020, 16, 1319-1332.	5.3	13
89	Nonequilibrium thermodynamics of turbulence and stochastic fluid systems. New Journal of Physics, 2020, 22, 113017.	2.9	6
90	Influence of equilibrium and nonequilibrium environments on macroscopic realism through the Leggett-Garg inequalities. Physical Review A, 2020, 101, .	2.5	6

#	Article	IF	CITATIONS
91	Investigating the trade-off between folding and function in a multidomain Y-family DNA polymerase. ELife, 2020, 9, .	6.0	9
92	Multilevel storage and photoinduced-reset memory by an inorganic perovskite quantum-dot/polystyrene floating-gate organic transistor. RSC Advances, 2020, 10, 43225-43232.	3.6	12
93	The landscape and flux of a minimum network motif, Wu Xing*. Chinese Physics B, 2020, 29, 120504.	1.4	1
94	Non-equilibrium landscape and flux reveal the stability-flexibility-energy tradeoff in working memory. PLoS Computational Biology, 2020, 16, e1008209.	3.2	13
95	Highly Luminescent and Water-Resistant CsPbBr ₃ –CsPb ₂ Br ₅ Perovskite Nanocrystals Coordinated with Partially Hydrolyzed Poly(methyl methacrylate) and Polyethylenimine. ACS Nano, 2019, 13, 10386-10396.	14.6	110
96	Plasmonic Effect with Tailored Au@TiO ₂ Nanorods in Photoanode for Quantum Dot Sensitized Solar Cells. ACS Applied Energy Materials, 2019, 2, 5917-5924.	5.1	19
97	An ent â€Kaurane Diterpenoid Isolated from Rabdosia excisa Suppresses Bcrâ€Abl Protein Expression in Vitro and in Vivo and Induces Apoptosis of CML Cells. Chemistry and Biodiversity, 2019, 16, e1900443.	2.1	3
98	Lighting Up the Gold Nanoclusters via Host–Guest Recognition for High-Efficiency Antibacterial Performance and Imaging. ACS Applied Materials & Interfaces, 2019, 11, 36831-36838.	8.0	44
99	The emergence of the two cell fates and their associated switching for a negative auto-regulating gene. BMC Biology, 2019, 17, 49.	3.8	16
100	Landscape perspectives of tumor, EMT, and development. Physical Biology, 2019, 16, 051003.	1.8	8
101	Boosting photocatalytic hydrogen generation of cadmium telluride colloidal quantum dots by nickel ion doping. Journal of Colloid and Interface Science, 2019, 549, 63-71.	9.4	17
102	Single-atom nanozymes. Science Advances, 2019, 5, eaav5490.	10.3	615
103	Steady-state entanglement and coherence of two coupled qubits in equilibrium and nonequilibrium environments. Physical Review A, 2019, 99, .	2.5	33
104	Non-equilibrium landscape and flux reveal how the central amygdala circuit gates passive and active defensive responses. Journal of the Royal Society Interface, 2019, 16, 20180756.	3.4	8
105	Ultra-stable Electrochemical Sensor for Detection of Caffeic Acid Based on Platinum and Nickel Jagged-Like Nanowires. Nanoscale Research Letters, 2019, 14, 11.	5.7	12
106	Exploring the underlying mechanisms of the coupling between cell differentiation and cell cycle. Journal of Physical Chemistry B, 2019, 123, 3490-3498.	2.6	5
107	Position-, disorder-, and salt-dependent diffusion in binding-coupled-folding of intrinsically disordered proteins. Physical Chemistry Chemical Physics, 2019, 21, 5634-5645.	2.8	18
108	Nonequilibrium effects on quantum correlations: Discord, mutual information, and entanglement of a two-fermionic system in bosonic and fermionic environments. Physical Review A, 2019, 100, .	2.5	12

#	Article	IF	CITATIONS
109	Nonequilibrium physics in biology. Reviews of Modern Physics, 2019, 91, .	45.6	123
110	Superfunneled Energy Landscape of Protein Evolution Unifies the Principles of Protein Evolution, Folding, and Design. Physical Review Letters, 2019, 122, 018103.	7.8	7
111	Quantification of the Underlying Mechanisms and Relationships Among Cancer, Metastasis, and Differentiation and Development. Frontiers in Genetics, 2019, 10, 1388.	2.3	12
112	Exploring the Underlying Mechanisms of the Xenopus laevis Embryonic Cell Cycle. Journal of Physical Chemistry B, 2018, 122, 5487-5499.	2.6	16
113	Exploration of Multistate Conformational Dynamics upon Ligand Binding of a Monomeric Enzyme Involved in Pyrophosphoryl Transfer. Journal of Physical Chemistry B, 2018, 122, 1885-1897.	2.6	3
114	Potential landscape and flux field theory for turbulence and nonequilibrium fluid systems. Annals of Physics, 2018, 389, 63-101.	2.8	8
115	Coherence enhanced quantum metrology in a nonequilibrium optical molecule. New Journal of Physics, 2018, 20, 033034.	2.9	27
116	The key role of electrostatic interactions in the induced folding in RNA recognition by DCL1-A. Physical Chemistry Chemical Physics, 2018, 20, 9376-9388.	2.8	8
117	Non-Markovian nonequilibrium information dynamics. Physical Review E, 2018, 98, .	2.1	6
118	Mechanochemical Model of the Power Stroke of the Single-Headed Motor Protein KIF1A. Journal of Physical Chemistry B, 2018, 122, 11002-11013.	2.6	9
119	Uncovering the underlying physical mechanism for cancer-immunity of MHC class I diversity. Biochemical and Biophysical Research Communications, 2018, 504, 532-537.	2.1	3
120	Engineered photoelectrochemical platform for the ultrasensitive detection of caffeic acid based on flower-like MoS2 and PANI nanotubes nanohybrid. Sensors and Actuators B: Chemical, 2018, 276, 322-330.	7.8	50
121	A New Inflationary Universe Scenario with Inhomogeneous Quantum Vacuum. Advances in High Energy Physics, 2018, 2018, 1-15.	1.1	1
122	Quantifying the Intrinsic Conformation Energy Landscape Topography of Proteins with Large-Scale Open–Closed Transition. ACS Central Science, 2018, 4, 1015-1022.	11.3	9
123	Cell fate potentials and switching kinetics uncovered in a classic bistable genetic switch. Nature Communications, 2018, 9, 2787.	12.8	38
124	Lighting Up the Thioflavin T by Parallel-Stranded TG(GA) <i>n</i> DNA Homoduplexes. ACS Sensors, 2018, 3, 1118-1125.	7.8	23
125	Quantifying the Kinetic Residence Time as a Potential Complement to Affinity for the Aptamer Selection. Journal of Physical Chemistry B, 2018, 122, 8380-8385.	2.6	6
126	Landscape and flux for quantifying global stability and dynamics of game theory. PLoS ONE, 2018, 13, e0201130.	2.5	4

#	Article	IF	CITATIONS
127	Quantifying risks with exact analytical solutions of derivative pricing distribution. Physica A: Statistical Mechanics and Its Applications, 2017, 471, 757-766.	2.6	3
128	Dopamine and uric acid electrochemical sensor based on a glassy carbon electrode modified with cubic Pd and reduced graphene oxide nanocomposite. Journal of Colloid and Interface Science, 2017, 497, 172-180.	9.4	148
129	SPA-LN: a scoring function of ligand–nucleic acid interactions via optimizing both specificity and affinity. Nucleic Acids Research, 2017, 45, e110-e110.	14.5	30
130	Quantifying the potential and flux landscapes of multi-locus evolution. Journal of Theoretical Biology, 2017, 422, 31-49.	1.7	5
131	Molecular mechanism of multispecific recognition of Calmodulin through conformational changes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3927-E3934.	7.1	37
132	Landscape and flux theory of non-equilibrium open economy. Physica A: Statistical Mechanics and Its Applications, 2017, 482, 189-208.	2.6	7
133	Enzymatic Activity and Thermodynamic Stability of Biliverdin IXβ Reductase Are Maintained by an Active Site Serine. Chemistry - A European Journal, 2017, 23, 1891-1900.	3.3	12
134	Binding mechanism and dynamic conformational change of C subunit of PKA with different pathways. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7959-E7968.	7.1	21
135	Enhanced photo-electrochemical response of reduced graphene oxide and C3N4 nanosheets for rutin detection. Journal of Colloid and Interface Science, 2017, 506, 329-337.	9.4	37
136	Plasmonic and photo-electrochemical enhancements of the AuAg@Au/RGO–C ₃ N ₄ nanocomposite for the detection of DA. Analyst, The, 2017, 142, 4852-4861.	3.5	18
137	Nonequilibrium-induced enhancement of dynamical quantum coherence and entanglement of spin arrays. Physical Review B, 2017, 95, .	3.2	8
138	Uncovering the underlying mechanism of cancer tumorigenesis and development under an immune microenvironment from global quantification of the landscape. Journal of the Royal Society Interface, 2017, 14, 20170105.	3.4	28
139	Information Landscape and Flux, Mutual Information Rate Decomposition and Connections to Entropy Production. Entropy, 2017, 19, 678.	2.2	8
140	Role of non-native electrostatic interactions in the coupled folding and binding of PUMA with Mcl-1. PLoS Computational Biology, 2017, 13, e1005468.	3.2	32
141	Funneled potential and flux landscapes dictate the stabilities of both the states and the flow: Fission yeast cell cycle. PLoS Computational Biology, 2017, 13, e1005710.	3.2	13
142	Quantification of motor network dynamics in Parkinson's disease by means of landscape and flux theory. PLoS ONE, 2017, 12, e0174364.	2.5	16
143	Energy Landscape Topography Reveals the Underlying Link Between Binding Specificity and Activity of Enzymes. Scientific Reports, 2016, 6, 27808.	3.3	12
144	Physical mechanism of mind changes and tradeoffs among speed, accuracy, and energy cost in brain decision making: Landscape, flux, and path perspectives. Chinese Physics B, 2016, 25, 078702.	1.4	16

#	Article	IF	CITATIONS
145	Uncovering the mechanisms of <i>Caenorhabditis elegans</i> ageing from global quantification of the Royal Society Interface, 2016, 13, 20160421.	3.4	11
146	A physical mechanism of cancer heterogeneity. Scientific Reports, 2016, 6, 20679.	3.3	25
147	Fluctuation-dissipation theorem for nonequilibrium quantum systems. Europhysics Letters, 2016, 115, 20004.	2.0	7
148	Highly sensitive electrochemical determination of Sunset Yellow based on the ultrafine Au-Pd and reduced graphene oxide nanocomposites. Journal of Colloid and Interface Science, 2016, 481, 229-235.	9.4	55
149	A framework towards understanding mesoscopic phenomena: Emergent unpredictability, symmetry breaking and dynamics across scales. Chemical Physics Letters, 2016, 665, 153-161.	2.6	27
150	Origin of long-lived quantum coherence and excitation dynamics in pigment-protein complexes. Scientific Reports, 2016, 6, 37629.	3.3	18
151	Incorporating specificity into optimization: evaluation of SPA using CSAR 2014 and CASF 2013 benchmarks. Journal of Computer-Aided Molecular Design, 2016, 30, 219-227.	2.9	6
152	Universal statistical fluctuations in thermodynamics and kinetics of single molecular recognition. Physical Chemistry Chemical Physics, 2016, 18, 8570-8578.	2.8	5
153	Uncovering the underlying physical mechanisms of biological systems via quantification of landscape and flux. Chinese Physics B, 2016, 25, 016401.	1.4	6
154	Mensenchymal stem cells can delay radiation-induced crypt death: impact on intestinal CD44+ fragments. Cell and Tissue Research, 2016, 364, 331-344.	2.9	15
155	A Physical Mechanism and Global Quantification of Breast Cancer. PLoS ONE, 2016, 11, e0157422.	2.5	19
156	Shape, orientation and magnitude of the curl quantum flux, the coherence and the statistical correlations in energy transport at nonequilibrium steady state. New Journal of Physics, 2015, 17, 093021.	2.9	7
157	Optimizing the affinity and specificity of ligand binding with the inclusion of solvation effect. Proteins: Structure, Function and Bioinformatics, 2015, 83, 1632-1642.	2.6	12
158	Landscape and flux theory of non-equilibrium dynamical systems with application to biology. Advances in Physics, 2015, 64, 1-137.	14.4	174
159	Quantifying the Landscape for Development and Cancer from a Core Cancer Stem Cell Circuit. Cancer Research, 2015, 75, 2607-2618.	0.9	77
160	Computational discovery and experimental verification of tyrosine kinase inhibitor pazopanib for the reversal of memory and cognitive deficits in rat model neurodegeneration. Chemical Science, 2015, 6, 2812-2821.	7.4	27
161	Anionic Lipid, pHâ€5ensitive Liposomeâ€Gold Nanoparticle Hybrids for Gene Delivery – Quantitative Research of the Mechanism. Small, 2015, 11, 2333-2340.	10.0	25
162	The Universal Statistical Distributions of the Affinity, Equilibrium Constants, Kinetics and Specificity in Biomolecular Recognition. PLoS Computational Biology, 2015, 11, e1004212.	3.2	31

#	Article	IF	CITATIONS
163	Landscape, kinetics, paths and statistics of curl flux, coherence, entanglement and energy transfer in non-equilibrium quantum systems. New Journal of Physics, 2015, 17, 043053.	2.9	19
164	Assistance of Molecular Vibrations on Coherent Energy Transfer in Photosynthesis from the View of a Quantum Heat Engine. Journal of Physical Chemistry B, 2015, 119, 4662-4667.	2.6	15
165	Multiple coupled landscapes and non-adiabatic dynamics with applications to self-activating genes. Physical Chemistry Chemical Physics, 2015, 17, 29036-29044.	2.8	8
166	Vibrational and coherence dynamics of molecules. Physical Chemistry Chemical Physics, 2015, 17, 23754-23760.	2.8	6
167	Highly sensitive electrochemical determination of Sunset Yellow based on gold nanoparticles/graphene electrode. Analytica Chimica Acta, 2015, 893, 41-48.	5.4	75
168	The Potential and Flux Landscape Theory of Ecology. PLoS ONE, 2014, 9, e86746.	2.5	23
169	Landscape and flux reveal a new global view and physical quantification of mammalian cell cycle. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14130-14135.	7.1	115
170	Dynamic Conformational Change Regulates the Protein-DNA Recognition: An Investigation on Binding of a Y-Family Polymerase to Its Target DNA. PLoS Computational Biology, 2014, 10, e1003804.	3.2	48
171	Specificity and Affinity Quantification of Flexible Recognition from Underlying Energy Landscape Topography. PLoS Computational Biology, 2014, 10, e1003782.	3.2	28
172	Potential and flux field landscape theory. II. Non-equilibrium thermodynamics of spatially inhomogeneous stochastic dynamical systems. Journal of Chemical Physics, 2014, 141, 105104.	3.0	19
173	Quantifying the underlying landscape and paths of cancer. Journal of the Royal Society Interface, 2014, 11, 20140774.	3.4	68
174	The extinction differential induced virulence macroevolution. Chemical Physics Letters, 2014, 599, 38-43.	2.6	4
175	A dramatic platform for oxygen reduction reaction based on silver nanoclusters. Chemical Communications, 2014, 50, 234-236.	4.1	44
176	A comparison of various optimization algorithms of protein–ligand docking programs by fitness accuracy. Journal of Molecular Modeling, 2014, 20, 2251.	1.8	31
177	Non-equilibrium transition state rate theory. Chemical Science, 2014, 5, 3761-3769.	7.4	41
178	Exploring the Mechanisms of Differentiation, Dedifferentiation, Reprogramming and Transdifferentiation. PLoS ONE, 2014, 9, e105216.	2.5	50
179	Pocket-Based Drug Design: Exploring Pocket Space. AAPS Journal, 2013, 15, 228-241.	4.4	62
180	Potential and flux field landscape theory. I. Global stability and dynamics of spatially dependent non-equilibrium systems. Journal of Chemical Physics, 2013, 139, 121920.	3.0	22

#	Article	IF	CITATIONS
181	Nonequilibrium landscape theory of neural networks. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4185-94.	7.1	63
182	Specificity and affinity quantification of protein–protein interactions. Bioinformatics, 2013, 29, 1127-1133.	4.1	24
183	A small-molecule induces apoptosis and suppresses metastasis in pancreatic cancer cells. European Journal of Pharmaceutical Sciences, 2013, 48, 658-667.	4.0	12
184	Landscape Framework and Global Stability for Stochastic Reaction Diffusion and General Spatially Extended Systems with Intrinsic Fluctuations. Journal of Physical Chemistry B, 2013, 117, 12908-12934.	2.6	17
185	Thermodynamic and kinetic specificities of ligand binding. Chemical Science, 2013, 4, 2387.	7.4	24
186	The potential and flux landscape, Lyapunov function and non-equilibrium thermodynamics for dynamic systems and networks with an application to signal-induced Ca ²⁺ oscillation. Nonlinearity, 2013, 26, R69.	1.4	15
187	Exploring the Dynamic Functional Landscape of Adenylate Kinase Modulated by Substrates. Journal of Chemical Theory and Computation, 2013, 9, 84-95.	5.3	70
188	High‥ield Synthesis of Silver Nanoclusters Protected by DNA Monomers and DFT Prediction of their Photoluminescence Properties. Angewandte Chemie - International Edition, 2013, 52, 2022-2026.	13.8	50
189	Quantifying Cell Fate Decisions for Differentiation and Reprogramming of a Human Stem Cell Network: Landscape and Biological Paths. PLoS Computational Biology, 2013, 9, e1003165.	3.2	155
190	Quantifying Waddington landscapes and paths of non-adiabatic cell fate decisions for differentiation, reprogramming and transdifferentiation. Journal of the Royal Society Interface, 2013, 10, 20130787.	3.4	73
191	Eddy current and coupled landscapes for nonadiabatic and nonequilibrium complex system dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14930-14935.	7.1	46
192	Multiscaled exploration of coupled folding and binding of an intrinsically disordered molecular recognition element in measles virus nucleoprotein. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3743-52.	7.1	102
193	Quantifying the topography of the intrinsic energy landscape of flexible biomolecular recognition. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2342-51.	7.1	59
194	Spiclomazine Induces Apoptosis Associated with the Suppression of Cell Viability, Migration and Invasion in Pancreatic Carcinoma Cells. PLoS ONE, 2013, 8, e66362.	2.5	15
195	Optimizing Scoring Function of Protein-Nucleic Acid Interactions with Both Affinity and Specificity. PLoS ONE, 2013, 8, e74443.	2.5	17
196	Rational Drug Design: The Search for Ras Protein Hydrolysis Intermediate Conformation Inhibitors with Both Affinity and Specificity. Current Pharmaceutical Design, 2013, 19, 2246-2258.	1.9	18
197	Selective Induction of Apoptosis: Promising Therapy in Pancreatic Cancer. Current Pharmaceutical Design, 2013, 19, 2259-2268.	1.9	16
198	Importance of Electrostatic Interactions in the Association of Intrinsically Disordered Histone Chaperone Chz1 and Histone H2A.Z-H2B. PLoS Computational Biology, 2012, 8, e1002608.	3.2	69

#	Article	IF	CITATIONS
199	Exploration of Multi-State Conformational Dynamics and Underlying Global Functional Landscape of Maltose Binding Protein. PLoS Computational Biology, 2012, 8, e1002471.	3.2	50
200	Potential flux landscapes determine the global stability of a Lorenz chaotic attractor under intrinsic fluctuations. Journal of Chemical Physics, 2012, 136, 194108.	3.0	20
201	The energy pump and the origin of the non-equilibrium flux of the dynamical systems and the networks. Journal of Chemical Physics, 2012, 136, 165102.	3.0	30
202	Specificity quantification of biomolecular recognition and its implication for drug discovery. Scientific Reports, 2012, 2, 309.	3.3	53
203	Multidomain Protein Solves the Folding Problem by Multifunnel Combined Landscape: Theoretical Investigation of a Y-Family DNA Polymerase. Journal of the American Chemical Society, 2012, 134, 13755-13764.	13.7	35
204	A new mechanism of stem cell differentiation through slow binding/unbinding of regulators to genes. Scientific Reports, 2012, 2, 550.	3.3	41
205	Topography of funneled landscapes determines the thermodynamics and kinetics of protein folding. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15763-15768.	7.1	62
206	The potential and flux landscape theory of evolution. Journal of Chemical Physics, 2012, 137, 065102.	3.0	64
207	Landscape and Global Stability of Nonadiabatic and Adiabatic Oscillations in a Gene Network. Biophysical Journal, 2012, 102, 1001-1010.	0.5	20
208	A Potent Lead Induces Apoptosis in Pancreatic Cancer Cells. PLoS ONE, 2012, 7, e37841.	2.5	24
209	Landscape, Flux, Correlation, Resonance, Coherence, Stability, and Key Network Wirings of Stochastic Circadian Oscillation. Biophysical Journal, 2011, 101, 1335-1344.	0.5	22
210	Potential and flux decomposition for dynamical systems and non-equilibrium thermodynamics: Curvature, gauge field, and generalized fluctuation-dissipation theorem. Journal of Chemical Physics, 2011, 135, 234511.	3.0	59
211	Adiabatic and Non-Adiabatic Non-Equilibrium Stochastic Dynamics of Single Regulating Genes. Journal of Physical Chemistry B, 2011, 115, 1254-1261.	2.6	51
212	Potential Landscape and Probabilistic Flux of a Predator Prey Network. PLoS ONE, 2011, 6, e17888.	2.5	17
213	Quantifying the Waddington landscape and biological paths for development and differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8257-8262.	7.1	414
214	Multi-Scaled Explorations of Binding-Induced Folding of Intrinsically Disordered Protein Inhibitor IA3 to its Target Enzyme. PLoS Computational Biology, 2011, 7, e1001118.	3.2	68
215	Potential and flux landscapes quantify the stability and robustness of budding yeast cell cycle network. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8195-8200.	7.1	93
216	Kinetic paths, time scale, and underlying landscapes: A path integral framework to study global natures of nonequilibrium systems and networks. Journal of Chemical Physics, 2010, 133, 125103.	3.0	99

#	Article	IF	CITATIONS
217	The Potential Landscape of Genetic Circuits Imposes the Arrow of Time in Stem Cell Differentiation. Biophysical Journal, 2010, 99, 29-39.	0.5	208
218	Dominant Kinetic Paths of Complex Systems: Gene Networks. Journal of Physical Chemistry Letters, 2010, 1, 1836-1840.	4.6	17
219	Affinity and Specificity of Levamlodipine-Human Serum Albumin Interactions: Insights into Its Carrier Function. Biophysical Journal, 2009, 96, 3917-3925.	0.5	31
220	Robustness and Coherence of a Three-Protein Circadian Oscillator: Landscape and Flux Perspectives. Biophysical Journal, 2009, 97, 3038-3046.	0.5	23
221	Single Molecule Conformational Dynamics of Adenylate Kinase:  Energy Landscape, Structural Correlations, and Transition State Ensembles. Journal of the American Chemical Society, 2008, 130, 4772-4783.	13.7	121
222	Least dissipation cost as a design principle for robustness and function of cellular networks. Physical Review E, 2008, 77, 031922.	2.1	18
223	Intrinsic noise, dissipation cost, and robustness of cellular networks: The underlying energy landscape of MAPK signal transduction. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6039-6044.	7.1	75
224	Robustness and dissipation of mitogen-activated protein kinases signal transduction network: Underlying funneled landscape against stochastic fluctuations. Journal of Chemical Physics, 2008, 129, 135101.	3.0	9
225	Potential landscape and flux framework of nonequilibrium networks: Robustness, dissipation, and coherence of biochemical oscillations. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12271-12276.	7.1	334
226	Configuration-dependent diffusion can shift the kinetic transition state and barrier height of protein folding. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14646-14651.	7.1	92
227	Potential Energy Landscape and Robustness of a Gene Regulatory Network: Toggle Switch. PLoS Computational Biology, 2007, 3, e60.	3.2	98
228	Quantifying Intrinsic Specificity: A Potential Complement to Affinity in Drug Screening. Physical Review Letters, 2007, 99, 198101.	7.8	46
229	Exploring the Mechanism of Flexible Biomolecular Recognition with Single Molecule Dynamics. Physical Review Letters, 2007, 98, 128105.	7.8	60
230	Quantifying Robustness and Dissipation Cost of Yeast Cell Cycle Network: The Funneled Energy Landscape Perspectives. Biophysical Journal, 2007, 92, 3755-3763.	0.5	66
231	Optimal Specificity and Function for Flexible Biomolecular Recognition. Biophysical Journal, 2007, 92, L109-L111.	0.5	23
232	Molecular Analysis of Thymopentin Binding to HLA-DR Molecules. PLoS ONE, 2007, 2, e1348.	2.5	14
233	Quantifying the Kinetic Paths of Flexible Biomolecular Recognition. Biophysical Journal, 2006, 91, 866-872.	0.5	11
234	Diffusion and single molecule dynamics on biomolecular interface binding energy landscape. Chemical Physics Letters, 2006, 418, 544-548.	2.6	15

#	Article	IF	CITATIONS
235	Dominant Kinetic Paths on Biomolecular Binding-Folding Energy Landscape. Physical Review Letters, 2006, 96, 168101.	7.8	38
236	Funneled Landscape Leads to Robustness of Cell Networks: Yeast Cell Cycle. PLoS Computational Biology, 2006, 2, e147.	3.2	44
237	Self-regulating gene: An exact solution. Physical Review E, 2005, 72, 051907.	2.1	229
238	Quantifying Kinetic Paths of Protein Folding. Biophysical Journal, 2005, 89, 1612-1620.	0.5	32
239	Downhill Kinetics of Biomolecular Interface Binding: Globally Connected Scenario. Biophysical Journal, 2004, 87, 2187-2194.	0.5	14
240	First-passage time distribution and non-Markovian diffusion dynamics of protein folding. Journal of Chemical Physics, 2003, 118, 959-968.	3.0	63
241	Energy Landscape Theory, Funnels, Specificity, and Optimal Criterion of Biomolecular Binding. Physical Review Letters, 2003, 90, 188101.	7.8	145
242	Diffusion dynamics, moments, and distribution of first-passage time on the protein-folding energy landscape, with applications to single molecules. Physical Review E, 2003, 67, 041905.	2.1	43
243	Statistics, pathways and dynamics of single molecule protein folding. Journal of Chemical Physics, 2003, 118, 952-958.	3.0	30
244	Initial sequencing and analysis of the human genome. Nature, 2001, 409, 860-921.	27.8	21,074
245	A computational approach to simplifying the protein folding alphabet. , 1999, 6, 1033-1038.		213
246	Statistical mechanics of a correlated energy landscape model for protein folding funnels. Journal of Chemical Physics, 1997, 106, 2932-2948.	3.0	145
247	Structural correlations in protein folding funnels. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 777-782.	7.1	120
248	Survival paths for reaction dynamics in fluctuating environments. Chemical Physics, 1994, 180, 141-156.	1.9	73
249	The rate of thermodynamic cost against adiabatic and nonadiabatic fluctuations of a single gene circuit in Drosophila embryos. Journal of Chemical Physics, 0, , .	3.0	0