Priv-Dozâ€Dr Sandra Schlögl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3755791/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Approaches Toward <i>In Situ</i> Reinforcement of Organic Rubbers: Strategy and Recent Progress. Polymer Reviews, 2022, 62, 142-174.	5.3	8
2	Influence of morphology and chemical surface composition on electrical conductivity of SiC microspheres. Surface Science, 2022, 715, 121942.	0.8	1
3	Effect of a Dicycloaliphatic Epoxide on the Thermoâ€Mechanical Properties of Alkyl, Aryl Epoxide Monomers Cured via UVâ€Induced Cationic Frontal Polymerization. Macromolecular Materials and Engineering, 2022, 307, .	1.7	6
4	Streamlined concept towards spatially resolved photoactivation of dynamic transesterification in vitrimeric polymers by applying thermally stable photolatent bases. Polymer Chemistry, 2022, 13, 1169-1176.	1.9	14
5	Hybrid In Situ Reinforcement of EPDM Rubber Compounds Based on Phenolic Novolac Resin and Ionic Coagent. Applied Sciences (Switzerland), 2022, 12, 2432.	1.3	5
6	A Review of Multi-Material 3D Printing of Functional Materials via Vat Photopolymerization. Polymers, 2022, 14, 2449.	2.0	58
7	Asymmetric chiral and antichiral mechanical metamaterials with tunable Poisson's ratio. APL Materials, 2022, 10, .	2.2	9
8	Spatially controlling the mechanical properties of 3D printed objects by dual-wavelength vat photopolymerization. Additive Manufacturing, 2022, 57, 102977.	1.7	13
9	Assessment of Epoxy Functionalized Poly(dimethylsiloxane) Vitrimers Catalyzed with Covalently Attached Amines as Reversible Adhesives. Macromolecular Materials and Engineering, 2022, 307, .	1.7	3
10	Photopatternable and Rewritable Epoxyâ€Anhydride Vitrimers. Macromolecular Rapid Communications, 2021, 42, 2000466.	2.0	11
11	Digital light processing 3D printing with thiol–acrylate vitrimers. Polymer Chemistry, 2021, 12, 639-644.	1.9	53
12	Effect of Accelerated Aging on the Chemical Signature and Performance of a Multiply-Alkylated Cyclopentane (MAC) Lubricant for Space Applications. Tribology Letters, 2021, 69, 1.	1.2	6
13	Structural Model for the Estimation of the Equivalent Permittivity of Nanodielectrics Based on Polyethylene and Epoxy Resins. IEEE Access, 2021, 9, 123927-123938.	2.6	0
14	Locally controlling dynamic exchange reactions in 3D printed thiol-acrylate vitrimers using dual-wavelength digital light processing. Polymer Chemistry, 2021, 12, 3077-3083.	1.9	27
15	Shape memory-assisted self-healing of dynamic thiol-acrylate networks. Polymer Chemistry, 2021, 12, 5704-5714.	1.9	18
16	Assessment of the chemical degradation of PFPE lubricants and greases for space applications: implications for long-term on-ground storage. CEAS Space Journal, 2021, 13, 377-388.	1.1	7
17	High resolution additive manufacturing with acrylate based vitrimers using organic phosphates as transesterification catalyst. Polymer, 2021, 221, 123631.	1.8	37
18	Role of Organic Phosphates and Phosphonates in Catalyzing Dynamic Exchange Reactions in Thiol lick Vitrimers. Macromolecular Chemistry and Physics, 2021, 222, 2100072.	1.1	20

#	Article	IF	CITATIONS
19	Einsatz photolatenter Basen zur lokalen Kontrolle dynamischer Austauschreaktionen in thermisch aktivierbaren Vitrimeren. Angewandte Chemie, 2021, 133, 14422-14427.	1.6	6
20	Introduction of Photolatent Bases for Locally Controlling Dynamic Exchange Reactions in Thermoâ€Activated Vitrimers. Angewandte Chemie - International Edition, 2021, 60, 14302-14306.	7.2	36
21	Tailoring the chemical functionalization of a transparent polyethylene foil for its application in an OLED-based DNA biosensor. Applied Surface Science, 2021, 552, 149408.	3.1	4
22	Functional mechanical metamaterial with independently tunable stiffness in the three spatial directions. Materials Today Advances, 2021, 11, 100155.	2.5	12
23	Thiol–acrylate based vitrimers: From their structure–property relationship to the additive manufacturing of self-healable soft active devices. Polymer, 2021, 231, 124110.	1.8	25
24	Hybrid silica micro-particles with light-responsive surface properties and Janus-like character. Polymer Chemistry, 2021, 12, 3925-3938.	1.9	2
25	Tailored Interfaces in Fiber-Reinforced Elastomers: A Surface Treatment Study on Optimized Load Coupling via the Modified Fiber Bundle Debond Technique. Polymers, 2021, 13, 36.	2.0	3
26	Recent Advances in Functional Polymers Containing Coumarin Chromophores. Polymers, 2021, 13, 56.	2.0	31
27	Cross-Linking and Evaluation of the Thermo-Mechanical Behavior of Epoxy Based Poly(ionic Liquid) Thermosets. Polymers, 2021, 13, 3914.	2.0	3
28	Tribological characteristics of medical gloves in contact with human skin and skin equivalents. Polymer Testing, 2020, 82, 106318.	2.3	6
29	Design and characterisation of vitrimer-like elastomeric composites from HXNBR rubber. Soft Matter, 2020, 16, 8577-8590.	1.2	19
30	The Impact of Vitrimers on the Industry of the Future: Chemistry, Properties and Sustainable Forward-Looking Applications. Polymers, 2020, 12, 1660.	2.0	111
31	The crucial role of external force in the estimation of the topology freezing transition temperature of vitrimers by elongational creep measurements. Polymer, 2020, 204, 122804.	1.8	32
32	Review on UV-Induced Cationic Frontal Polymerization of Epoxy Monomers. Polymers, 2020, 12, 2146.	2.0	51
33	Epoxy-Anhydride Vitrimers from Aminoglycidyl Resins with High Glass Transition Temperature and Efficient Stress Relaxation. Polymers, 2020, 12, 1148.	2.0	30
34	Digital light processing 3D printing of modified liquid isoprene rubber using thiol-click chemistry. RSC Advances, 2020, 10, 23607-23614.	1.7	21
35	Adhesives for "debonding-on-demandâ€ŧ Triggered release mechanisms and typical applications. International Journal of Adhesion and Adhesives, 2020, 99, 102585.	1.4	38
36	Exploiting the Carbon and Oxa Michael Addition Reaction for the Synthesis of Yne Monomers: Towards the Conversion of Acrylates to Biocompatible Building Blocks. ChemPhotoChem, 2020, 4, 476-480.	1.5	2

Priv-Dozâ€...Dr Sandra SchlÂ

#	Article	IF	CITATIONS
37	Photo-switching of surface wettability on micropatterned photopolymers for fast transport of water droplets over a long-distance. Polymer Chemistry, 2020, 11, 3125-3135.	1.9	20
38	Introduction of a New In-Situ Measurement System for the Study of Touch-Feel Relevant Surface Properties. Polymers, 2020, 12, 1380.	2.0	10
39	Recent Trends in Applying Ortho-Nitrobenzyl Esters for the Design of Photo-Responsive Polymer Networks. Materials, 2020, 13, 2777.	1.3	44
40	Laserâ€Triggered Writing and Biofunctionalization of Thiolâ€Ene Networks. Macromolecular Rapid Communications, 2020, 41, e2000084.	2.0	7
41	Stress relaxation and thermally adaptable properties in vitrimer-like elastomers from HXNBR rubber with covalent bonds. Soft Matter, 2019, 15, 6062-6072.	1.2	47
42	Photopatternable Epoxy-Based Thermosets. Materials, 2019, 12, 2350.	1.3	6
43	Bonded aerospace repairs under tensile loading: Wet chemical surface treatment and selected environmental conditions. Journal of Applied Polymer Science, 2019, 136, 47506.	1.3	6
44	Spatially Resolved Cross-Linking Characterization by Imaging Low-Coherence Interferometry. Sensors, 2019, 19, 1152.	2.1	1
45	Directed motion of water droplets on multi-gradient photopolymer surfaces. Polymer Chemistry, 2019, 10, 1882-1893.	1.9	24
46	Polyethylene Nanocomposites for Power Cable Insulations. Polymers, 2019, 11, 24.	2.0	78
47	Switching "on―and "off―the adhesion in stimuli-responsive elastomers. Soft Matter, 2018, 14, 2547-2559.	1.2	34
48	Influence of crosslinker and water on cyclic properties of carboxylated nitrile butadiene rubber (XNBR). Polymer Testing, 2018, 67, 309-321.	2.3	3
49	Influence of crosslinker and water on mechanical properties of carboxylated nitrile butadiene rubber (XNBR). Polymer Testing, 2018, 66, 24-31.	2.3	14
50	Tailoring the interfaces in glass fiber-reinforced photopolymer composites. Polymer, 2018, 141, 221-231.	1.8	19
51	Photoactive silica nanoparticles: Influence of surface functionalization on migration and kinetics of radical-induced photopolymerization reactions. European Polymer Journal, 2018, 98, 430-438.	2.6	17
52	Fast Cross-Linking-Characterization of Waveguide-Polymers on Wafers by Imaging Low-Coherence Interferometry. Proceedings (mdpi), 2018, 2, .	0.2	0
53	Stimuli-responsive thiol-epoxy networks with photo-switchable bulk and surface properties. RSC Advances, 2018, 8, 41904-41914.	1.7	19
54	Dualâ€Responsive Polydimethylsiloxane Networks. Journal of Polymer Science Part A, 2018, 56, 2319-2329.	2.5	9

#	Article	IF	CITATIONS
55	Photo-responsive thiol–ene networks for the design of switchable polymer patterns. Polymer Chemistry, 2017, 8, 1562-1572.	1.9	35
56	Investigating Photocurable Thiol‥ne Resins for Biomedical Materials. Macromolecular Materials and Engineering, 2017, 302, 1600450.	1.7	16
57	Light triggered formation of photo-responsive epoxy based networks. Polymer, 2017, 109, 349-357.	1.8	22
58	Efficient initiation of radicalâ€mediated thiolâ€ene chemistry with photoactive silica particles. Journal of Polymer Science Part A, 2017, 55, 894-902.	2.5	12
59	Synthesis and evaluation of new radical photoinitiators bearing trialkoxysilyl groups for surface immobilization. Polymer, 2017, 129, 207-220.	1.8	10
60	Influence of Thermoâ€Oxidative Ageing of HNBR in Oil Field Applications. Macromolecular Symposia, 2017, 373, 1600093.	0.4	18
61	Thiolâ€Ene versus Binary Thiol–Acrylate Chemistry: Material Properties and Network Characteristics of Photopolymers. Advanced Engineering Materials, 2017, 19, 1600620.	1.6	37
62	Properties of Polymer Composites Used in High-Voltage Applications. Polymers, 2016, 8, 173.	2.0	262
63	UV-induced modulation of tribological characteristics: Elastomeric materials featuring controlled anisotropic friction properties. AlP Conference Proceedings, 2016, , .	0.3	1
64	Flexible epoxy based composites with enhanced delamination resistance. AIP Conference Proceedings, 2016, , .	0.3	0
65	Design and application of photo-reversible elastomer networks by using the [4Ï€s+4Ï€s] cycloaddition reaction of pendant anthracene groups. Polymer, 2016, 102, 10-20.	1.8	37
66	Data on synthesis and thermo-mechanical properties of stimuli-responsive rubber materials bearing pendant anthracene groups. Data in Brief, 2016, 9, 524-529.	0.5	1
67	Exploring thiol-yne based monomers as low cytotoxic building blocks for radical photopolymerization. Journal of Polymer Science Part A, 2016, 54, 3484-3494.	2.5	12
68	Surface Functionalization of Natural Rubber by UVâ€Induced Thiolâ€ene Chemistry. Macromolecular Symposia, 2016, 365, 32-39.	0.4	8
69	Exploring Network Formation of Tough and Biocompatible Thiolâ€yne Based Photopolymers. Macromolecular Rapid Communications, 2016, 37, 1701-1706.	2.0	33
70	Significance of epoxy network properties for the toughening effect of flaky and fullereneâ€like WS ₂ nanoparticles. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1738-1747.	2.4	17
71	Photocleavable epoxy based materials. Polymer, 2015, 69, 159-168.	1.8	19
72	Photo-patterned natural rubber surfaces with tunable tribological properties. European Polymer Journal, 2015, 66, 236-246.	2.6	15

#	Article	IF	CITATIONS
73	The influence of surface modification on the electrical properties of silicon carbide flakes. , 2015, , .		Ο
74	New strategies towards reversible and mendable epoxy based materials employing [4Ï€s+4Ï€s] photocycloaddition and thermal cycloreversion of pendant anthracene groups. Polymer, 2015, 80, 76-87.	1.8	50
75	Flexible epoxyâ€silicone rubber laminates for high voltage insulations with enhanced delamination resistance. Polymer Composites, 2015, 36, 2238-2247.	2.3	5
76	Chemical functionalization of composite surfaces for improved structural bonded repairs. Composites Part B: Engineering, 2015, 69, 296-303.	5.9	33
77	Entanglement Effects in Elastomers: Macroscopic vs Microscopic Properties. Macromolecules, 2014, 47, 2759-2773.	2.2	109
78	New approaches towards the investigation on defects and failure mechanisms of insulating composites used in high voltage applications. Composites Part B: Engineering, 2014, 58, 83-90.	5.9	14
79	Photo-vulcanization using thiol-ene chemistry: Film formation, morphology and network characteristics of UV crosslinked rubber latices. Polymer, 2014, 55, 5584-5595.	1.8	26
80	Dual crosslinking of carboxylated nitrile butadiene rubber latex employing the thiolâ€ene photoreaction. Journal of Applied Polymer Science, 2013, 129, 2735-2743.	1.3	40
81	Inhomogeneities and local chain stretching in partially swollen networks. Soft Matter, 2013, 9, 6943-6954.	1.2	48
82	Effect of formulation and processing conditions on light shielding efficiency of thermotropic systems with fixed domains based on UV curing acrylate resins. Journal of Applied Polymer Science, 2013, 130, 3299-3310.	1.3	9
83	Contributions to the Characterization of Chlorinated Polyisoprene Surfaces. Macromolecular Symposia, 2012, 311, 9-17.	0.4	6
84	UV induced microcellular foaming—A new approach towards the production of 3D structures in offset printing techniques. Progress in Organic Coatings, 2012, 73, 54-61.	1.9	11
85	Characteristics of the photochemical prevulcanization in a falling film photoreactor. Journal of Applied Polymer Science, 2012, 124, 3478-3486.	1.3	22
86	Fluorination of elastomer materials. European Polymer Journal, 2011, 47, 2321-2330.	2.6	43
87	Survey of chemical residues and biological evaluation of photochemically pre-vulcanized surgical gloves. Monatshefte FA1⁄4r Chemie, 2010, 141, 1365-1372.	0.9	12