Jong-Woo Sohn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3755535/publications.pdf

Version: 2024-02-01

36 2,464 22 36 papers citations h-index g-index

36 36 36 36 3328

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Neuronal circuits that regulate feeding behavior and metabolism. Trends in Neurosciences, 2013, 36, 504-512.	8.6	218
2	Xbp1s in Pomc Neurons Connects ER Stress with Energy Balance and Glucose Homeostasis. Cell Metabolism, 2014, 20, 471-482.	16.2	213
3	Network of hypothalamic neurons that control appetite. BMB Reports, 2015, 48, 229-233.	2.4	207
4	High-fat feeding promotes obesity via insulin receptor/PI3K-dependent inhibition of SF-1 VMH neurons. Nature Neuroscience, 2011, 14, 911-918.	14.8	205
5	Serotonin 2C receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis. Journal of Clinical Investigation, 2013, 123, 5061-5070.	8.2	184
6	Melanocortin 4 Receptors Reciprocally Regulate Sympathetic and Parasympathetic Preganglionic Neurons. Cell, 2013, 152, 612-619.	28.9	181
7	Serotonin 2C Receptor Activates a Distinct Population of Arcuate Pro-opiomelanocortin Neurons via TRPC Channels. Neuron, 2011, 71, 488-497.	8.1	165
8	Melanocortin 4 receptors in autonomic neurons regulate thermogenesis and glycemia. Nature Neuroscience, 2014, 17, 911-913.	14.8	114
9	PI3K Signaling in the Ventromedial Hypothalamic Nucleus Is Required for Normal Energy Homeostasis. Cell Metabolism, 2010, 12, 88-95.	16.2	96
10	5-HT2CRs expressed by pro-opiomelanocortin neurons regulate insulin sensitivity in liver. Nature Neuroscience, 2010, 13, 1457-1459.	14.8	87
11	TrpC5 Mediates Acute Leptin and Serotonin Effects via Pomc Neurons. Cell Reports, 2017, 18, 583-592.	6.4	75
12	Glucose Deprivation Regulates KATPChannel Trafficking via AMP-Activated Protein Kinase in Pancreatic β-Cells. Diabetes, 2009, 58, 2813-2819.	0.6	71
13	Neuroanatomy of melanocortinâ€4 receptor pathway in the lateral hypothalamic area. Journal of Comparative Neurology, 2012, 520, 4168-4183.	1.6	70
14	Leptin promotes K $<$ sub $>$ ATP $<$ /sub $>$ channel trafficking by AMPK signaling in pancreatic \hat{l}^2 -cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12673-12678.	7.1	69
15	The Acute Effects of Leptin Require PI3K Signaling in the Hypothalamic Ventral Premammillary Nucleus. Journal of Neuroscience, 2011, 31, 13147-13156.	3.6	66
16	Hypothalamic Macrophage Inducible Nitric Oxide Synthase Mediates Obesity-Associated Hypothalamic Inflammation. Cell Reports, 2018, 25, 934-946.e5.	6.4	62
17	Leptin and insulin engage specific PI3K subunits in hypothalamic SF1 neurons. Molecular Metabolism, 2016, 5, 669-679.	6.5	43
18	Microglial MERTK eliminates phosphatidylserineâ€displaying inhibitory postâ€synapses. EMBO Journal, 2021, 40, e107121.	7.8	43

#	Article	IF	Citations
19	Functional Heterogeneity of Arcuate Nucleus Pro-Opiomelanocortin Neurons: Implications for Diverging Melanocortin Pathways. Molecular Neurobiology, 2012, 45, 225-233.	4.0	38
20	Spexin-Based Galanin Receptor Type 2 Agonist for Comorbid Mood Disorders and Abnormal Body Weight. Frontiers in Neuroscience, 2019, 13, 391.	2.8	35
21	Primary cilia mediate early life programming of adiposity through lysosomal regulation in the developing mouse hypothalamus. Nature Communications, 2020, 11, 5772.	12.8	32
22	Neuroendocrine control of appetite and metabolism. Experimental and Molecular Medicine, 2021, 53, 505-516.	7.7	27
23	A neural basis for tonic suppression of sodium appetite. Nature Neuroscience, 2020, 23, 423-432.	14.8	24
24	Autonomic control of energy balance and glucose homeostasis. Experimental and Molecular Medicine, 2022, 54, 370-376.	7.7	21
25	Understanding melanocortin-4 receptor control of neuronal circuits: Toward novel therapeutics for obesity syndrome. Pharmacological Research, 2018, 129, 10-19.	7.1	20
26	lon channels in the central regulation of energy and glucose homeostasis. Frontiers in Neuroscience, 2013, 7, 85.	2.8	19
27	Chemogenetic manipulation of parasympathetic neurons (DMV) regulates feeding behavior and energy metabolism. Neuroscience Letters, 2019, 712, 134356.	2.1	16
28	Polymer Thin Films with Tunable Acetylcholine-like Functionality Enable Long-Term Culture of Primary Hippocampal Neurons. ACS Nano, 2016, 10, 9909-9918.	14.6	14
29	The atypical antipsychotic risperidone targets hypothalamic melanocortin 4 receptors to cause weight gain. Journal of Experimental Medicine, 2021, 218, .	8.5	13
30	Cellular and systemic mechanisms for glucose sensing and homeostasis. Pflugers Archiv European Journal of Physiology, 2020, 472, 1547-1561.	2.8	11
31	Lomitapide, a cholesterol-lowering drug, is an anticancer agent that induces autophagic cell death via inhibiting mTOR. Cell Death and Disease, 2022, 13, .	6.3	10
32	$\widehat{Gl}\pm i/o$ -coupled Htr2c in the paraventricular nucleus of the hypothalamus antagonizes the anorectic effect of serotonin agents. Cell Reports, 2021, 37, 109997.	6.4	5
33	Delineating a serotonin 1B receptor circuit for appetite suppression in mice. Journal of Experimental Medicine, 2022, 219, .	8.5	5
34	Leptin-inhibited neurons in the lateral parabrachial nucleus do not alter food intake or glucose balance. Animal Cells and Systems, 2022, 26, 92-98.	2.2	3
35	Angiopoietin-Like Growth Factor Involved in Leptin Signaling in the Hypothalamus. International Journal of Molecular Sciences, 2021, 22, 3443.	4.1	1
36	Protocol for sodium depletion and measurement of sodium appetite in mice. STAR Protocols, 2021, 2, 101026.	1.2	1