Xiao Wei Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3755431/publications.pdf

Version: 2024-02-01

840 papers 31,573 citations

87 h-index

4146

9861 141 g-index

854 all docs

854 docs citations

times ranked

854

29276 citing authors

#	Article	IF	CITATIONS
1	Efficient and stable mesoscopic perovskite solar cell in high humidity by localized Dion-Jacobson 2Dâ€3D heterostructures. Nano Energy, 2022, 91, 106666.	16.0	42
2	Enhanced performance of an AlGaN-based deep ultraviolet light-emitting diode using a p ⁺ -GaN/SiO ₂ /ITO tunnel junction. Optics Letters, 2022, 47, 798.	3.3	3
3	Realization of inversely designed metagrating for highly efficient large angle beam deflection. Optics Express, 2022, 30, 7566.	3.4	4
4	The mechanism of ligand-induced chiral transmission through a top-down selective domain etching process. Materials Chemistry Frontiers, 2022, 6, 1194-1208.	5.9	2
5	Efficient CsPbBr ₃ Nanoplatelet-Based Blue Light-Emitting Diodes Enabled by Engineered Surface Ligands. ACS Energy Letters, 2022, 7, 1137-1145.	17.4	52
6	Light extraction employing optical tunneling in blue InP quantum dot light-emitting diodes. Applied Physics Letters, 2022, 120, .	3.3	11
7	Patterning of quantum dot lightâ€emitting diodes based on IGZO films. Journal of the Society for Information Display, 2022, 30, 585-592.	2.1	O
8	Coherent surface-to-bulk vibrational coupling in the 2D topologically trivial insulator Bi2Se3 monitored by ultrafast transient absorption spectroscopy. Scientific Reports, 2022, 12, 4722.	3.3	3
9	In Situ Growth Mechanism for Highâ€Quality Hybrid Perovskite Single rystal Thin Films with High Area to Thickness Ratio: Looking for the Sweet Spot. Advanced Science, 2022, 9, e2104788.	11.2	16
10	Organic-Phase Synthesis of Blue Emission Copper Nanoparticles for Light-Emitting Diodes. ACS Applied Nano Materials, 2022, 5, 3967-3972.	5.0	3
11	Screen printing strategy for fabricating flexible crystallized perovskite nanocomposite patterns with high photoluminescence. Flexible and Printed Electronics, 2022, 7, 015010.	2.7	1
12	Full-Color Quantum Dot Light-Emitting Diodes Based on Microcavities. IEEE Photonics Journal, 2022, 14, 1-9.	2.0	7
13	Red and Green Quantum Dot Color Filter for Full-Color Micro-LED Arrays. Micromachines, 2022, 13, 595.	2.9	10
14	On Cordelair–Greil Model about Electrophoretic Deposition. Small, 2022, 18, .	10.0	2
15	High Quantum Yield Blue InP/ZnS/ZnS Quantum Dots Based on Bromine Passivation for Efficient Blue Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, .	7.3	24
16	On the accurate characterization of quantum-dot light-emitting diodes for display applications. Npj Flexible Electronics, 2022, 6, .	10.7	8
17	Perovskite Phase Analysis by SEM Facilitating Efficient Quasiâ€2D Perovskite Lightâ€Emitting Device Designs. Advanced Optical Materials, 2022, 10, .	7.3	6
18	Capacitance–voltage characteristics of perovskite light-emitting diodes: Modeling and implementing on the analysis of carrier behaviors. Applied Physics Letters, 2022, 120, .	3.3	16

#	Article	IF	CITATIONS
19	Fabrication of Highly Efficient Perovskite Nanocrystal Light-Emitting Diodes via Inkjet Printing. Micromachines, 2022, 13, 983.	2.9	5
20	Absorption Modulation, Enhancement, and Narrowing Using Sub-Wavelength Gratings., 2022,,.		0
21	Thermally Processed Quantum-Dot Polypropylene Composite Color Converter Film for Displays. ACS Applied Materials & Displays. ACS Applied Materials & Displays and Displays and Displays are applied Materials & Displays and Displays are applied Materials & Displays and Displays are applied Materials & Displays and Displays are applied to the Displays are applied to t	8.0	2
22	Efficient Infrared Solar Cells Employing Quantum Dot Solids with Strong Interâ€Dot Coupling and Efficient Passivation. Advanced Functional Materials, 2021, 31, 2006864.	14.9	16
23	Circularly polarised lasing from all-solid organic semiconductor activated external distributed feedback based on polarisation grating. Liquid Crystals, 2021, 48, 1186-1193.	2.2	1
24	Eliminating light depolarization from metal microstructure in liquid crystal displays. Journal of the Society for Information Display, 2021, 29, 170-178.	2.1	0
25	High-performance perovskite light-emitting diodes based on double hole transport layers. Journal of Materials Chemistry C, 2021, 9, 2115-2122.	5.5	25
26	Green InP/ZnSeS/ZnS Core Multiâ€Shelled Quantum Dots Synthesized with Aminophosphine for Effective Display Applications. Advanced Functional Materials, 2021, 31, 2008453.	14.9	71
27	Pâ€12.3: Investigation of Bowing Effect of 4'' Epitaxial Wafer and Reliability of GaNâ€based Microâ€LED Devices. Digest of Technical Papers SID International Symposium, 2021, 52, 601-604.	0.3	0
28	51.1: Invited Paper: Quantum dot displays. Digest of Technical Papers SID International Symposium, 2021, 52, 338-338.	0.3	0
29	37.3: Suppressing the Trapâ€assisted Recombination for High Performance InP/ZnS Green Quantumâ€dot Lightâ€emitting Diodes. Digest of Technical Papers SID International Symposium, 2021, 52, 259-262.	0.3	0
30	EA-Directing Formamidinium-Based Perovskite Microwires with A-Site Doping. ACS Omega, 2021, 6, 7157-7164.	3.5	1
31	Color revolution: toward ultra-wide color gamut displays. Journal Physics D: Applied Physics, 2021, 54, 213002.	2.8	9
32	Colloidal PbS Quantum Dots for Visible-to-Near-Infrared Optical Internet of Things. IEEE Photonics Journal, 2021, 13, 1-11.	2.0	4
33	Nanopatterned metallic transparent electrodes for the near-infrared spectrum. AIP Advances, 2021, 11 , 045005.	1.3	3
34	Clarifying Ultrafast Carrier Dynamics in Ultrathin Films of the Topological Insulator Bi ₂ Se ₃ Using Transient Absorption Spectroscopy. ACS Photonics, 2021, 8, 1191-1205.	6.6	20
35	63â€2: Student Paper: Thinâ€film Compatible Process High Resolution Patterning of Quantum Dots Lightâ€emitting Diodes. Digest of Technical Papers SID International Symposium, 2021, 52, 923-925.	0.3	2
36	12â€1: Controlling the Pixel Colors of Quantum Dot Thin Films by Patterning the Substrates. Digest of Technical Papers SID International Symposium, 2021, 52, 143-146.	0.3	1

#	Article	IF	Citations
37	Pâ€64: Improvement in Inkjet Printed Green QLED Efficiency. Digest of Technical Papers SID International Symposium, 2021, 52, 1305-1307.	0.3	0
38	Strategies Toward Efficient Blue Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2021, 31, 2100516.	14.9	92
39	Improved Ink-Jet-Printed CdSe Quantum Dot Light-Emitting Diodes with Minimized Hole Transport Layer Erosion. ACS Applied Electronic Materials, 2021, 3, 3005-3014.	4.3	11
40	Dynamic Opening of a Gap in Dirac Surface States of the Thin-Film 3D Topological Insulator Bi ₂ Se ₃ Driven by the Dynamic Rashba Effect. Journal of Physical Chemistry Letters, 2021, 12, 5593-5600.	4.6	5
41	Alloyed Green-Emitting CdZnSeS/ZnS Quantum Dots with Dense Protective Layers for Stable Lighting and Display Applications. ACS Applied Materials & Emp.; Interfaces, 2021, 13, 32217-32225.	8.0	13
42	Identifying the Surface Charges and their Impact on Carrier Dynamics in Quantumâ€Dot Lightâ€Emitting Diodes by Impedance Spectroscopy. Advanced Optical Materials, 2021, 9, 2100389.	7.3	16
43	Efficient transparent quantum-dot light-emitting diodes with an inverted architecture. Optical Materials Express, 2021, 11, 2145.	3.0	2
44	Universal Strategy for Improving Perovskite Photodiode Performance: Interfacial Builtâ€In Electric Field Manipulated by Unintentional Doping. Advanced Science, 2021, 8, e2101729.	11.2	17
45	Large-area patterning of full-color quantum dot arrays beyond 1000 pixels per inch by selective electrophoretic deposition. Nature Communications, 2021, 12, 4603.	12.8	64
46	Pâ€14.3: Inkjet Printed QLED with Enhanced Efficiency and Stability Based on Optimized Hole Transport Layer with Less Side Emission. Digest of Technical Papers SID International Symposium, 2021, 52, 1056-1056.	0.3	0
47	Pâ€4.6: Ultraâ€highâ€resolution Quantum Dots Color Converter with Notable Uniformity. Digest of Technical Papers SID International Symposium, 2021, 52, 765-767.	0.3	1
48	Pâ€4.10: Quantum Dot Films for Color Converter Application by Electrophoretic Deposition. Digest of Technical Papers SID International Symposium, 2021, 52, 775-777.	0.3	0
49	Pâ€4.7: Fundamental Research on High Resolution Full Color Micro‣ED Display with Quantum Dot Color Conversion by Lithography. Digest of Technical Papers SID International Symposium, 2021, 52, 768-770.	0.3	0
50	Pâ€14.1: Improving the Performance of Inkjet Printed QLED by Annealing Postâ€treatment. Digest of Technical Papers SID International Symposium, 2021, 52, 1050-1052.	0.3	0
51	Pâ€14.2: Optimizing the Performance of Inkjet Printed Green QLED by Precisely Control of Shell Thickness. Digest of Technical Papers SID International Symposium, 2021, 52, 1053-1055.	0.3	0
52	Pâ€6.9: Patterning of Quantum Dots Lightâ€emitting Diodes Based on IGZO Films. Digest of Technical Papers SID International Symposium, 2021, 52, 868-871.	0.3	0
53	Hole Scavenging and Electron–Hole Pair Photoproduction Rate: Two Mandatory Key Factors to Control Single-Tip Au–CdSe/CdS Nanoheterodimers. ACS Nano, 2021, 15, 15328-15341.	14.6	7
54	High Performance Inkjetâ€Printed Quantumâ€Dot Lightâ€Emitting Diodes with High Operational Stability. Advanced Optical Materials, 2021, 9, 2101069.	7.3	36

#	Article	IF	CITATIONS
55	Highly efficient transparent quantum-dot light-emitting diodes based on inorganic double electron-transport layers. Photonics Research, 2021, 9, 1979.	7.0	8
56	Improved blue quantum dot light-emitting diodes via chlorine passivated ZnO nanoparticle layer*. Chinese Physics B, 2021, 30, 118503.	1.4	3
57	Highâ€Performance Ultrapure Green CdSe/CdS Core/Crown Nanoplatelet Lightâ€Emitting Diodes by Suppressing Nonradiative Energy Transfer. Advanced Electronic Materials, 2021, 7, 2000965.	5.1	17
58	<i>Operando</i> structure degradation study of PbS quantum dot solar cells. Energy and Environmental Science, 2021, 14, 3420-3429.	30.8	17
59	Analyzing and modulating energy transfer in ternary-emissive system of quantum dot light-emitting diodes towards efficient emission. Optics Express, 2021, 29, 36964.	3.4	4
60	Realizing White Emission of Single-Layer Dual-Color Perovskite Light-Emitting Devices by Modulating the Electroluminescence Emission Spectra. Journal of Physical Chemistry Letters, 2021, 12, 10197-10203.	4.6	16
61	Enhancing hole injection by electric dipoles for efficient blue InP QLEDs. Applied Physics Letters, 2021, 119, .	3.3	13
62	On the impact of a metal–insulator–semiconductor structured n-electrode for AlGaN-based DUV LEDs. Applied Optics, 2021, 60, 11222.	1.8	4
63	Controlling morphological and electro-optical properties via the phase separation in polymer/liquid-crystal composite materials. Liquid Crystals, 2020, 47, 238-247.	2.2	18
64	A Highly Stable and Tunable Visibleâ€Nearâ€IR Electrochromic Allâ€inâ€One Gel Device. ChemPhotoChem, 2020, 4, 357-365.	3.0	15
65	Printable CsPbBr ₃ perovskite quantum dot ink for coffee ring-free fluorescent microarrays using inkjet printing. Nanoscale, 2020, 12, 2569-2577.	5.6	73
66	Deep Blue Emission of All-Bromide-Based Cesium Lead Perovskite Nanocrystals. Journal of Physical Chemistry C, 2020, 124, 1617-1622.	3.1	14
67	Exciton-Polariton Properties in Planar Microcavity of Millimeter-Sized Two-Dimensional Perovskite Sheet. ACS Applied Materials & Sheet. ACS	8.0	14
68	Circularly polarized luminescence from semiconductor quantum rods templated by self-assembled cellulose nanocrystals. Journal of Materials Chemistry C, 2020, 8, 1048-1053.	5.5	32
69	Low reabsorption and stability enhanced luminescent solar concentrators based on silica encapsulated quantum rods. Solar Energy Materials and Solar Cells, 2020, 206, 110321.	6.2	17
70	Ultrapure Green Light-Emitting Diodes Based on CdSe/CdS Core/Crown Nanoplatelets. IEEE Journal of Quantum Electronics, 2020, 56, 1-6.	1.9	14
71	51â€3: Efficient InP/ZnS Quantum Dot Lightâ€emitting Diodes with Improved Electron Confinement. Digest of Technical Papers SID International Symposium, 2020, 51, 754-757.	0.3	1
72	65â€2: High Luminescent Red Quantum Dot Lightâ€Emitting Diodes by Inkjet Printing. Digest of Technical Papers SID International Symposium, 2020, 51, 964-967.	0.3	2

#	Article	IF	CITATIONS
73	Pâ€113: In Situ Fabrication of Organicâ€Inorganic Perovskite Polymer Composite Films for Ultrawide Color Gamut LCD display. Digest of Technical Papers SID International Symposium, 2020, 51, 1775-1778.	0.3	1
74	Dopantâ€Free and Greenâ€Solventâ€Processable Holeâ€Transporting Materials for Highly Efficient Inverted Planar Perovskite Solar Cells. Solar Rrl, 2020, 4, 2070105.	5 . 8	4
75	Simultaneous Low-Order Phase Suppression and Defect Passivation for Efficient and Stable Blue Light-Emitting Diodes. ACS Energy Letters, 2020, 5, 2569-2579.	17.4	89
76	Enhanced hole injection assisted by electric dipoles for efficient perovskite light-emitting diodes. Communications Materials, 2020, 1 , .	6.9	33
77	Dopantâ€Free and Greenâ€Solventâ€Processable Holeâ€Transporting Materials for Highly Efficient Inverted Planar Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000327.	5. 8	16
78	Highly Efficient Lead-Free (Bi,Ce)-Codoped Cs ₂ Ag _{0.4} Na _{0.6} InCl ₆ Double Perovskites for White Light-Emitting Diodes. Chemistry of Materials, 2020, 32, 7814-7821.	6.7	108
79	Spray-deposited PbS colloidal quantum dot solid for near-infrared photodetectors. Nano Energy, 2020, 78, 105254.	16.0	35
80	Observing dynamic and static Rashba effects in a thin layer of 3D hybrid perovskite nanocrystals using transient absorption spectroscopy. AIP Advances, 2020, 10, .	1.3	13
81	Multiple Cations Enhanced Defect Passivation of Blue Perovskite Quantum Dots Enabling Efficient Lightâ€Emitting Diodes. Advanced Optical Materials, 2020, 8, 2001494.	7.3	30
82	Structural phase transitions and photoluminescence mechanism in a layer of 3D hybrid perovskite nanocrystals. AlP Advances, 2020, 10 , .	1.3	14
83	Impact of the resistive switching effects in ZnMgO electron transport layer on the aging characteristics of quantum dot light-emitting diodes. Applied Physics Letters, 2020, 117, .	3.3	26
84	In situ Grazing-Incidence Small-Angle X-ray Scattering Observation of Gold Sputter Deposition on a PbS Quantum Dot Solid. ACS Applied Materials & Interfaces, 2020, 12, 46942-46952.	8.0	7
85	Establishing Multifunctional Interface Layer of Perovskite Ligand Modified Lead Sulfide Quantum Dots for Improving the Performance and Stability of Perovskite Solar Cells. Small, 2020, 16, e2002628.	10.0	20
86	Enhancing stability of CsPbBr 3 nanocrystals lightâ€emitting diodes through polymethylmethacrylate physical adsorption. Nano Select, 2020, 1, 372-381.	3.7	5
87	Suppressing Strong Exciton–Phonon Coupling in Blue Perovskite Nanoplatelet Solids by Binary Systems. Angewandte Chemie, 2020, 132, 22340-22346.	2.0	2
88	Enhanced light emission of quantum dot films by scattering of poly(zinc methacrylate) coating CdZnSeS/ZnS quantum dots and high refractive index BaTiO ₃ nanoparticles. RSC Advances, 2020, 10, 31705-31710.	3.6	9
89	InP/ZnS/ZnS Core/Shell Blue Quantum Dots for Efficient Lightâ€Emitting Diodes. Advanced Functional Materials, 2020, 30, 2005303.	14.9	92
90	Suppressing Strong Exciton–Phonon Coupling in Blue Perovskite Nanoplatelet Solids by Binary Systems. Angewandte Chemie - International Edition, 2020, 59, 22156-22162.	13.8	24

#	Article	IF	Citations
91	Optical Tunneling to Improve Light Extraction in Quantum Dot and Perovskite Light-Emitting Diodes. IEEE Photonics Journal, 2020, 12, 1-14.	2.0	5
92	Pâ€110: Investigation of Bowing Effect of 4" Epitaxial Wafer and Reliability of GaNâ€based Microâ€LED Devices. Digest of Technical Papers SID International Symposium, 2020, 51, 1764-1767.	0.3	3
93	Facile In Situ Fabrication of Cs ₄ PbBr ₆ /CsPbBr ₃ Nanocomposite Containing Polymer Films for Ultrawide Color Gamut Displays. Advanced Optical Materials, 2020, 8, 2000232.	7.3	45
94	Bright infra-red quantum dot light-emitting diodes through efficient suppressing of electrons. Applied Physics Letters, 2020, 116, .	3.3	11
95	High performance top-emitting quantum dot light-emitting diodes with interfacial modification. AIP Advances, 2020, 10, .	1.3	5
96	Quantumâ€Dot Luminescent Microspheres: Atomic Layer Deposition Assisted Encapsulation of Quantum Dot Luminescent Microspheres toward Display Applications (Advanced Optical Materials 12/2020). Advanced Optical Materials, 2020, 8, 2070048.	7.3	0
97	Spectral Dynamics and Multiphoton Absorption Properties of All-Inorganic Perovskite Nanorods. Journal of Physical Chemistry Letters, 2020, 11, 4817-4825.	4.6	26
98	Development of InP Quantum Dot-Based Light-Emitting Diodes. ACS Energy Letters, 2020, 5, 1095-1106.	17.4	115
99	Hybrid plasmonic nano-emitters with controlled single quantum emitter positioning on the local excitation field. Nature Communications, 2020, 11, 3414.	12.8	33
100	Colloidal PbS quantum dot stacking kinetics during deposition <i>via</i> printing. Nanoscale Horizons, 2020, 5, 880-885.	8.0	21
101	Cost-Efficient Printing of Graphene Nanostructures on Smart Contact Lenses. ACS Applied Materials & Lamp; Interfaces, 2020, 12, 10820-10828.	8.0	13
102	In Situ Tin(II) Complex Antisolvent Process Featuring Simultaneous Quasi ore–Shell Structure and Heterojunction for Improving Efficiency and Stability of Lowâ€Bandgap Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903013.	19.5	31
103	Enhanced frequency and amplitude modulation of THz metasurfaces based on CdSe/CdS quantum rods. Optics Communications, 2020, 471, 126014.	2.1	2
104	Highly Luminescent and Stable Green Quasiâ€2D Perovskiteâ€Embedded Polymer Sheets by Inkjet Printing. Advanced Functional Materials, 2020, 30, 1910817.	14.9	58
105	Efficient defect-passivation and charge-transfer with interfacial organophosphorus ligand modification for enhanced performance of perovskite solar cells. Solar Energy Materials and Solar Cells, 2020, 211, 110527.	6.2	54
106	Up-Conversion Device Based on Quantum Dots With High-Conversion Efficiency Over 6%. IEEE Access, 2020, 8, 71041-71049.	4.2	9
107	In Situ Growth of Allâ€norganic Perovskite Single Crystal Arrays on Electron Transport Layer. Advanced Science, 2020, 7, 1902767.	11.2	21
108	Atomic Layer Deposition Assisted Encapsulation of Quantum Dot Luminescent Microspheres toward Display Applications. Advanced Optical Materials, 2020, 8, 1902118.	7.3	22

#	Article	IF	Citations
109	Strong hot-phonon bottleneck effect in all-inorganic perovskite nanocrystals. Applied Physics Letters, 2020, 116, .	3.3	19
110	Irreversible accumulated SERS behavior of the molecule-linked silver and silver-doped titanium dioxide hybrid system. Nature Communications, 2020, 11, 1785.	12.8	107
111	Factors influencing the working temperature of quantum dot light-emitting diodes. Optics Express, 2020, 28, 34167.	3.4	9
112	(Invited) Quantum Dot Displays. ECS Meeting Abstracts, 2020, MA2020-01, 1086-1086.	0.0	0
113	Lead Sulfide Quantum Dot Photodetector with Enhanced Responsivity through a Two-Step Ligand-Exchange Method. ACS Applied Nano Materials, 2019, 2, 6135-6143.	5.0	52
114	Hole Transport Bilayer Structure for Quasiâ€2D Perovskite Based Blue Lightâ€Emitting Diodes with High Brightness and Good Spectral Stability. Advanced Functional Materials, 2019, 29, 1905339.	14.9	92
115	Direct and Indirect Recombination and Thermal Kinetics of Excitons in Colloidal All-Inorganic Lead Halide Perovskite Nanocrystals. Journal of Physical Chemistry C, 2019, 123, 19844-19850.	3.1	21
116	Optoelectronic performance of AgNW transparent conductive films with different width-to-height ratios and a figure of merit embodying an optical haze. AIP Advances, 2019, 9, .	1.3	4
117	Perovskite Light-Emitting Diodes Based on FAPb _{1â^'} <i> _x </i> Sn <i> _x </i> Sub> x _x _{x<td>2.0</td><td>12</td>}	2.0	12
118	Effect of Lateral Size and Surface Passivation on the Near-Band-Edge Excitonic Emission from Quasi-Two-Dimensional CdSe Nanoplatelets. ACS Applied Materials & Emp; Interfaces, 2019, 11, 41821-41827.	8.0	23
119	30.3: Microâ€LED Display and Its Mass Manufacturing. Digest of Technical Papers SID International Symposium, 2019, 50, 329-329.	0.3	0
120	7.4: Metal Halide Perovskite Nanophosphors for Micro‣EDs. Digest of Technical Papers SID International Symposium, 2019, 50, 65-68.	0.3	0
121	54.3: <i>Invited Paper:</i> High photoinduced ordering and controllable photostability of hydrophilic azobenzene material based on relative humidity and its application in 2D polarization gratings. Digest of Technical Papers SID International Symposium, 2019, 50, 590-590.	0.3	0
122	Highly Polarized Active Fluorescent Enhancement Polymer Film With Quantum Rods Aligned by Ink-Jet Printing. IEEE Journal of Quantum Electronics, 2019, 55, 1-6.	1.9	4
123	Highâ€Performance Inverted Planar Perovskite Solar Cells Enhanced by Thickness Tuning of New Dopantâ€Free Hole Transporting Layer. Small, 2019, 15, e1904715.	10.0	47
124	Branched capping ligands improve the stability of cesium lead halide (CsPbBr ₃) perovskite quantum dots. Journal of Materials Chemistry C, 2019, 7, 11251-11257.	5.5	41
125	Double-Shelled InP/ZnMnS/ZnS Quantum Dots for Light-Emitting Devices. ACS Omega, 2019, 4, 18961-18968.	3.5	20
126	Beyond OLED: Efficient Quantum Dot Lightâ€Emitting Diodes for Display and Lighting Application. Chemical Record, 2019, 19, 1729-1752.	5.8	95

#	Article	IF	CITATIONS
127	Surface modification toward luminescent and stable silica-coated quantum dots color filter. Science China Materials, 2019, 62, 1463-1469.	6.3	5
128	Reduced Working Temperature of Quantum Dots-Light-Emitting Diodes Optimized by Quantum Dots at Silica-on-Chip Structure. Journal of Electronic Packaging, Transactions of the ASME, 2019, 141, .	1.8	6
129	Efficient visible light modulation based on electrically tunable all dielectric metasurfaces embedded in thin-layer nematic liquid crystals. Scientific Reports, 2019, 9, 8673.	3.3	41
130	Pâ€76: Origin and Improvement of LCD Reflectivity. Digest of Technical Papers SID International Symposium, 2019, 50, 1522-1525.	0.3	0
131	Pâ€111: Selfâ€Driven Lightâ€Emitting Diodes Based on Formamidinium Lead Halide Perovskite Nanocrystals. Digest of Technical Papers SID International Symposium, 2019, 50, 1669-1672.	0.3	1
132	4â€4: Flexible Quantum Dot Color Converter Film for Micro‣ED Applications. Digest of Technical Papers SID International Symposium, 2019, 50, 30-33.	0.3	27
133	Pâ€122: High Quantum Yield Green and Red CdSe/CdS Dotâ€inâ€Rods and Their Electroluminescent Light Emitting Diodes. Digest of Technical Papers SID International Symposium, 2019, 50, 1705-1708.	0.3	3
134	Pâ€125: High Quantum Yield InP/ZnMnS/ZnS Quantum Dots. Digest of Technical Papers SID International Symposium, 2019, 50, 1716-1719.	0.3	2
135	Photochromic transparent wood for photo-switchable smart window applications. Journal of Materials Chemistry C, 2019, 7, 8649-8654.	5.5	125
136	Typeâ€Switchable Inverter and Amplifier Based on Highâ€Performance Ambipolar Blackâ€Phosphorus Transistors. Advanced Electronic Materials, 2019, 5, 1900133.	5.1	9
137	Defects Passivation With Dithienobenzodithiopheneâ€based Ï€â€conjugated Polymer for Enhanced Performance of Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900029.	5.8	74
138	Chiral CdSe nanoplatelets as an ultrasensitive probe for lead ion sensing. Nanoscale, 2019, 11, 9327-9334.	5.6	39
139	Highly Polarized Fluorescent Film Based on Aligned Quantum Rods by Contact Ink-Jet Printing Method. IEEE Photonics Journal, 2019, 11, 1-11.	2.0	5
140	Ultrawide color gamut <scp>LCD</scp> display with <scp>CdSe/CdS</scp> nanoplatelets. Journal of the Society for Information Display, 2019, 27, 587-596.	2.1	14
141	Improving blue quantum dot light-emitting diodes by a lithium fluoride interfacial layer. Applied Physics Letters, 2019, 114, .	3.3	32
142	Alternating-current driven quantum-dot light-emitting diodes with high brightness. Nanoscale, 2019, 11, 5231-5239.	5.6	17
143	All-Perovskite Photodetector with Fast Response. Nanoscale Research Letters, 2019, 14, 291.	5.7	48
144	A Quantum Dot Polarizer for Liquid Crystal Displays With Much Improved Efficiency and Viewing Angle. IEEE Journal of Quantum Electronics, 2019, 55, 1-6.	1.9	4

#	Article	IF	Citations
145	High-performance all-solution-processed quantum dot near-infrared-to-visible upconversion devices for harvesting photogenerated electrons. Applied Physics Letters, 2019, 115, 221103.	3.3	11
146	Solution-Processed Double-Junction Quantum-Dot Light-Emitting Diodes with an EQE of Over 40%. ACS Applied Materials & Diodes with an EQE of Over 40%.	8.0	44
147	3D Photoluminescent Nanostructures Containing Quantum Dots Fabricated by Twoâ€Photon Polymerization: Influence of Quantum Dots on the Spatial Resolution of Laser Writing. Advanced Materials Technologies, 2019, 4, 1800522.	5.8	35
148	High Quantum Yield Colloidal Semiconducting Nanoplatelets and High Color Purity Nanoplatelet QLED. IEEE Nanotechnology Magazine, 2019, 18, 220-225.	2.0	15
149	Recent advances in quantum dot-based light-emitting devices: Challenges and possible solutions. Materials Today, 2019, 24, 69-93.	14.2	213
150	Two-dimensional liquid crystal polarization grating via linearly polarized light modified multi-beam polarization interferometry. Optics Express, 2019, 27, 13061.	3.4	7
151	Electrically switchable photonic crystals based on liquid-crystal-infiltrated TiO ₂ -inverse opals. Optics Express, 2019, 27, 15391.	3.4	8
152	Multiband enhancement of magnetic dipole emission with tapered hollow hyperbolic metamaterials. Optics Express, 2019, 27, 15565.	3.4	7
153	Identical emission enhancement for arbitrary-orientation magnetic dipole emitters in silicon hollow nanocavity. Optics Express, 2019, 27, 25931.	3.4	8
154	A spatio-temporal multiplexing multi-view display using a lenticular lens and a beam steering screen. Optics Communications, 2018, 420, 168-173.	2.1	8
155	Full color quantum dot lightâ€emitting diodes patterned by photolithography technology. Journal of the Society for Information Display, 2018, 26, 121-127.	2.1	33
156	High-efficiency all-inorganic full-colour quantum dot light-emitting diodes. Nano Energy, 2018, 46, 229-233.	16.0	52
157	Electrically Switchable, Hyperâ€Reflective Blue Phase Liquid Crystals Films. Advanced Optical Materials, 2018, 6, 1700891.	7. 3	33
158	Efficient Red/Green/Blue Tandem Quantum-Dot Light-Emitting Diodes with External Quantum Efficiency Exceeding 21%. ACS Nano, 2018, 12, 697-704.	14.6	234
159	Employing Polar Solvent Controlled Ionization in Precursors for Synthesis of Highâ€Quality Inorganic Perovskite Nanocrystals at Room Temperature. Advanced Functional Materials, 2018, 28, 1706000.	14.9	82
160	Optical haze of randomly arranged silver nanowire transparent conductive films with wide range of nanowire diameters. AIP Advances, 2018, 8, 035201.	1.3	10
161	High Photoinduced Ordering and Controllable Photostability of Hydrophilic Azobenzene Material Based on Relative Humidity. Langmuir, 2018, 34, 4465-4472.	3.5	13
162	Phonon mode transformation in size-evolved solution-processed inorganic lead halide perovskite. Nanoscale, 2018, 10, 9892-9898.	5.6	14

#	Article	IF	CITATIONS
163	Pâ€9.11: Synthesis and optical properties of CdSe _x S _{1â€x} nanomaterials with different morphologies. Digest of Technical Papers SID International Symposium, 2018, 49, 692-696.	0.3	0
164	Introducing Cations (Zn ²⁺ , Sn ²⁺ and Mg ²⁺) and Anions(Cl ^{â^'}) to Tune Mn Photoluminescence Intensity of Doped Perovskite Nanocrystals(CsPbCl ₃). ChemistrySelect, 2018, 3, 11986-11992.	1.5	7
165	P-9.4: High-brightness Micro-LED Matrix for Subfoveal Choroidal Neovascularization Applications. Digest of Technical Papers SID International Symposium, 2018, 49, 670-672.	0.3	0
166	Reconfigurable Chiral Metasurface Absorbers Based on Liquid Crystals. IEEE Photonics Journal, 2018, 10, 1-9.	2.0	21
167	17.5: Fabrication of CdSe/ZnS Quantum Dot Color Filters via Photolithography Process. Digest of Technical Papers SID International Symposium, 2018, 49, 195-195.	0.3	0
168	P-14.1: Highly Polarized Aligned Quantum Rods Fluorescent Film Based on Contact Ink-Jet Printing Method. Digest of Technical Papers SID International Symposium, 2018, 49, 755-755.	0.3	0
169	Formamidinium-Based Quasi-2D Perovskite Nanoplates With Dimensionally Tuned Optical Properties. IEEE Nanotechnology Magazine, 2018, 17, 1165-1170.	2.0	8
170	Electric Bias Induced Degradation in Organic-Inorganic Hybrid Perovskite Light-Emitting Diodes. Scientific Reports, 2018, 8, 15799.	3.3	26
171	High-performance dichroic dye-doped flexible cholesteric polymer film optical filter for laser protection application. Optics Express, 2018, 26, 23000.	3.4	8
172	Liquid-crystal-loaded chiral metasurfaces for reconfigurable multiband spin-selective light absorption. Optics Express, 2018, 26, 25305.	3.4	32
173	Bright and efficient light-emitting diodes based on perovskite quantum dots with formamidine-methylamine hybrid cations. Journal Physics D: Applied Physics, 2018, 51, 454003.	2.8	6
174	Alloyed multi-shell quantum dots with tunable dual emission. Journal of Materials Chemistry C, 2018, 6, 11280-11286.	5.5	7
175	73â€4: Tandem Red Quantumâ€Dot Lightâ€Emitting Diodes with External Quantum Efficiency over 34 %. Digest of Technical Papers SID International Symposium, 2018, 49, 977-980.	0.3	4
176	73â€3: <i>Distinguished Student Paper:</i> Full Color Quantum Dot Lightâ€Emitting Diodes Patterned by Photolithography Technology. Digest of Technical Papers SID International Symposium, 2018, 49, 973-976.	0.3	0
177	4â€4: High Stability Green Luminescent Microspheres based on Quantum Dot. Digest of Technical Papers SID International Symposium, 2018, 49, 32-35.	0.3	3
178	Less-Lead Control toward Highly Efficient Formamidinium-Based Perovskite Light-Emitting Diodes. ACS Applied Materials & Diodes. ACS ACS Applied Materials & Diodes. ACS	8.0	21
179	Photoalignment-induced two-dimensional liquid crystal polarization structure via multi-beam polarization interferometry. Optics Express, 2018, 26, 7683.	3.4	17
180	Addressable spatial light modulators for eye-tracking autostereoscopic three-dimensional display using a scanning laser. Applied Optics, 2018, 57, 4457.	1.8	17

#	Article	IF	Citations
181	11â€2: Methylammonium Iodide (MAI) Enhanced, Solution Processed Highâ€Performance Photodetector Based on Lead Sulfide Quantum Dots. Digest of Technical Papers SID International Symposium, 2018, 49, 108-111.	0.3	3
182	Enhancing the Performance of Quantum-Dot Light-Emitting Diodes by Postmetallization Annealing. ACS Applied Materials & Samp; Interfaces, 2018, 10, 23218-23224.	8.0	28
183	Synergistic effects in biphasic nanostructured electrocatalyst: Crystalline core versus amorphous shell. Nano Energy, 2017, 41, 788-797.	16.0	27
184	Investigation of p-type depletion doping for $InGaN/GaN$ -based light-emitting diodes. Applied Physics Letters, 2017, 110, .	3.3	15
185	Enhanced conductivity of transparent and flexible silver nanowire electrodes fabricated by a solution-processed method at room temperature. Thin Solid Films, 2017, 624, 54-60.	1.8	8
186	Plasmonic Perovskite Light-Emitting Diodes Based on the Ag–CsPbBr ₃ System. ACS Applied Materials & Interfaces, 2017, 9, 4926-4931.	8.0	91
187	Light Trapping in Inverted Organic Photovoltaics With Nanoimprinted ZnO Photonic Crystals. IEEE Journal of Photovoltaics, 2017, 7, 545-549.	2.5	18
188	Hybrid Perovskite Lightâ€Emitting Diodes Based on Perovskite Nanocrystals with Organic–Inorganic Mixed Cations. Advanced Materials, 2017, 29, 1606405.	21.0	235
189	Towards theoretical analysis of optoelectronic performance of uniform and random metallic nanowire layers. Thin Solid Films, 2017, 626, 140-144.	1.8	4
190	All solutionâ€processed white quantumâ€dot lightâ€emitting diodes with threeâ€unit tandem structure. Journal of the Society for Information Display, 2017, 25, 143-150.	2.1	28
191	High-performance piezoelectric nanogenerators composed of formamidinium lead halide perovskite nanoparticles and poly(vinylidene fluoride). Nano Energy, 2017, 37, 126-135.	16.0	164
192	Improving Interfacial Charge Recombination in Planar Heterojunction Perovskite Photovoltaics with Small Molecule as Electron Transport Layer. Advanced Energy Materials, 2017, 7, 1700522.	19.5	173
193	Bright and efficient light-emitting diodes based on MA/Cs double cation perovskite nanocrystals. Journal of Materials Chemistry C, 2017, 5, 6123-6128.	5.5	67
194	Thin film perovskite light-emitting diode based on CsPbBr 3 powders and interfacial engineering. Nano Energy, 2017, 37, 40-45.	16.0	107
195	Solution-processed inorganic copper(i) thiocyanate as a hole injection layer for high-performance quantum dot-based light-emitting diodes. RSC Advances, 2017, 7, 26322-26327.	3.6	27
196	20â€2: Mixedâ€Cation Perovskite Lightâ€Emitting Diodes with High Brightness and High Current Efficiency. Digest of Technical Papers SID International Symposium, 2017, 48, 276-279.	0.3	0
197	20â€3: A Greener Method to Synthesize Brâ€rich Inorganic Cesium Lead Bromine Perovskite Nanocrystals for High Brightness Lightâ€Emitting Diodes. Digest of Technical Papers SID International Symposium, 2017, 48, 280-283.	0.3	1
198	32â€3: Stability Enhancement of Light Emitting Diode Based on Quantum Dots through Atomic Layer Deposition. Digest of Technical Papers SID International Symposium, 2017, 48, 455-458.	0.3	2

#	Article	IF	CITATIONS
199	Pâ€120: Over 60 cd/A Efficient Vacuumâ€freeâ€processed Green Quantum Dot Lightâ€Emitting Diodes for Next Generation Displays. Digest of Technical Papers SID International Symposium, 2017, 48, 1708-1710.	0.3	0
200	Pâ€115: <i>Distinguished Student Paper</i> : All Solutionâ€Processed White Quantumâ€Dot Lightâ€Emitting Diodes with Threeâ€Unit Tandem Structure. Digest of Technical Papers SID International Symposium, 2017, 48, 1691-1694.	0.3	2
201	Heavy Metal Free Nanocrystals with Near Infrared Emission Applying in Luminescent Solar Concentrator. Solar Rrl, 2017, 1, 1700041.	5.8	48
202	Halide-Rich Synthesized Cesium Lead Bromide Perovskite Nanocrystals for Light-Emitting Diodes with Improved Performance. Chemistry of Materials, 2017, 29, 5168-5173.	6.7	253
203	Lightâ€Emitting Diodes: Over 100 cd A ^{â°1 Inverted Tandem Structure (Adv. Funct. Mater. 21/2017). Advanced Functional Materials, 2017, 27, .}	14.9	1
204	Pushing up the efficiency of planar perovskite solar cells to 18.2% with organic small molecules as the electron transport layer. Journal of Materials Chemistry A, 2017, 5, 7339-7344.	10.3	170
205	Over 100 cd A ^{â^'1} Efficient Quantum Dot Lightâ€Emitting Diodes with Inverted Tandem Structure. Advanced Functional Materials, 2017, 27, 1700610.	14.9	117
206	A compact and lightweight off-axis lightguide prism in near to eye display. Optics Communications, 2017, 393, 143-151.	2.1	4
207	Solution-processed vanadium oxide as an efficient hole injection layer for quantum-dot light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 817-823.	5.5	79
208	Flexible cholesteric films with super-reflectivity and high stability based on a multi-layer helical structure. Journal of Materials Chemistry C, 2017, 5, 10828-10833.	5.5	38
209	Organometal Trihalide Perovskites with Intriguing Ferroelectric and Piezoelectric Properties. Advanced Functional Materials, 2017, 27, 1702207.	14.9	37
210	Solar Cells: Improving Interfacial Charge Recombination in Planar Heterojunction Perovskite Photovoltaics with Small Molecule as Electron Transport Layer (Adv. Energy Mater. 18/2017). Advanced Energy Materials, 2017, 7, .	19.5	13
211	Rücktitelbild: Homogenous Alloys of Formamidinium Lead Triiodide and Cesium Tin Triiodide for Efficient Idealâ€Bandgap Perovskite Solar Cells (Angew. Chem. 41/2017). Angewandte Chemie, 2017, 129, 12966-12966.	2.0	O
212	Spectral tunability and enhancement of molecular radiative emission by metal-dielectric-metal stratified plasmonic nanostructure. Applied Physics Letters, 2017, 111, 093302.	3.3	2
213	Homogenous Alloys of Formamidinium Lead Triiodide and Cesium Tin Triiodide for Efficient Idealâ€Bandgap Perovskite Solar Cells. Angewandte Chemie - International Edition, 2017, 56, 12658-12662.	13.8	69
214	Homogenous Alloys of Formamidinium Lead Triiodide and Cesium Tin Triiodide for Efficient Idealâ€Bandgap Perovskite Solar Cells. Angewandte Chemie, 2017, 129, 12832-12836.	2.0	3
215	Synthesis of WO _{<i>n</i>} â€WX ₂ (<i>n</i> =2.7, 2.9; X=S, Se) Heterostructures for Highly Efficient Green Quantum Dot Lightâ€Emitting Diodes. Angewandte Chemie, 2017, 129, 10622-10626.	2.0	7
216	Synthesis of WO _{<i>n</i>} â€WX ₂ (<i>n</i> =2.7, 2.9; X=S, Se) Heterostructures for Highly Efficient Green Quantum Dot Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2017, 56, 10486-10490.	13.8	21

#	Article	IF	Citations
217	Highly Efficient and Stable Quantum Dot Light Emitting Diodes Optimized by Micro-Packaged Luminescent Microspheres. , 2017, , .		0
218	Iodide capped PbS/CdS core-shell quantum dots for efficient long-wavelength near-infrared light-emitting diodes. Scientific Reports, 2017, 7, 14741.	3.3	32
219	Low-threshold, single-mode, and linearly polarized lasing from all organic quasicrystal microcavity. Optics Express, 2017, 25, 21519.	3.4	7
220	Effect of silver nanowire length in a broad range on optical and electrical properties as a transparent conductive film. Optical Materials Express, 2017, 7, 1105.	3.0	26
221	Efficient Perovskite Light-Emitting Diodes based on Double Organic Cations. , 2017, , .		0
222	Subpixel area-based evaluation for crosstalk suppression in quasi-three-dimensional displays. Applied Optics, 2017, 56, 5450.	2.1	0
223	Directional view method for a time-sequential autostereoscopic display with full resolution. Applied Optics, 2016, 55, 7847.	2.1	14
224	Lasing properties from dye-doped holographic polymer dispersed liquid crystal confined in two-dimensional cylindrical geometry. Optical Materials Express, 2016, 6, 1367.	3.0	4
225	Towards understanding the difference of optoelectronic performance between micro- and nanoscale metallic layers. Optical Materials Express, 2016, 6, 2655.	3.0	4
226	Large-aperture transparent beam steering screen based on LCMPA. Applied Optics, 2016, 55, 7824.	2.1	4
227	19-5L: <i>Late-News Paper</i> : Perceptually Optimized Dual-layer Light Field 3D Display Using a Moiré-aware Compressive Factorization. Digest of Technical Papers SID International Symposium, 2016, 47, 235-238.	0.3	4
228	Allâ€Inorganic Perovskite Nanocrystals for Highâ€Efficiency Light Emitting Diodes: Dualâ€Phase CsPbBr ₃ â€CsPb ₂ Br ₅ Composites. Advanced Functional Materials, 2016, 26, 4595-4600.	14.9	425
229	Refractive index matched half-wave plate with a nematic liquid crystal for three-dimensional laser metrology applications. Opto-electronics Review, 2016, 24, .	2.4	4
230	Room temperature photoluminescence properties of ZnO nanorods grown by hydrothermal reaction. AlP Conference Proceedings, 2016, , .	0.4	12
231	Quality of experience measurement for light field 3D displays on multilayer LCDs. Journal of the Society for Information Display, 2016, 24, 726-740.	2.1	15
232	Improved performance of InGaN/GaN flip-chip light-emitting diodes through the use of robust Ni/Ag/TiW mirror contacts. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, 011209.	1.2	8
233	Multi-layer light field display characterisation. , 2016, , .		4
234	Azimuthally Polarized Radial Emission from a Quantum Dot Fiber Laser. ACS Photonics, 2016, 3, 2275-2279.	6.6	27

#	Article	IF	Citations
235	A charge inverter for III-nitride light-emitting diodes. Applied Physics Letters, 2016, 108, 133502.	3.3	17
236	On the hole accelerator for III-nitride light-emitting diodes. Applied Physics Letters, 2016, 108, .	3.3	22
237	ZnO disk-like structures and their application in dye sensitized solar cell. Solid State Communications, 2016, 240, 46-52.	1.9	7
238	Polarized emission from CsPbX ₃ perovskite quantum dots. Nanoscale, 2016, 8, 11565-11570.	5.6	125
239	Effect of oxidation on perpendicular magnetic behavior of MnBi thin films. Journal of Alloys and Compounds, 2016, 672, 59-63.	5. 5	16
240	$\label{eq:moirA} \begin{tabular}{l} Moir \begin{tabular}{l} \begin{tabular}{l} A@-reduction method for slanted-lenticular-based quasi-three-dimensional displays. Optics Communications, 2016, 381, 314-322. \end{tabular}$	2.1	10
241	Optical biosensor based on liquid crystal droplets for detection of cholic acid. Optics Communications, 2016, 381, 286-291.	2.1	40
242	Heterojunctionâ€Depleted Leadâ€Free Perovskite Solar Cells with Coarseâ€Grained Bâ€Ĵ³â€CsSnl ₃ Films. Advanced Energy Materials, 2016, 6, 1601130.	Thin 19.5	247
243	Preparation of Aluminum Nanomesh Thin Films from an Anodic Aluminum Oxide Template as Transparent Conductive Electrodes. Scientific Reports, 2016, 6, 20114.	3.3	25
244	Flexible Piezoelectric Nanocomposite Generators Based on Formamidinium Lead Halide Perovskite Nanoparticles. Advanced Functional Materials, 2016, 26, 7708-7716.	14.9	163
245	An Azaacene Derivative as Promising Electronâ€Transport Layer for Inverted Perovskite Solar Cells. Chemistry - an Asian Journal, 2016, 11, 2135-2138.	3.3	144
246	On the internal quantum efficiency for InGaN/GaN light-emitting diodes grown on insulating substrates. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 3078-3102.	1.8	17
247	Display development in the advanced displays laboratory at NTU. , 2016, , .		1
248	Efficient light-emitting diodes based on green perovskite nanocrystals with mixed-metal cations. Nano Energy, 2016, 30, 511-516.	16.0	76
249	Cascaded plasmon-plasmon coupling mediated energy transfer across stratified metal-dielectric nanostructures. Scientific Reports, 2016, 6, 34086.	3.3	3
250	41-3: <i>Invited Paper</i> : Luminescent Nanocrystals and Composites for High Quality Displays and Lighting. Digest of Technical Papers SID International Symposium, 2016, 47, 556-559.	0.3	7
251	63-2: <i>Distinguished Paper</i> : Large-scale Luminance Enhancement Film with Quantum Rods Aligned in Polymeric Nanofibers for High Efficiency Wide Color Gamut LED Display. Digest of Technical Papers SID International Symposium, 2016, 47, 854-857.	0.3	7
252	P-89: Polarization Fluorescence Property Observed in the CsPbX ₃ Perovskites Quantum Dots. Digest of Technical Papers SID International Symposium, 2016, 47, 1458-1461.	0.3	2

#	Article	IF	CITATIONS
253	An Optically Readable InGaN/GaN RRAM. IEEE Transactions on Electron Devices, 2016, 63, 2328-2333.	3.0	1
254	High-Efficiency Light-Emitting Diodes of Organometal Halide Perovskite Amorphous Nanoparticles. ACS Nano, 2016, 10, 6623-6630.	14.6	347
255	Nickel Oxide Nanosheets for Enhanced Photoelectrochemical Water Splitting by Hematite (αâ€Fe ₂ O ₃) Nanowire Arrays. Energy Technology, 2016, 4, 758-763.	3.8	12
256	Simultaneously enhancement of quantum efficiency and color purity by molecular design in star-shaped solution-processed blue emitters. Organic Electronics, 2016, 37, 14-23.	2.6	4
257	Color tunable electroluminescence and resistance switching from a ZnO-nanorod–TaO <i>_{<!-- sub--><!-- sa€"p-GaN heterojunction. Nanotechnology, 2016, 27, 115204.</td--><td>2.6</td><td>9</td>}</i>	2.6	9
258	Inverted Quantum-Dot Light-Emitting Diodes Fabricated by All-Solution Processing. ACS Applied Materials & Samp; Interfaces, 2016, 8, 5493-5498.	8.0	81
259	All-solution processed composite hole transport layer for quantum dot light emitting diode. Thin Solid Films, 2016, 603, 187-192.	1.8	39
260	Performance of Inverted Quantum Dot Light-Emitting Diodes Enhanced by Using Phosphorescent Molecules as Exciton Harvesters. Journal of Physical Chemistry C, 2016, 120, 4667-4672.	3.1	30
261	Enhanced photovoltaic properties of dye-sensitized solar cell based on ultrathin 2D TiO 2 nanostructures. Applied Surface Science, 2016, 368, 403-408.	6.1	25
262	Demonstration of the portability of porous microstructure architecture to indium-doped ZnO electron selective layer for enhanced light scattering in inverted organic photovoltaics. Journal of Sol-Gel Science and Technology, 2016, 78, 613-620.	2.4	7
263	Improved quantum dot light-emitting diodes with a cathode interfacial layer. Organic Electronics, 2016, 32, 89-93.	2.6	31
264	Flat-Concave Dual-Mirror Configuration Design for Upright Projection-Type Ultrashort Throw Ratio Projectors. Journal of Display Technology, 2016, 12, 8-16.	1.2	9
265	Quantum Dots Fiber Laser with Azimuthally Polarized Radial Emission. , 2016, , .		0
266	Glasses-free light field 3D display. , 2015, , .		2
267	Head tracked multiview 3D display. , 2015, , .		0
268	Two-layer optimized light field display using depth initialization. , 2015, , .		4
269	Viewable floating displays using simple secondary optical elements. , 2015, , .		0
270	A real-time head tracker for autostereoscopic display. , 2015, , .		0

#	Article	IF	Citations
271	Transparent conductive nanoporous aluminium mesh prepared by electrochemical anodizing. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2174-2178.	1.8	11
272	Electroluminescence Efficiency Enhancement in Quantum Dot Lightâ€Emitting Diodes by Embedding a Silver Nanoisland Layer. Advanced Optical Materials, 2015, 3, 1439-1445.	7.3	59
273	35.2: Design of Hybrid Refractive/Reflective Projection Optics for Family Theatre. Digest of Technical Papers SID International Symposium, 2015, 46, 511-513.	0.3	2
274	Pâ€₹9: Maximizing the 2D Viewing Field of a Computational Twoâ€layer Light Field 3D Display. Digest of Technical Papers SID International Symposium, 2015, 46, 1440-1443.	0.3	5
275	Tandem InGaN/GaN light-emitting diodes. , 2015, , .		0
276	Comparative analysis of opto-electronic performance of aluminium and silver nano-porous and nano-wired layers. Optics Express, 2015, 23, 26794.	3.4	10
277	Efficient three-color white organic light-emitting diodes with a spaced multilayer emitting structure. Applied Physics Letters, 2015, 106, .	3.3	26
278	Degradation analysis of Alq3-based OLED from noise fluctuations with different driving modes. Chemical Physics Letters, 2015, 623, 68-71.	2.6	7
279	Soluble bipolar star-shaped molecule as highly stable and efficient blue light emitter. RSC Advances, 2015, 5, 15399-15406.	3.6	12
280	Graphene-based transparent conductive electrodes for GaN-based light emitting diodes: Challenges and countermeasures. Nano Energy, 2015, 12, 419-436.	16.0	86
281	Synthesis, Physical Properties, and Light-Emitting Diode Performance of Phenazine-Based Derivatives with Three, Five, and Nine Fused Six-Membered Rings. Journal of Organic Chemistry, 2015, 80, 3030-3035.	3.2	122
282	A quinoxaline based N-heteroacene interfacial layer for efficient hole-injection in quantum dot light-emitting diodes. Nanoscale, 2015, 7, 11531-11535.	5.6	22
283	Light absorption mechanism in organic solar cells with hexagonal lattice nanohole aluminum transparent electrodes. Journal of Optics (United Kingdom), 2015, 17, 085901.	2.2	6
284	Colloidal quantum-dot LEDs with a solution-processed copper oxide (CuO) hole injection layer. Organic Electronics, 2015, 26, 245-250.	2.6	53
285	He plasma treatment of transparent conductive ZnO thin films. Applied Surface Science, 2015, 355, 702-705.	6.1	6
286	Simplex based method for compensation films optimization in TN-LCD. Optik, 2015, 126, 3927-3930.	2.9	2
287	Synthesis, structure, physical properties and OLED application of pyrazine–triphenylamine fused conjugated compounds. RSC Advances, 2015, 5, 63080-63086.	3.6	33
288	Carbon Nanotube Driver Circuit for 6 $\tilde{A}-$ 6 Organic Light Emitting Diode Display. Scientific Reports, 2015, 5, 11755.	3.3	38

#	Article	IF	Citations
289	Influence of gold-silica nanoparticles on the performance of small-molecule bulk heterojunction solar cells. Organic Electronics, 2015, 22, 20-28.	2.6	20
290	Highly stable and high power efficiency tandem organic light-emitting diodes with transition metal oxide-based charge generation layers. Organic Electronics, 2015, 23, 70-75.	2.6	30
291	Observation of polarized gain from aligned colloidal nanorods. Nanoscale, 2015, 7, 6481-6486.	5.6	24
292	Ultra-thin broadband nanostructured insulator-metal-insulator-metal plasmonic light absorber. Optics Express, 2015, 23, 9753.	3.4	22
293	Nonradiative recombination â€" critical in choosing quantum well number for InGaN/GaN light-emitting diodes. Optics Express, 2015, 23, A34.	3.4	25
294	Optoelectronic performance optimization for transparent conductive layers based on randomly arranged silver nanorods. Optics Express, 2015, 23, 6209.	3.4	24
295	Theoretical comparison of optical and electronic properties of uniformly and randomly arranged nano-porous ultra-thin layers. Optics Express, 2015, 23, 17860.	3.4	11
296	A hole modulator for InGaN/GaN light-emitting diodes. Applied Physics Letters, 2015, 106, .	3.3	19
297	Two-layer ZnO nanowire arrays: Fabrication and its photovoltaic property sensitized by CdSe and CdS quantum dots. Thin Solid Films, 2015, 590, 266-269.	1.8	0
298	Nonradiative energy transfer in a layered metal-dielectric nanostructure mediated by surface plasmons. Proceedings of SPIE, $2015, , .$	0.8	1
299	Two-Color Single Hybrid Plasmonic Nanoemitters with Real Time Switchable Dominant Emission Wavelength. Nano Letters, 2015, 15, 7458-7466.	9.1	35
300	Efficient Pt(<scp>ii</scp>) emitters assembled from neutral bipyridine and dianionic bipyrazolate: designs, photophysical characterization and the fabrication of non-doped OLEDs. Journal of Materials Chemistry C, 2015, 3, 10837-10847.	5.5	31
301	Enhance photoelectrochemical hydrogen-generation activity and stability of TiO2 nanorod arrays sensitized by PbS and CdS quantum dots under UV-visible light. Nanoscale Research Letters, 2015, 10, 418.	5.7	24
302	Double [4 + 2] Cycloaddition Reaction To Approach a Large Acene with Even-Number Linearly Fused Benzene Rings: 6,9,16,19-Tetraphenyl-1.20,4.5,10.11,14.15-Tetrabenzooctatwistacene. Journal of Organic Chemistry, 2015, 80, 109-113.	3.2	86
303	Synthesis, Characterization, Physical Properties, and OLED Application of Single BN-Fused Perylene Diimide. Journal of Organic Chemistry, 2015, 80, 196-203.	3.2	227
304	Ion-dependent electroluminescence from trivalent rare-earth doped n-ZnO/p-Si heterostructured light-emitting diodes. Materials Science in Semiconductor Processing, 2015, 30, 263-266.	4.0	31
305	Synthesis, physical properties and OLED performance of azatetracenes. Dyes and Pigments, 2015, 112, 93-98.	3.7	38
306	Improved photoelectrochemical property of a nanocomposite NiO/CdS@ZnO photoanode for water splitting. Solar Energy Materials and Solar Cells, 2015, 132, 40-46.	6.2	42

#	Article	IF	Citations
307	Nonradiative recombination â€" critical in choosing quantum well number for InGaN/GaN light-emitting diodes. Optics Express, 2015, 23, A31.	3.4	O
308	Microstructured porous ZnO thin film for increased light scattering and improved efficiency in inverted organic photovoltaics. Optics Express, 2014, 22, A1412.	3.4	13
309	Field curvature correction method for ultrashort throw ratio projection optics design using an odd polynomial mirror surface. Applied Optics, 2014, 53, E69.	1.8	32
310	Printed all-solid flexible microsupercapacitors: towards the general route for high energy storage devices. Nanotechnology, 2014, 25, 094010.	2.6	100
311	Plasmon-based photopolymerization: near-field probing, advanced photonic nanostructures and nanophotochemistry. Journal of Optics (United Kingdom), 2014, 16, 114002.	2.2	21
312	Development of high-k hafnium–aluminum oxide dielectric films using sol–gel process. Journal of Materials Research, 2014, 29, 1620-1625.	2.6	15
313	Dynamic Control of the Airy Plasmons in a Graphene Platform. IEEE Photonics Journal, 2014, 6, 1-7.	2.0	13
314	Low thermal-mass LEDs: size effect and limits. Optics Express, 2014, 22, 32200.	3.4	16
315	Organic light-emitting diodes with a spacer enhanced exciplex emission. Applied Physics Letters, 2014, 104, .	3.3	15
316	Using Pre-TMIn Treatment to Improve the Optical Properties of Green Light Emitting Diodes. International Journal of Photoenergy, 2014, 2014, 1-6.	2.5	2
317	Enhancement of power conversion efficiency in solution processed organic photovoltaic devices by embedded plasmonic gold-silica core-shell nanorods. , 2014, , .		0
318	Anisotropic stimulated emission from aligned CdSe/CdS dot-in-rods., 2014,,.		0
319	Towards the reality of 3D imaging and display. , 2014, , .		5
320	Temperature effect on lasing from Penrose photonic quasicrystal. Optical Materials Express, 2014, 4, 1172.	3.0	7
321	On the effect of N-GaN/P-GaN/N-GaN/P-GaN/N-GaN built-in junctions in the n-GaN layer for InGaN/GaN light-emitting diodes. Optics Express, 2014, 22, 809.	3.4	6
322	On the mechanisms of InGaN electron cooler in InGaN/GaN light-emitting diodes. Optics Express, 2014, 22, A779.	3.4	29
323	Improving hole injection efficiency by manipulating the hole transport mechanism through p-type electron blocking layer engineering. Optics Letters, 2014, 39, 2483.	3.3	38
324	Polarization self-screening in [0001] oriented InGaN/GaN light-emitting diodes for improving the electron injection efficiency. Applied Physics Letters, 2014, 104, .	3.3	31

#	Article	IF	Citations
325	An improved polymer solar cell incorporating single-wall carbon nanotubes. Journal of Modern Optics, 2014, 61, 1761-1766.	1.3	3
326	Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers. Applied Physics Letters, 2014, 104 , .	3.3	63
327	Effect of shell thickness on small-molecule solar cells enhanced by dual plasmonic gold-silica nanorods. Applied Physics Letters, 2014, 105, .	3.3	15
328	A hole accelerator for InGaN/GaN light-emitting diodes. Applied Physics Letters, 2014, 105, .	3.3	33
329	12.3: Coreâ€Shell Quantum Dots Synthesized by Using Triâ€nâ€Octylphosphineâ€Assisted Method for Highâ€Colorâ€Saturation Displays. Digest of Technical Papers SID International Symposium, 2014, 45, 138-141.	0.3	6
330	Enhanced electroluminescence of allâ€inorganic colloidal quantum dot lightâ€emitting diode by optimising the MoO 3 intermediate layer. Micro and Nano Letters, 2014, 9, 421-424.	1.3	6
331	Comparative study of field-dependent carrier dynamics and emission kinetics of InGaN/GaN light-emitting diodes grown on ($112\hat{A}^-2$) semipolar versus (0001) polar planes. Applied Physics Letters, 2014, 104, .	3.3	29
332	Pâ€140: Hybrid Analogâ€Digital Driving Method for High Definition AMOLED. Digest of Technical Papers SID International Symposium, 2014, 45, 1514-1517.	0.3	2
333	Fractal diabolo antenna for enhancing and confining the optical magnetic field. AIP Advances, 2014, 4, .	1.3	12
334	Low-cost, large-scale, ordered ZnO nanopillar arrays for light extraction efficiency enhancement in quantum dot light-emitting diodes. , 2014 , , .		1
335	A ZnTaOx Based Resistive Switching Random Access Memory. ECS Solid State Letters, 2014, 3, Q36-Q39.	1.4	7
336	Transition metal oxides on organic semiconductors. Organic Electronics, 2014, 15, 871-877.	2.6	30
337	Optical properties of hydrated tungsten trioxide 3WO3·H2O. Thin Solid Films, 2014, 571, 644-647.	1.8	7
338	Stable, Efficient, and All-Solution-Processed Quantum Dot Light-Emitting Diodes with Double-Sided Metal Oxide Nanoparticle Charge Transport Layers. ACS Applied Materials & Samp; Interfaces, 2014, 6, 495-499.	8.0	66
339	Shape-dependent localized surface plasmon enhanced photocatalytic effect of ZnO nanorods decorated with Ag. International Journal of Hydrogen Energy, 2014, 39, 8238-8245.	7.1	46
340	Surfaceâ€morphology evolution of ZnO nanostructures grown by hydrothermal method. Crystal Research and Technology, 2014, 49, 220-226.	1.3	10
341	Solution Processed Tungsten Oxide Interfacial Layer for Efficient Holeâ€Injection in Quantum Dot Lightâ€Emitting Diodes. Small, 2014, 10, 247-252.	10.0	96
342	Simultaneous enhancement of electron overflow reduction and hole injection promotion by tailoring the last quantum barrier in InGaN/GaN light-emitting diodes. Applied Physics Letters, 2014, 104, .	3.3	14

#	Article	IF	Citations
343	Scattering or Photoluminescence? Major Mechanism Exploration on Performance Enhancement in P3HTâ€Based Polymer Solar Cells with NaYF ₄ :2% Er ³⁺ , 18% Yb ³⁺ Upconverting Nanocrystals. Advanced Optical Materials, 2014, 2, 442-449.	7.3	16
344	Singlet and Triplet Exciton Harvesting in the Thin Films of Colloidal Quantum Dots Interfacing Phosphorescent Small Organic Molecules. Journal of Physical Chemistry C, 2014, 118, 25964-25969.	3.1	13
345	A novel approach to investigate bulk carrier lifetime using low frequency fluctuation noise measurement. Semiconductor Science and Technology, 2014, 29, 125005.	2.0	1
346	Light-Emitting Diodes: Solution Processed Tungsten Oxide Interfacial Layer for Efficient Hole-Injection in Quantum Dot Light-Emitting Diodes (Small 2/2014). Small, 2014, 10, 246-246.	10.0	4
347	InGaN/GaN multiple-quantum-well light-emitting diodes with a grading InN composition suppressing the Auger recombination. Applied Physics Letters, 2014, 105, .	3.3	29
348	A high-performance UV/visible photodetector of Cu ₂ O/ZnO hybrid nanofilms on SWNT-based flexible conducting substrates. Journal of Materials Chemistry C, 2014, 2, 9536-9542.	5.5	66
349	Advantages of the Blue InGaN/GaN Light-Emitting Diodes with an AlGaN/GaN/AlGaN Quantum Well Structured Electron Blocking Layer. ACS Photonics, 2014, 1, 377-381.	6.6	35
350	Colloidal Quantum Dot Light-Emitting Diodes Employing Phosphorescent Small Organic Molecules as Efficient Exciton Harvesters. Journal of Physical Chemistry Letters, 2014, 5, 2802-2807.	4.6	41
351	Light Extraction Efficiency Enhancement of Colloidal Quantum Dot Lightâ€Emitting Diodes Using Largeâ€6cale Nanopillar Arrays. Advanced Functional Materials, 2014, 24, 5977-5984.	14.9	68
352	Study of exciton transfer in dense quantum dot nanocomposites. Nanoscale, 2014, 6, 11387-11394.	5.6	24
353	Multi-walled Carbon Nanotubes Modified ZnO Nanorods: a Photoanode for Photoelectrochemical Cell. Electrochimica Acta, 2014, 143, 188-195.	5.2	23
354	Highly Flexible, Electrically Driven, Top-Emitting, Quantum Dot Light-Emitting Stickers. ACS Nano, 2014, 8, 8224-8231.	14.6	135
355	Advanced three-component ZnO/Ag/CdS nanocomposite photoanode for photocatalytic water splitting. Journal of Power Sources, 2014, 269, 466-472.	7.8	82
356	Effects of the thickness of NiO hole transport layer on the performance of all-inorganic quantum dot light emitting diode. Thin Solid Films, 2014, 567, 72-76.	1.8	15
357	Enhanced efficiency of solution-processed small-molecule solar cells upon incorporation of gold nanospheres and nanorods into organic layers. Chemical Communications, 2014, 50, 4451-4454.	4.1	25
358	High-performance photoresponse of carbon-doped ZnO/reduced graphene oxide hybrid nanocomposites under UV and visible illumination. RSC Advances, 2014, 4, 5136.	3.6	24
359	A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications. Nature Communications, 2014, 5, 4921.	12.8	328
360	On the origin of the electron blocking effect by an $\langle i \rangle n \langle i \rangle$ -type AlGaN electron blocking layer. Applied Physics Letters, 2014, 104, .	3.3	28

#	Article	IF	Citations
361	Substituent effect of fulleropyrrolidine acceptors on bilayer organic solar cells. Synthetic Metals, 2014, 187, 118-122.	3.9	3
362	Influence of Pre-trimethylindium flow treatment on blue light emitting diode. Thin Solid Films, 2014, 551, 142-145.	1.8	1
363	Excitonics of semiconductor quantum dots and wires for lighting and displays. Laser and Photonics Reviews, 2014, 8, 73-93.	8.7	67
364	Improved Photovoltaic Performance of Multiple Carbon-Doped ZnO Nanostructures Under UV and Visible Light Irradiation. Journal of Nanoscience and Nanotechnology, 2014, 14, 7066-7071.	0.9	3
365	All Solution-processed Stable White Quantum Dot Light-emitting Diodes with Hybrid ZnO@TiO2 as Blue Emitters. Scientific Reports, 2014, 4, 4085.	3.3	61
366	A plasmonically enhanced charge generation layer for tandem organic light emitting device. Applied Physics Letters, 2013, 102, .	3.3	26
367	Influence of <i>n</i> -type <i>versus p</i> -type AlGaN electron-blocking layer on InGaN/GaN multiple quantum wells light-emitting diodes. Applied Physics Letters, 2013, 103, .	3.3	23
368	Quantum Dot Light-Emitting Diode with Quantum Dots Inside the Hole Transporting Layers. ACS Applied Materials & Dots Instances, 2013, 5, 6535-6540.	8.0	42
369	Observation of the Ambient Effect in BTI Characteristics of Back-Gated Single Layer Graphene Field Effect Transistors. IEEE Transactions on Electron Devices, 2013, 60, 2682-2686.	3.0	14
370	Polydopamine-assisted decoration of ZnO nanorods with Ag nanoparticles: an improved photoelectrochemical anode. Journal of Materials Chemistry A, 2013, 1, 5045-5052.	10.3	104
371	Near resonant and nonresonant third-order optical nonlinearities of colloidal InP/ZnS quantum dots. Applied Physics Letters, 2013, 102, .	3.3	48
372	NiO as hole transport layers for all-inorganic quantum dot LEDs. Proceedings of SPIE, 2013, , .	0.8	1
373	p-doping-free InGaN/GaN light-emitting diode driven by three-dimensional hole gas. Applied Physics Letters, 2013, 103, .	3.3	27
374	Nanocrystal LEDs with enhanced external quantum efficiency enabled by the use of phosphorescent molecules. , 2013, , .		0
375	Effects of growth temperature on crystal structure, electrical, and photoluminescence of ZnO thin films. , 2013, , .		0
376	The effect of intrinsic defects on resistive switching based on p-n heterojunction. , 2013, , .		0
377	AC-driven, color- and brightness-tunable organic light-emitting diodes constructed from an electron only device. Organic Electronics, 2013, 14, 3195-3200.	2.6	36
378	A plasmonically enhanced polymer solar cell with gold–silica core–shell nanorods. Organic Electronics, 2013, 14, 2360-2368.	2.6	58

#	Article	IF	Citations
379	Onion-like carbon matrix supported Co3O4 nanocomposites: a highly reversible anode material for lithium ion batteries with excellent cycling stability. Journal of Materials Chemistry A, 2013, 1, 5212.	10.3	77
380	Modified two prism SPR sensor configurations to improve the sensitivity of measurement. Sensors and Actuators A: Physical, 2013, 191, 73-77.	4.1	14
381	Facile Synthesis of Luminescent AglnS ₂ –ZnS Solid Solution Nanorods. Small, 2013, 9, 2689-2695.	10.0	32
382	Effects of Ag doping on the ZnO nanorods inorganic/organic heterostructure LED. , 2013, , .		1
383	A Versatile Lightâ€Switchable Nanorod Memory: Wurtzite ZnO on Perovskite SrTiO ₃ . Advanced Functional Materials, 2013, 23, 4977-4984.	14.9	147
384	A Study on Graphene—Metal Contact. Crystals, 2013, 3, 257-274.	2.2	61
385	InGaN/GaN light-emitting diode with a polarization tunnel junction. Applied Physics Letters, 2013, 102, .	3.3	89
386	On the Effect of Step-Doped Quantum Barriers in InGaN/GaN Light Emitting Diodes. Journal of Display Technology, 2013, 9, 226-233.	1.2	47
387	Silver nanoparticle facilitated charge generation in tandem organic light-emitting devices. Applied Physics Letters, 2013, 102, .	3.3	7
388	Interface Stability of Polymer and Small-Molecule Organic Photovoltaics. Green Energy and Technology, 2013, , 139-176.	0.6	0
389	Oxide thin film transistors with ink-jet printed In-Ga-Zn oxide channel layer and ITO/IZO source/drain contacts. , 2013 , , .		3
390	Electrospinning-Derived "Hairy Seaweed―and Its Photoelectrochemical Properties. Journal of Physical Chemistry C, 2013, 117, 10106-10113.	3.1	13
391	Synthesis and Nonvolatile Memory Behaviors of Dioxatetraazapentacene Derivatives. ACS Applied Materials & Samp; Interfaces, 2013, 5, 6458-6462.	8.0	121
392	Split ring aperture for optical magnetic field enhancement by radially polarized beam. Optics Express, 2013, 21, 6845.	3.4	15
393	PN-type quantum barrier for InGaN/GaN light emitting diodes. Optics Express, 2013, 21, 15676.	3.4	18
394	Improved InGaN/GaN light-emitting diodes with a p-GaN/n-GaN/p-GaN/n-GaN/p-GaN current-spreading layer: errata. Optics Express, 2013, 21, 17670.	3.4	3
395	Dislocation density dependent electroabsorption in epitaxial lateral overgrown InGaN/GaN quantum structures. Optics Express, 2013, 21, 1128.	3.4	1
396	Improved InGaN/GaN light-emitting diodes with a p-GaN/n-GaN/p-GaN/n-GaN/p-GaN current-spreading layer. Optics Express, 2013, 21, 4958.	3.4	47

#	Article	IF	CITATIONS
397	Room-temperature larger-scale highly ordered nanorod imprints of ZnO film. Optics Express, 2013, 21, 26846.	3.4	5
398	Polarization-independent electrically tunable/switchable Airy beam based on polymer-stabilized blue phase liquid crystal. Optics Express, 2013, 21, 31318.	3.4	16
399	Enhanced hole transport in InGaN/GaN multiple quantum well light-emitting diodes with a p-type doped quantum barrier. Optics Letters, 2013, 38, 202.	3.3	34
400	A hybrid CMOS inverter made of ink-jet printed n-channel inorganic and p-channel organic thin film transistors. Proceedings of SPIE, 2013, , .	0.8	3
401	Optimizing the multiple quantum well thickness of an InGaN blue light emitting diode. Proceedings of SPIE, 2013, , .	0.8	0
402	Sunflower photonic quasicrystals. Proceedings of SPIE, 2013, , .	0.8	1
403	Influence of the metallic electrodes on the contact resistance of the ink-jet printed In-Ga-Zn oxide TFTs. , $2013, \ldots$		1
404	A Self-Rectifying Unipolar HfOx Based RRAM Using Doped Germanium Bottom Electrode. ECS Solid State Letters, 2013, 2, Q35-Q38.	1.4	20
405	An efficient non-Lambertian organic light-emitting diode using imprinted submicron-size zinc oxide pillar arrays. Applied Physics Letters, 2013, 102, .	3.3	18
406	Improved hole distribution in InGaN/GaN light-emitting diodes with graded thickness quantum barriers. Applied Physics Letters, 2013, 102, .	3.3	41
407	Highly flexible, full-color, top-emitting quantum dot light-emitting diode tapes. , 2013, , .		1
408	Ink-jet printed In-Ga-Zn oxide nonvolatile TFT memory utilizing silicon nanocrystals embedded in SiO <inf>2</inf> gate dielectric. , 2013, , .		1
409	The Effect of Intrinsic Defects on Resistive Switching Based on p–n Heterojunction. Nanoscience and Nanotechnology Letters, 2013, 5, 868-871.	0.4	2
410	Excitonically driven quantum dot light-emitting diodes: exLEDs. , 2013, , .		0
411	Graded-host phosphorescent light-emitting diodes with high efficiency and reduced roll-off. AIP Advances, 2012, 2, 012192.	1.3	15
412	Characteristics of a Single-Layer Graphene Field Effect Transistor with UV/Ozone Treatment. ECS Solid State Letters, 2012, 2, M1-M4.	1.4	9
413	Fractal complementary bowtie aperture for confining and enhancing optical magnetic field., 2012,,.		1
414	Azo-dye-doped absorbing photonic crystals with purely imaginary refractive index contrast and all-optically switchable diffraction properties. Optical Materials Express, 2012, 2, 55.	3.0	9

#	Article	IF	CITATIONS
415	Spatial angle dependent lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals. Optics Express, 2012, 20, 9058.	3.4	6
416	High-quality InP/ZnS nanocrystals with high photometric performance and their application to white quantum dot light-emitting diodes. , 2012, , .		1
417	On the origin of the redshift in the emission wavelength of InGaN/GaN blue light emitting diodes grown with a higher temperature interlayer. Applied Physics Letters, 2012, 100, .	3.3	33
418	Tunable photovoltaic effect and solar cell performance of self-doped perovskite SrTiO3. AIP Advances, 2012, 2, .	1.3	28
419	Hydrothermally Grown Nanostructured Tungsten Trioxide (hydrate) Films and their Photocatalytic Properties. Materials Research Society Symposia Proceedings, 2012, 1406, .	0.1	1
420	Advances in the LED Materials and Architectures for Energy-Saving Solid-State Lighting Toward "Lighting Revolution― IEEE Photonics Journal, 2012, 4, 613-619.	2.0	145
421	The focusing property of the spiral Fibonacci zone plate. Proceedings of SPIE, 2012, , .	0.8	11
422	A Complementary Electrochromic Device with Highly Improved Performance Based on Brick-Like Hydrated Tungsten Trioxide Film. Journal of Nanoscience and Nanotechnology, 2012, 12, 3838-3847.	0.9	4
423	Nanoimprinted ultrafine line and space nanogratings for liquid crystal alignment. Nanotechnology, 2012, 23, 465302.	2.6	14
424	Synthesis and Properties of a Diazopentacene Analogue. Asian Journal of Organic Chemistry, 2012, 1, 346-351.	2.7	29
425	Spin-polarized Wide Electron Slabs in Functionally Graded Polar Oxide Heterostructures. Scientific Reports, 2012, 2, 533.	3.3	16
426	Efficient synthesis of plate-like crystalline hydrated tungsten trioxide thin films with highly improved electrochromic performance. Chemical Communications, 2012, 48, 365-367.	4.1	63
427	Strongly linearly polarized low threshold lasing of all organic photonic quasicrystals. Scientific Reports, 2012, 2, 627.	3.3	28
428	Blue organic light-emitting diodes based on pyrazoline phenyl derivative. Synthetic Metals, 2012, 162, 352-355.	3.9	30
429	\$V_{m th}\$ Shift in Single-Layer Graphene Field-Effect Transistors and Its Correlation With Raman Inspection. IEEE Transactions on Device and Materials Reliability, 2012, 12, 478-481.	2.0	13
430	Enhanced photoelectrochemical water-splitting effect with a bent ZnO nanorod photoanode decorated with Ag nanoparticles. Nanotechnology, 2012, 23, 235401.	2.6	146
431	Positive Bias-Induced \$V_{m th}\$ Instability in Graphene Field Effect Transistors. IEEE Electron Device Letters, 2012, 33, 339-341.	3.9	15
432	Resistive switching in a GaO _x -NiO _x p-n heterojunction. Applied Physics Letters, 2012, 101, 143110.	3.3	26

#	Article	IF	CITATIONS
433	A bright cadmium-free, hybrid organic/quantum dot white light-emitting diode. Applied Physics Letters, 2012, 101, .	3.3	64
434	A two-dimensional nanopatterned thin metallic transparent conductor with high transparency from the ultraviolet to the infrared. Applied Physics Letters, 2012, 101, 181112.	3.3	27
435	On the triplet distribution and its effect on an improved phosphorescent organic light-emitting diode. Applied Physics Letters, 2012, 101, 093301.	3.3	16
436	Dye-sensitized solar cell with a pair of carbon-based electrodes. Journal Physics D: Applied Physics, 2012, 45, 165103.	2.8	47
437	Enhanced photoelectrochemical performance of bridged ZnO nanorod arrays grown on V-grooved structure. Nanotechnology, 2012, 23, 365704.	2.6	6
438	Visible-light photoresponse in a hollow microtube–nanowire structure made of carbon-doped ZnO. CrystEngComm, 2012, 14, 2886.	2.6	23
439	Full Visible Range Covering InP/ZnS Nanocrystals with High Photometric Performance and Their Application to White Quantum Dot Lightâ€Emitting Diodes. Advanced Materials, 2012, 24, 4180-4185.	21.0	283
440	Nitrogenâ€Doped Carbon Nanotubeâ€Based Bilayer Thin Film as Transparent Counter Electrode for Dyeâ€Sensitized Solar Cells (DSSCs). Chemistry - an Asian Journal, 2012, 7, 541-545.	3.3	44
441	Synthesis, Structure, and Physical Properties of 5,7,14,16â€Tetraphenylâ€8:9,12:13â€bisbenzoâ€hexatwistacene. Chemistry - an Asian Journal, 2012, 7, 561-564.	' 3 . 3	112
442	Physicochemical properties and oral bioavailability of ursolic acid nanoparticles using supercritical anti-solvent (SAS) process. Food Chemistry, 2012, 132, 319-325.	8.2	60
443	Electrochromic properties of nanostructured tungsten trioxide (hydrate) films and their applications in a complementary electrochromic device. Electrochimica Acta, 2012, 63, 153-160.	5.2	98
444	UV-blocking ZnO nanostructure anti-reflective coatings. Optics Communications, 2012, 285, 3238-3241.	2.1	14
445	A fast-switching light-writable and electric-erasable negative photoelectrochromic cell based on Prussian blue films. Solar Energy Materials and Solar Cells, 2012, 98, 154-160.	6.2	31
446	Green electroluminescence from an n-ZnO: Er/p-Si heterostructured light-emitting diode. Physica B: Condensed Matter, 2012, 407, 2721-2724.	2.7	38
447	Near-white emitting QD-LED based on hydrophilic CdS nanocrystals. Journal of Luminescence, 2012, 132, 467-473.	3.1	93
448	Various Tunable Photonic Crystal/ Quasi- Photonic Crystal Structures Fabricated by Reconfigurable Interference System., 2012,,.		0
449	ZnO Nano-arrays on High Power Blue LED Chip for Enhanced Light Extraction Efficiency. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2012, 27, 716-720.	1.3	O
450	A novel parallel configuration of dye-sensitized solar cells with double-sided anodic nanotube arrays. Energy and Environmental Science, 2011, 4, 2240.	30.8	42

#	Article	IF	Citations
451	Tailoring insoluble nanobelts into soluble anti-UV nanopotpourris. Nanoscale, 2011, 3, 4742.	5.6	9
452	Bifunctional highly fluorescent hollow porous microspheres made of BaMoO4 : Pr3+ nanocrystals via a template-free synthesis. Journal of Materials Chemistry, 2011, 21, 9009.	6.7	24
453	A High-Yield \frac{HfO}_{x} -Based Unipolar Resistive RAM Employing Ni Electrode Compatible With Si-Diode Selector for Crossbar Integration. IEEE Electron Device Letters, 2011, 32, 396-398.	3.9	52
454	Buffer-Layer-Assisted Epitaxial Growth of Perfectly Aligned Oxide Nanorod Arrays in Solution. Crystal Growth and Design, 2011, 11, 4885-4891.	3.0	17
455	Ni Electrode Unipolar Resistive RAM Performance Enhancement by $\frac{AIO}_{y}\$ Incorporation Into $\frac{HfO}_{x}\$ Switching Dielectrics. IEEE Electron Device Letters, 2011, 32, 1290-1292.	3.9	17
456	Exciton-polariton microphotoluminescence and lasing from ZnO whispering-gallery mode microcavities. Applied Physics Letters, 2011, 98, .	3.3	32
457	Spectral conversion for solar cell efficiency enhancement using YVO4:Bi3+,Ln3+ (Ln = Dy, Er, Ho, Eu, Sm,) Ti ETQq1 2:5	1 0.78431 96
458	White light emission from CdTe quantum dots decorated n-ZnO nanorods/p-GaN light-emitting diodes. Applied Physics Letters, 2011, 99, .	3.3	28
459	Design guideline of high efficiency crystalline Si thin film solar cell with nanohole array textured surface. Journal of Applied Physics, 2011, 109, .	2.5	47
460	Dye-sensitized solar cell with a titanium-oxide-modified carbon nanotube transparent electrode. Applied Physics Letters, 2011, 99, .	3.3	71
461	Europium (II)-Doped Microporous Zeolite Derivatives with Enhanced Photoluminescence by Isolating Active Luminescence Centers. ACS Applied Materials & Early; Interfaces, 2011, 3, 4431-4436.	8.0	43
462	Holographic fabrication of azo-dye-functionalized photonic structures. Journal of Materials Chemistry, 2011, 21, 2982.	6.7	21
463	Polarization-dependent circular Dammann grating made of azo-dye-doped liquid crystals. Applied Optics, 2011, 50, 2316.	2.1	14
464	Improved performance of organic light-emitting diodes with MoO_3 interlayer by oblique angle deposition. Optics Express, 2011, 19, 4513.	3.4	14
465	Propagation properties of an optical vortex carried by an Airy beam: experimental implementation. Optics Letters, 2011, 36, 1617.	3.3	65
466	Enhanced optical absorption in nanopatterned silicon thin films with a nano-cone-hole structure for photovoltaic applications. Optics Letters, 2011, 36, 1713.	3.3	68
467	Broadband absorption enhancement in randomly positioned silicon nanowire arrays for solar cell applications. Optics Letters, 2011, 36, 1884.	3.3	82
468	Warm-white light-emitting diodes integrated with colloidal quantum dots for high luminous efficacy and color rendering: reply to comment. Optics Letters, 2011, 36, 2852.	3.3	7

#	Article	IF	CITATIONS
469	Pâ€38: Seeâ€through Optical Configuration with Transmitted Hâ€PDLC. Digest of Technical Papers SID International Symposium, 2011, 42, 1238-1240.	0.3	0
470	Nanorodâ€form ZnOâ€homojunction ultraviolet lightâ€emitting diodes. Journal of the Society for Information Display, 2011, 19, 913-917.	2.1	1
471	Superior warm-white light-emitting diodes integrated with quantum dot nanophosphors for high luminous efficacy and color rendering. , $2011, \ldots$		0
472	Optical and Electrical Properties of Ultralong ZnO Nanorod Fabricated from Preheating Hydrothermal Method. Journal of Nanoscience and Nanotechnology, 2011, 11, 463-469.	0.9	1
473	Polarization tunable circular Dammann grating generated from azo-dye doped nematic liquid crystals. Proceedings of SPIE, $2011,\ldots$	0.8	1
474	LC/polymer composite and its applications in photonics devices. Proceedings of SPIE, 2011, , .	0.8	0
475	Low-Temperature Facile Synthesis of ZnO Rod Arrays and Their Device Applications. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 801-807.	2.9	10
476	Influence of Channel Layer Thickness on the Electrical Performances of Inkjet-Printed In-Ga-Zn Oxide Thin-Film Transistors. IEEE Transactions on Electron Devices, 2011, 58, 480-485.	3.0	121
477	UV and Visible Electroluminescence From a \$ hbox{Sn:Ga}_{2}hbox{O}_{3}/hbox{n}^{+}hbox{-Si}\$ Heterojunction by Metal–Organic Chemical Vapor Deposition. IEEE Transactions on Electron Devices, 2011, 58, 1447-1451.	3.0	22
478	Boosting Short-Circuit Current With Rationally Designed Periodic Si Nanopillar Surface Texturing for Solar Cells. IEEE Transactions on Electron Devices, 2011, 58, 3224-3229.	3.0	21
479	Computer calculations of refractive indices in orthoconic SmCA *. Is it possible to obtain "isotropic― antiferroelectric liquid crystal (IAFLC)?. Opto-electronics Review, 2011, 19, .	2.4	0
480	Morphology-Tailored Synthesis of Tungsten Trioxide (Hydrate) Thin Films and Their Photocatalytic Properties. ACS Applied Materials & Eamp; Interfaces, 2011 , 3 , $229-236$.	8.0	163
481	Electrically switchable two-dimensional photonic crystals made ofÂpolymer-dispersed liquid crystals based onÂtheÂTalbotÂself-imaging effect. Applied Physics B: Lasers and Optics, 2011, 104, 659-663.	2.2	10
482	Geometrically distributed aperiodic circular photonic crystals with broad and isotropic photonic band gaps. Optics Communications, 2011, 284, 2239-2241.	2.1	2
483	The properties of sol–gel processed indiumâ€doped zinc oxide semiconductor film and its application in organic solar cells. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 2635-2642.	1.8	23
484	Inside Back Cover: The properties of sol–gel processed indiumâ€doped zinc oxide semiconductor film and its application in organic solar cells (Phys. Status Solidi A 11/2011). Physica Status Solidi (A) Applications and Materials Science, 2011, 208, .	1.8	0
485	Novel Silicon Nanohemisphereâ€Array Solar Cells with Enhanced Performance. Small, 2011, 7, 3138-3143.	10.0	50

Solar Cells: Novel Silicon Nanohemisphere-Array Solar Cells with Enhanced Performance (Small) Tj ETQq0 0 0 rgBT / Overlock 10 Tf 50 62

#	Article	IF	CITATIONS
487	Room Temperature Excitonic Whispering Gallery Mode Lasing from Highâ€Quality Hexagonal ZnO Microdisks. Advanced Materials, 2011, 23, 2199-2204.	21.0	236
488	ZnOâ€Microrod/pâ€GaN Heterostructured Whisperingâ€Galleryâ€Mode Microlaser Diodes. Advanced Materials, 2011, 23, 4115-4119.	21.0	177
489	Lasing: Room Temperature Excitonic Whispering Gallery Mode Lasing from High-Quality Hexagonal ZnO Microdisks (Adv. Mater. 19/2011). Advanced Materials, 2011, 23, 2128-2128.	21.0	11
490	Transition from Anodic Titania Nanotubes to Nanowires: Arising from Nanotube Growth to Application in Dyeâ€Sensitized Solar Cells. ChemPhysChem, 2011, 12, 3634-3641.	2.1	21
491	Low temperature polycrystalline silicon film formation by metal induced crystallization with nickel salt derived by ultrasonic spray pyrolysis. Crystal Research and Technology, 2011, 46, 935-938.	1.3	0
492	Single-photon and three-photon absorption induced whispering-gallery mode lasing in ZnO micronails. Optics Communications, 2011, 284, 4018-4021.	2.1	9
493	Thermally stable transparent conducting and highly infrared reflective Ga-doped ZnO thin films by metal organic chemical vapor deposition. Optical Materials, 2011, 33, 768-772.	3.6	75
494	Efficient extraction of singlet–triplet excitons for high-efficient white organic light-emitting diode with a multilayer emission region. Organic Electronics, 2011, 12, 1-7.	2.6	28
495	Optimization of inverted tandem organic solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 921-926. Periodic silicon nanocone arrays with controllable dimensions prepared by two-step etching using	6.2	52
496	nanosphere lithography and <mml:math altimg="si2.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mstyle mathvariant="normal"><mml:mi>NH</mml:mi></mml:mstyle></mml:mrow><mml:mrow><mml:mn>4</mml:mn> mathvariant="normal"><mml:mi>OH</mml:mi><mml:mo>/</mml:mo><mml:msub><mml:mrow><</mml:mrow></mml:msub></mml:mrow></mml:msub></mml:math>		ow>
497	mathyariant="normal Solid State Communications, 2011, 151, 127-129. Top-illuminated dye-sensitized solar cells with a room-temperature-processed ZnO photoanode on metal substrates and a Pt-coated Ga-doped ZnO counter electrode. Journal Physics D: Applied Physics, 2011, 44, 045102.	2.8	31
498	Response to "Comment on â€~Exciton-polariton microphotoluminescence and lasing from ZnO whispering-gallery mode microcavities'―[Appl. Phys. Lett. 99, 136101 (2011)]. Applied Physics Letters, 2013 99, .	1,3.3	2
499	An Indium-Free Transparent Resistive Switching Random Access Memory. IEEE Electron Device Letters, 2011, 32, 797-799.	3.9	28
500	ZnO for homojunction light emitting diodes and transparent conductors. , 2011, , .		0
501	Fabrication and Photoluminescence Properties of Graphite Fiber/ZnO Nanorod Core–Shell Structures. Journal of Nanoscience and Nanotechnology, 2011, 11, 6934-6939.	0.9	3
502	Free-standing ZnO–CuO composite nanowire array films and their gas sensing properties. Nanotechnology, 2011, 22, 325704.	2.6	93
503	Controlled Synthesis of Hollow Hemispheric ZnO Shells/Cages on Graphite Fiber. ISRN Nanotechnology, 2011, 2011, 1-5.	1.3	0
504	28.3: ZnO Based nâ€n Isotope Heterojunction Light Emitting Diodes by Low Cost Spray Pyrolysis. Digest of Technical Papers SID International Symposium, 2010, 41, 405-407.	0.3	0

#	Article	IF	CITATIONS
505	Efficiency Optimization on Dye-Sensitized Solar Cells With Low-Frequency Noise Analysis. IEEE Transactions on Electron Devices, 2010, 57, 2306-2309.	3.0	4
506	Cosensitized Solar Cells Based on a Flower-Like ZnO Nanorod Structure. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1607-1610.	2.9	12
507	Hierarchical ZnO/Bi2O3 nanostructures: synthesis, characterization, and electron-beam modification. Applied Physics A: Materials Science and Processing, 2010, 98, 91-96.	2.3	9
508	Optimization of an inverted organic solar cell. Solar Energy Materials and Solar Cells, 2010, 94, 985-991.	6.2	107
509	Highly transparent solution processed In-Ga-Zn oxide thin films and thin film transistors. Journal of Sol-Gel Science and Technology, 2010, 55, 322-327.	2.4	48
510	\$nhbox{-ZnO}/nhbox{-GaAs}\$ Heterostructured White Light-Emitting Diode: Nanoscale Interface Analysis and Electroluminescence Studies. IEEE Transactions on Electron Devices, 2010, 57, 129-133.	3.0	13
511	Electroluminescence From Ferromagnetic Fe-Doped ZnO Nanorod Arrays on p-Si. IEEE Transactions on Electron Devices, 2010, 57, 1948-1952.	3.0	14
512	Improved Inverted Organic Solar Cells With a Sol–Gel Derived Indium-Doped Zinc Oxide Buffer Layer. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1700-1706.	2.9	32
513	Growing Quantum Dots in Polymers Advances Hybrid Solar Cell Research. ChemSusChem, 2010, 3, 679-680.	6.8	5
514	Synthesis, Characterization, and Bipolar Transporting Behavior of a New Twisted Polycyclic Aromatic Hydrocarbon: 1′,4′â€Diphenylâ€naphthoâ€(2′.3′:1.2)â€pyreneâ€6′â€nitroâ€₹′â€methyl Carbo Journal, 2010, 16, 7422-7426.	oxy lat e. Ch	nem liso ry - A Eu
515	Electrically switchable finite energy Airy beams generated by a liquid crystal cell with patterned electrode. Optics Communications, 2010, 283, 3846-3849.	2.1	13
516	Existence of optimum intermolecular spacing for maximum exciton diffusion length in tris(2-phenylpyridine) iridium(III). Organic Electronics, 2010, 11, 67-73.	2.6	8
517	Micromachining of amplitude and phase modulated reflective computer generated hologram patterns in silicon. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 1416-1421.	1.4	3
518	Low work function metal modified ITO as cathode for inverted polymer solar cells. Solar Energy Materials and Solar Cells, 2010, 94, 1618-1621.	6.2	96
519	Co-sensitized quantum dot solar cell based on ZnO nanowire. Applied Surface Science, 2010, 256, 7438-7441.	6.1	64
520	A quantum dot sensitized solar cell based on vertically aligned carbon nanotube templated ZnO arrays. Electrochemistry Communications, 2010, 12, 1432-1435.	4.7	64
521	Liquid electrochemiluminescent organic light emitting cell. , 2010, , .		0
522	A high efficiency and cost effective Si thin film solar cell with novel periodic nanohole textured surface. , 2010, , .		1

#	Article	IF	Citations
523	Electrically tunable lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals. Applied Physics Letters, 2010, 97, .	3.3	13
524	Temperature effect on the lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals. Journal of Applied Physics, 2010, 108, 013106.	2.5	12
525	Glucose sensor using the one dimensional nanostructures. , 2010, , .		0
526	Color tunable light-emitting diodes based on p+-Si/p-CuAlO2/n-ZnO nanorod array heterojunctions. Applied Physics Letters, 2010, 97, 013101.	3.3	40
527	Maskless fabrication of large scale Si nanohole array via laser annealed metal nanoparticles catalytic etching for photovoltaic application. Journal of Applied Physics, 2010, 108, .	2.5	14
528	COMPARISON OF THE HYDROTHERMAL AND VPT GROWN ZnO NANOWIRE FIELD EFFECT TRANSISTORS. International Journal of Nanoscience, 2010, 09, 317-320.	0.7	6
529	Application of Nanostructures in Electrochromic Materials and Devices: Recent Progress. Materials, 2010, 3, 5029-5053.	2.9	93
530	Observation of efficient transfer from Mott–Wannier to Frenkel excitons in a hybrid semiconductor quantum dot/polymer composite at room temperature. Applied Physics Letters, 2010, 97, .	3.3	8
531	Effect of the Geometry of the Anodized Titania Nanotube Array on the Performance of Dye-Sensitized Solar Cells. Journal of Nanoscience and Nanotechnology, 2010, 10, 4551-4561.	0.9	77
532	One-Dimensional Single-Crystalline Bismuth Oxide Micro/Nanoribbons: Morphology-Controlled Synthesis and Luminescent Properties. Journal of Nanoscience and Nanotechnology, 2010, 10, 8322-8327.	0.9	30
533	Thin porous silicon fabricated by electrochemical etching in novel ammonium fluoride solution for optoelectronic applications. , 2010, , .		4
534	Terahertz dielectric response and optical conductivity of n-type single-crystal ZnO epilayers grown by metalorganic chemical vapor deposition. Journal of Applied Physics, 2010, 107, 033101.	2.5	12
535	Double-Sided Anodic Titania Nanotube Arrays: A Lopsided Growth Process. Langmuir, 2010, 26, 18424-18429.	3.5	30
536	Two-dimensional electron gas in Zn-polar ZnMgO/ZnO heterostructure grown by metal-organic vapor phase epitaxy. Applied Physics Letters, 2010, 97, .	3.3	64
537	Surface Eu-Treated ZnO Nanowires with Efficient Red Emission. Journal of Physical Chemistry C, 2010, 114, 18081-18084.	3.1	43
538	Efficient Bulk Heterojunction Solar Cells with Poly[2,7-(9,9-dihexylfluorene)-alt-bithiophene] and 6,6-Phenyl C61 Butyric Acid Methyl Ester Blends and Their Application in Tandem Cells. ACS Applied Materials & Diterfaces, 2010, 2, 829-837.	8.0	45
539	Inverted tandem organic solar cells with a MoO3/Ag/Al/Ca intermediate layer. Applied Physics Letters, 2010, 97, 053303.	3.3	69
540	Optical absorption enhancement in nanopore textured-silicon thin film for photovoltaic application. Optics Letters, 2010, 35, 40.	3.3	64

#	Article	IF	CITATIONS
541	Warm-white light-emitting diodes integrated with colloidal quantum dots for high luminous efficacy and color rendering. Optics Letters, 2010, 35, 3372.	3.3	77
542	Propagation dynamics of an optical vortex imposed on an Airy beam. Optics Letters, 2010, 35, 4075.	3.3	114
543	A photometric investigation of ultra-efficient LEDs with high color rendering index and high luminous efficacy employing nanocrystal quantum dot luminophores. Optics Express, 2010, 18, 340.	3.4	141
544	Ligand capping effect for dye solar cells with a CdSe quantum dot sensitized ZnO nanorod photoanode. Optics Express, 2010, 18, 1296.	3.4	57
545	Effect of post-annealing hydrothermal-grown ZnO nanorods on the electrical parameters of dye-sensitized solar cells. , 2010 , , .		0
546	Synthesis, structure, and optoelectronic properties of a new twistacene 1,2,3,4,6,13-hexaphenyl-7 : 8,11 : 12-bisbenzo-pentacene. Journal of Materials Chemistry, 2010), 20, 816	7. ¹²¹
547	Hydrothermally grown nanostructured WO ₃ films and their electrochromic characteristics. Journal Physics D: Applied Physics, 2010, 43, 285501.	2.8	107
548	A SnO ₂ Nanoparticle/Nanobelt and Si Heterojunction Light-Emitting Diode. Journal of Physical Chemistry C, 2010, 114, 18390-18395.	3.1	46
549	Periodic silicon nanocones arrays with controllable dimensions prepared by two-step etching using nanosphere lithography and NH <inf>4</inf> OH/H <inf>2</inf> 2 solution. , 2010, , .		O
550	Improved Photoelectrochemical Cell With Carbon Nanotubes. IEEE Electron Device Letters, 2010, 31, 734-736.	3.9	6
551	Anodized Titania Nanotube Array and its Application in Dye-Sensitized Solar Cells. , 2010, , 57-108.		0
552	Ultraviolet emission from a ZnO rod homojunction light-emitting diode. Applied Physics Letters, 2009, 95, .	3.3	91
553	Surfactant effect of arsenic doping on modification of ZnO (0001) growth kinetics. Applied Physics Letters, 2009, 95, 101905.	3.3	21
554	Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals. Applied Physics Letters, 2009, 95, .	3.3	26
555	Dielectric Properties of New Fluorinated Orthoconic Antiferroelectric Liquid Crystals. Molecular Crystals and Liquid Crystals, 2009, 509, 328/[1070]-335/[1077].	0.9	18
556	Si nanopillar array optimization on Si thin films for solar energy harvesting. Applied Physics Letters, 2009, 95, .	3.3	245
557	Influence of thin metal nanolayers on the photodetective properties of ZnO thin films. Journal of Applied Physics, 2009, 106, 083110.	2.5	31
558	Heteroepitaxial growth and luminescence properties of non-polar (1 1 0) orientation ZnO films on Si(0 0 1) substrates by pulsed laser deposition. Journal Physics D: Applied Physics, 2009, 42, 075410.	2.8	8

#	Article	IF	Citations
559	Efficient migration of Mott-Wannier excitons to Frenkel excitons in hybrid organic/inorganic assembly of CdSe/ZnS nanocrystals in MDMO-PPV homopolymers. , 2009, , .		O
560	An Improved Triple-Tandem Organic Solar Cell. Materials Research Society Symposia Proceedings, 2009, 1212, 1.	0.1	0
561	Disk-capped multipod arrays of zinc oxide. Materials Chemistry and Physics, 2009, 113, 115-118.	4.0	6
562	Bandgap-Engineered Ga-Rich GaZnO Thin Films for UV Transparent Electronics. IEEE Transactions on Electron Devices, 2009, 56, 2995-2999.	3.0	31
563	Spatial distribution of defect in ZnO nanodisks. Current Applied Physics, 2009, 9, 573-576.	2.4	12
564	Efficient charge collection with sol–gel derived colloidal ZnO thin film in photovoltaic devices. Journal of Sol-Gel Science and Technology, 2009, 52, 348-355.	2.4	18
565	Coherent linking of periodic nano-ripples on a ZnO crystal surface induced by femtosecond laser pulses. Applied Physics A: Materials Science and Processing, 2009, 94, 423-426.	2.3	22
566	Superbending effect in two-dimensional graded photonic crystals. Optics Communications, 2009, 282, 329-332.	2.1	11
567	An efficient bis(2-phenylquinoline) (acetylacetonate) iridium(III)-based red organic light-emitting diode with alternating guest:host emitting layers. Organic Electronics, 2009, 10, 320-325.	2.6	9
568	Directly assembled CdSe quantum dots on TiO2 in aqueous solution by adjusting pH value for quantum dot sensitized solar cells. Electrochemistry Communications, 2009, 11, 2265-2267.	4.7	90
569	Carbon nanotube–ZnO nanocomposite electrodes for supercapacitors. Solid State Ionics, 2009, 180, 1525-1528.	2.7	142
570	Effect of electric field strength on the length of anodized titania nanotube arrays. Journal of Electroanalytical Chemistry, 2009, 637, 6-12.	3.8	79
571	Influence of synthesis temperature on ZnO nanostructure morphologies and field emission properties. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 470-473.	2.7	16
572	Electroluminescence from a n-ZnO nanorod/p-CuAlO2 heterojunction light-emitting diode. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 635-639.	2.7	59
573	Two-step growth of a hierarchical ZnO nanostructure by aqueous thermal decomposition in a neutral solution and its photovoltaic property. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 822-827.	2.7	11
574	Dependence of the properties of hydrothermally grown ZnO on precursor concentration. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 1423-1426.	2.7	59
575	Effects of buffer layer annealing temperature on the structural and optical properties of hydrothermal grown ZnO. Applied Surface Science, 2009, 255, 4461-4465.	6.1	29
576	Effects of the annealing duration of the ZnO buffer layer on structural and optical properties of ZnO rods grown by a hydrothermal process. Applied Surface Science, 2009, 255, 8501-8505.	6.1	30

#	Article	IF	CITATIONS
577	A highly effective method for synthesizing hybrid Pt–CdSe nanocomposite. Applied Surface Science, 2009, 256, 1526-1529.	6.1	O
578	Effects of thermal annealing temperature and duration on hydrothermally grown ZnO nanorod arrays. Applied Surface Science, 2009, 255, 5861-5865.	6.1	43
579	Bilayer ZnO nanostructure fabricated by chemical bath and its application in quantum dot sensitized solar cell. Applied Surface Science, 2009, 255, 7508-7511.	6.1	56
580	An oleic acid-capped CdSe quantum-dot sensitized solar cell. Applied Physics Letters, 2009, 94, .	3.3	126
581	Effect of fluorination of molecular rigid core in liquid crystal biphenyl benzoate based homologous series. Opto-electronics Review, 2009, 17, .	2.4	25
582	N–P transition sensing behaviors of ZnO nanotubes exposed to NO ₂ gas. Nanotechnology, 2009, 20, 465501.	2.6	126
583	Blue to deep UV light emission from a p-Si/AlN/Au heterostructure. Applied Physics Letters, 2009, 94, 093506.	3.3	17
584	Carbon nanotube–zinc oxide electrode and gel polymer electrolyte for electrochemical supercapacitors. Journal of Alloys and Compounds, 2009, 480, L17-L19.	5.5	112
585	Frequency-upconverted whispering-gallery-mode lasing in ZnO hexagonal nanodisks. Optics Letters, 2009, 34, 3349.	3.3	25
586	White beam diffraction in a two-dimensional photonic crystal. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2009, 26, 1256.	1.5	3
587	A negative–positive tunable liquid-crystal microlens array by printing. Optics Express, 2009, 17, 4317.	3.4	73
588	Second-harmonic generation in photonic crystals with a pair of epsilon-negative and mu-negative defects. Optics Express, 2009, 17, 6682.	3.4	5
589	Electrically switchable phase-type fractal zone plates and fractal photon sieves. Optics Express, 2009, 17, 12418.	3.4	39
590	Airy beams generated by a binary phase element made of polymer-dispersed liquid crystals. Optics Express, 2009, 17, 19365.	3.4	81
591	Electrically switchable computer-generated hologram using a liquid crystal cell with a proton beam patterned polymethylmethacrylate substrate. Applied Optics, 2009, 48, 3766.	2.1	1
592	Giant enhancement of top emission from ZnO thin film by nanopatterned Pt. Applied Physics Letters, 2009, 94, .	3.3	106
593	Raman-active Fröhlich optical phonon mode in arsenic implanted ZnO. Applied Physics Letters, 2009, 94, 011913.	3.3	49
594	Ferroelectric Transistors with Nanowire Channel: Toward Nonvolatile Memory Applications. ACS Nano, 2009, 3, 700-706.	14.6	89

#	Article	IF	Citations
595	An inverted organic solar cell with an ultrathin Ca electron-transporting layer and MoO3 hole-transporting layer. Applied Physics Letters, 2009, 95, .	3.3	164
596	Modification of High Tilted Antiferroelectric Mixture for Display Applications. Molecular Crystals and Liquid Crystals, 2009, 509, 336/[1078]-348/[1090].	0.9	7
597	Single-Crystalline MFe ₂ O ₄ Nanotubes/Nanorings Synthesized by Thermal Transformation Process for Biological Applications. ACS Nano, 2009, 3, 2798-2808.	14.6	211
598	An Efficient Triple-Tandem Polymer Solar Cell. IEEE Electron Device Letters, 2009, 30, 490-492.	3.9	42
599	Pâ€102: An Electrochromic Type Eâ€Paper Based on ZnO Nanowire Array Electrode. Digest of Technical Papers SID International Symposium, 2009, 40, 1498-1500.	0.3	1
600	Effect of Buffer Layer Annealing on ZnO Thin Films Grown by using Atomic Layer Deposition. Journal of the Korean Physical Society, 2009, 55, 2556-2559.	0.7	3
601	The effect of organic multi-layer periodic structure on carrier balance based on OLEDs. Displays, 2008, 29, 408-411.	3.7	3
602	Room-temperature ferromagnetism in Mn-N Co-doped p-ZnO epilayers by metal-organic chemical vapor deposition. Applied Physics A: Materials Science and Processing, 2008, 91, 535-539.	2.3	21
603	High temperature dehydrogenation for realization of nitrogen-doped p-type ZnO. Journal of Crystal Growth, 2008, 310, 3448-3452.	1.5	35
604	On the fabrication of resistor-shaped ZnO nanowires. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 859-865.	2.7	5
605	Formation of tetrapod and multipod ZnO whiskers. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2677-2681.	2.7	24
606	Electric field-enhanced metal-induced lateral crystallization and P-channel poly-Si TFTs fabricated by it. Microelectronics Journal, 2008, 39, 1189-1194.	2.0	4
607	Sequentially doped blue electrofluorescent organic light-emitting diodes. Organic Electronics, 2008, 9, 136-142.	2.6	4
608	Exciplex emission in the blend of two blue luminescent materials. Applied Surface Science, 2008, 254, 3548-3552.	6.1	20
609	Effects of annealing temperature of buffer layer on structural and optical properties of ZnO thin film grown by atomic layer deposition. Solid State Communications, 2008, 148, 395-398.	1.9	39
610	Metal organic chemical vapor deposition and investigation of ZnO thin films grown on sapphire. Thin Solid Films, 2008, 516, 5571-5576.	1.8	16
611	Structural and Optical Studies on Ion-implanted 6H–SiC Thin Films. Thin Solid Films, 2008, 516, 5217-5222.	1.8	15
612	Dielectric measurements of new antiferroelectric liquid crystals. Opto-electronics Review, 2008, 16, .	2.4	9

#	Article	IF	Citations
613	Femtosecond laser-induced periodic surface structure on ZnO. Materials Letters, 2008, 62, 1769-1771.	2.6	38
614	Growth and spectral analysis of ZnO nanotubes. Journal of Applied Physics, 2008, 103, 094303.	2.5	37
615	Equidistant fringe phase shift measurement by use of a trough integration method. Optical Engineering, 2008, 47, 115601.	1.0	1
616	Correlation of Current Noise Behavior and Dark Spot Formation in Organic Light-Emitting Diodes. IEEE Electron Device Letters, 2008, 29, 67-69.	3.9	5
617	Improved performance of organic lightâ€emitting devices with ultraâ€thin holeâ€blocking layers. Journal of the Society for Information Display, 2008, 16, 603-608.	2.1	0
618	An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer. Applied Physics Letters, 2008, 93, .	3.3	517
619	Fast Switching Electrochromic Display Using a Viologen-Modified ZnO Nanowire Array Electrode. Nano Letters, 2008, 8, 1884-1889.	9.1	160
620	A p-n homojunction ZnO nanorod light-emitting diode formed by As ion implantation. Applied Physics Letters, 2008, 93, .	3.3	88
621	High-bendability flexible dye-sensitized solar cell with a nanoparticle-modified ZnO-nanowire electrode. Applied Physics Letters, 2008, 92, .	3.3	151
622	Generating electrically tunable optical vortices by a liquid crystal cell with patterned electrode. Applied Physics Letters, 2008, 92, .	3.3	23
623	Field Emission From Hydrothermally Grown ZnO Nanoinjectors. Journal of Display Technology, 2008, 4, 9-12.	1.2	17
624	Equal-frequency surface analysis of two-dimensional photonic crystals. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2008, 25, 219.	1.5	4
625	Out-of-plane diffraction of a two-dimenisonal photonic crystal with finite dielectric modulation. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2008, 25, 1098.	1.5	7
626	Low propagation loss SiN optical waveguide prepared by optimal low-hydrogen module. Optics Express, 2008, 16, 20809.	3.4	97
627	Efficient tandem organic solar cells with an Al/MoO3 intermediate layer. Applied Physics Letters, 2008, 93, 083305.	3.3	137
628	A ZnO Nanorod Inorganic/Organic Heterostructure Light-Emitting Diode Emitting at 342 nm. Nano Letters, 2008, 8, 1219-1223.	9.1	292
629	New High Frequency Dielectric Mode in Fluorinated Antiferroelecteric Liquid Crystals. Ferroelectrics, 2008, 365, 88-94.	0.6	24
630	Effective photoluminescence modification of ZnO nanocombs by plasma immersion ion implantation. , 2008, , .		4

#	Article	IF	CITATIONS
631	Low Hydrogen Component SiN Films by PECVD for Low Propagation Loss Waveguide., 2008,,.		O
632	A Security Engineering Environment Based on ISO/IEC Standards: Providing Standard, Formal, and Consistent Supports for Design, Development, Operation, and Maintenance of Secure Information Systems., 2008,,.		17
633	Grating Network of ZnO Nanostructure. Journal of Physical Chemistry C, 2008, 112, 13922-13925.	3.1	7
634	Two-Photon Excited Ultraviolet Photoluminescence of Zinc Oxide Nanorods. Journal of Nanoscience and Nanotechnology, 2008, 8, 5854-5857.	0.9	11
635	Single-Crystal and Twinned Zn ₂ SnO ₄ Nanowires with Axial Periodical Structures. Crystal Growth and Design, 2008, 8, 707-710.	3.0	40
636	Carbon clusters in N-doped ZnO by metal-organic chemical vapor deposition. Applied Physics Letters, 2008, 93, 132107.	3.3	32
637	Electrically switchable optical vortex generated by a computer-generated hologram recorded in polymer-dispersed liquid crystals. , 2008, , .		0
638	An Influence of a Single Fluorine Atom Position in the Molecular Rigid Core on Physical Properties of Orthoconic Antiferroelectric Liquid Crystal. Ferroelectrics, 2008, 365, 78-87.	0.6	23
639	Fabrication and characterization of n-ZnO nanorod/p-CuAlO <inf>2</inf> heterojunction., 2008,,.		1
640	Enhanced field emission from ZnO nanotetrapods on a carbon nanofiber buffered Ag film by screen printing. Applied Physics Letters, 2008, 93, 233508.	3.3	17
641	Enhanced Open-Circuit Voltage in Tandem Polymer Solar Cell. , 2008, , .		0
642	Epitaxially grown n-ZnOâ^•MgOâ^•TiNâ^•n+-Si(111) heterostructured light-emitting diode. Applied Physics Letters, 2008, 92, .	3.3	41
643	High efficiency surface-conducted field emission from a ZnO nanotetrapod and MgO nanoparticle composite emitter. Applied Physics Letters, 2008, 93, 253501.	3.3	13
644	Revealing the surface origin of green band emission from ZnO nanostructures by plasma immersion ion implantation induced quenching. Journal of Applied Physics, 2008, 103, .	2.5	37
645	Formation of extremely high current density LaB6 field emission arrays via e-beam deposition. Applied Physics Letters, 2008, 93, .	3.3	28
646	Study of electrochemical supercapacitors utilizing carbon nanotubes electrodes and PVA-hybrid polyacid electrolytes. , 2008, , .		0
647	Directly assembly and electrical transport measurement of nanowires by nano-manipulator probes., 2008,,.		0
648	Ultraviolet and visible electroluminescence from n-ZnOâ^•SiOxâ^•(n,p)-Si heterostructured light-emitting diodes. Applied Physics Letters, 2008, 93, .	3.3	88

#	Article	IF	Citations
649	Synthesis and electrical characteristic of P-type ZnO film on indium-tin-oxide glass substrate by ultrasonic spray pyrolysis. , 2008, , .		O
650	Epitaxial growth and luminescence properties of ZnO-based heterojunction light-emitting diode on Si(1 1 1) substrate by pulsed-laser deposition. Journal Physics D: Applied Physics, 2008, 41, 205105.	2.8	23
651	Theoretical and experimental depth-resolved cathodoluminescence microanalysis of excitonic emission from ZnO epilayers. Applied Physics Letters, 2008, 92, .	3.3	9
652	Symmetries of the eigenstates in an anisotropic photonic crystal. Physical Review B, 2008, 77, .	3.2	15
653	States of a two-dimensional photonic crystal in the presence of spatial modulation and anisotropy: A perturbative approach. Physical Review B, 2008, 78, .	3.2	2
654	Pâ€127: A ZnO Based Heterostructured <i>nâ€iâ€n</i> Lightâ€Emitting Diode by Lowâ€Cost Ultrasonic Spray Pyrolysis. Digest of Technical Papers SID International Symposium, 2008, 39, 1670-1673.	0.3	0
655	Tunable transport properties of n-type ZnO nanowires by Ti plasma immersion ion implantation. Journal of Applied Physics, 2008, 104, .	2.5	13
656	Exploring Low Temperature ZnO Nanowires in Display and Solar Cell Applications. , 2008, , .		0
657	Holographic Polymer-Dispersed Liquid Crystals: Materials, Formation, and Applications. Advances in OptoElectronics, 2008, 2008, 1-52.	0.6	85
658	Orthoconic antiferroelectric liquid crystals for multimedia LCD's., 2008,,.		0
659	Nanorods-Based Sensors. Sensor Letters, 2008, 6, 787-791.	0.4	10
660	Orthoconic Antiferroelectric Liquid Crystals as a Material for Display Application., 2008,,.		0
661	Preferential Growth of SnO2Triangular Nanoparticles on ZnO Nanobelts. Journal of Physical Chemistry C, 2007, 111, 7671-7675.	3.1	30
662	On the Importance of the Molecular Core Interactions on the Induction of the High Optical Tilt Angle. Molecular Crystals and Liquid Crystals, 2007, 477, 205-221.	0.9	15
663	Optical function of bionic nanostructure of ZnO. New Journal of Physics, 2007, 9, 381-381.	2.9	1
664	Fabrication and field emission properties of regular hexagonal flowerlike ZnO nanowhiskers. Journal of Vacuum Science & Technology B, 2007, 25, 590.	1.3	9
665	Undoped White Organic Light-Emitting Diodes Utilizing Two Sources of Excitons. Japanese Journal of Applied Physics, 2007, 46, 5164.	1.5	0
666	Diamond-shaped ZnO microrafts and their optical and magnetic properties. Nanotechnology, 2007, 18, 055709.	2.6	4

#	Article	IF	CITATIONS
667	Electrically Tunable Three-Dimensional Holographic Photonic Crystal Made of Polymer-Dispersed Liquid Crystals Using a Single Prism. Japanese Journal of Applied Physics, 2007, 46, 6634-6638.	1.5	30
668	Out-of-plane dispersion of a two-dimensional photonic crystal. Physical Review B, 2007, 75, .	3.2	6
669	Efficient electrofluorescent organic light-emitting diodes by sequential doping. Applied Physics Letters, 2007, 90, 203509.	3.3	8
670	Electrically switchable computer-generated hologram recorded in polymer-dispersed liquid crystals. Applied Physics Letters, 2007, 90, 191118.	3. 3	33
671	Hydrothermally grown ZnO nanorods on self-source substrate and their field emission. Journal Physics D: Applied Physics, 2007, 40, 1906-1909.	2.8	38
672	Exciton radiative lifetime in ZnO nanorods fabricated by vapor phase transport method. Applied Physics Letters, 2007, 90, 013107.	3.3	74
673	Observation of Excitonic Quenching by Long-Range Dipole-Dipole Interaction in Sequentially Doped Organic Phosphorescent Host-Guest System. Physical Review Letters, 2007, 99, 143003.	7.8	53
674	Competitive adsorption and two-site occupation effects in metal-organic chemical vapor deposition of ZnO. Applied Physics Letters, 2007, 90, 174107.	3.3	20
675	Effects of alloying and localized electronic states on the resonant Raman spectra of Zn1â^'xMgxO nanocrystals. Applied Physics Letters, 2007, 91, 091901.	3.3	37
676	Efficient surface-conducted field emission from ZnO nanotetrapods. Applied Physics Letters, 2007, 91, 163502.	3. 3	36
677	Effect of liquid crystal concentration on the lasing properties of dye-doped holographic polymer-dispersed liquid crystal transmission gratings. Applied Physics Letters, 2007, 90, 011109.	3.3	25
678	Correlation between carrier recombination and p-type doping in P monodoped and In–P codoped ZnO epilayers. Applied Physics Letters, 2007, 90, 152108.	3.3	59
679	Negative principal refractive indices and accidental isotropy in two-dimensional photonic crystals with an asymmetrical unit cell. Physical Review B, 2007, 76, .	3.2	1
680	Improved organic light-emitting device with tris-(8-hydroxyquinoline) aluminium inserted between hole-injection layer and hole-transporting layer. Journal Physics D: Applied Physics, 2007, 40, 183-186.	2.8	9
681	Disc-Capped ZnO Nanocombs. Chinese Physics Letters, 2007, 24, 3495-3498.	3.3	4
682	Temperature dependent exciton radiative lifetime in ZnO nanorods. International Journal of Nanotechnology, 2007, 4, 404.	0.2	0
683	Self assembled ZnO hollow spheres and hexagonal stacking disks by metal-organic chemical-vapour deposition. International Journal of Nanotechnology, 2007, 4, 691.	0.2	5
684	Diffraction properties of a photonic crystal., 2007,,.		1

#	Article	IF	Citations
685	Electrically switchable optical vortex generated by a computer-generated hologram recorded in polymer-dispersed liquid crystals. Optics Express, 2007, 15, 16645.	3.4	34
686	Realization of n-Zn1â^'xMgxOâ^•i-ZnOâ^•SiOxâ^•n+-Si heterostructured n-i-n light-emitting diodes by low-cost ultrasonic spray pyrolysis. Applied Physics Letters, 2007, 91, 263501.	3.3	28
687	Nonenzymatic Glucose Sensor Using Freestanding Single-Wall Carbon Nanotube Films. Electrochemical and Solid-State Letters, 2007, 10, J58.	2.2	45
688	p -type conduction in unintentional carbon-doped ZnO thin films. Applied Physics Letters, 2007, 91, .	3.3	143
689	Enhanced field emission from injector-like ZnO nanostructures with minimized screening effect. Nanotechnology, 2007, 18, 135604.	2.6	68
690	Nanostructured Single-Crystalline Twin Disks of Zinc Oxide. Crystal Growth and Design, 2007, 7, 541-544.	3.0	44
691	Quenching of surface-exciton emission from ZnO nanocombs by plasma immersion ion implantation. Applied Physics Letters, 2007, 91, .	3.3	55
692	Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode. Applied Physics Letters, 2007, 90, 263501.	3.3	502
693	Twinned Zn2TiO4 Spinel Nanowires Using ZnO Nanowires as a Template. Advanced Materials, 2007, 19, 1839-1844.	21.0	70
694	Tailoring Zinc Oxide Nanowires for High Performance Amperometric Glucose Sensor. Electroanalysis, 2007, 19, 1008-1014.	2.9	190
695	Bandgap engineering in Alq3- and NPB-based organic light-emitting diodes for efficient green, blue and white emission. Solid-State Electronics, 2007, 51, 1618-1623.	1.4	9
696	Phosphorescent organic light-emitting devices with in situ post-growth annealed organic layers. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 139, 192-196.	3.5	6
697	Raman spectroscopy and luminescent properties of ZnO nanostructures fabricated by femtosecond laser pulses. Materials Letters, 2007, 61, 4583-4586.	2.6	30
698	A two-step hydrothermally grown ZnO microtube array for CO gas sensing. Applied Physics A: Materials Science and Processing, 2007, 88, 611-615.	2.3	85
699	Zinc Oxide Nanorods Grown by Arc Discharge. Journal of Electronic Materials, 2007, 36, 494-497.	2.2	9
700	Strategies to Improve Field Emission Performance of Nanostructural ZnO. Journal of Electronic Materials, 2007, 36, 543-548.	2.2	4
701	Tunable Dispersion Properties of Liquid Crystal Infiltrated Into a Two-Dimensional Photonic Crystal. IEEE Journal of Quantum Electronics, 2006, 42, 404-409.	1.9	13
702	Efficient blue organic light-emitting device based on N, N′-di(naphth-2-yl)-N, N′-diphenyl-benzidine with an exciton-confining structure. Applied Physics Letters, 2006, 89, 173511.	3.3	20

#	Article	IF	Citations
703	Electrochemically deposited zinc oxide arrays for field emission. Applied Physics Letters, 2006, 88, 161921.	3.3	34
704	Corrections to "Tunable Dispersion Properties of Liquid Crystal Infiltrated into a two-Dimensional Photonic Crystal― IEEE Journal of Quantum Electronics, 2006, 42, 848-848.	1.9	0
705	Gain narrowing and random lasing from dye-doped polymer-dispersed liquid crystals with nanoscale liquid crystal droplets. Applied Physics Letters, 2006, 89, 011111.	3.3	63
706	Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings. Applied Physics Letters, 2006, 88, 061107.	3.3	52
707	Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications. Nanotechnology, 2006, 17, 4995-4998.	2.6	636
708	Growth mechanism of tubular ZnO formed in aqueous solution. Nanotechnology, 2006, 17, 1740-1744.	2.6	177
709	Zinc oxide nanocomb biosensor for glucose detection. Applied Physics Letters, 2006, 88, 233106.	3.3	528
710	Tunable superprism and polarization splitting in a liquid crystal infiltrated two-dimensional photonic crystal made of silicon oxynitride. Optics Letters, 2006, 31, 1109.	3.3	14
711	Symmetry properties of two-dimensional anisotropic photonic crystals. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2006, 23, 2002.	1.5	26
712	One-dimensional anisotropic photonic crystal with a tunable bandgap. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 159.	2.1	54
713	Engineering the bandgap of a two-dimensional anisotropic photonic crystal. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 1478.	2.1	5
714	Tunable fly's-eye lens made of patterned polymer-dispersed liquid crystal. Optics Express, 2006, 14, 5634.	3.4	24
715	Tunable Fano resonance in photonic crystal slabs. Optics Express, 2006, 14, 8812.	3.4	52
716	Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition. Applied Physics Letters, 2006, 89, 123902.	3.3	415
717	<title>Fabrication and laser action of nanostructural ZnO</title> ., 2006, , .		0
718	P-151: A Fly's-Eye Lens Fabricated by Polymer-Dispersed Liquid Crystals. Digest of Technical Papers SID International Symposium, 2006, 37, 776.	0.3	0
719	Controllable polarization splitting in liquid crystal infiltrated photonic crystals., 2006,,.		0
720	Distinguishing the effect of crystal-field screening from the effect of valence recharging on the 2p3/2 and 3d5/2 level energies of nanostructured copper. Applied Surface Science, 2006, 252, 2101-2107.	6.1	15

#	Article	IF	CITATIONS
721	Photoluminescence and growth mechanism of amorphous silica nanowires by vapor phase transport. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 31, 218-223.	2.7	16
722	Electronic structures of wurtzite ZnO and ZnO/MgZnO quantum well. Journal of Crystal Growth, 2006, 287, 28-33.	1.5	32
723	A focus-switchable lens made of polymer–liquid crystal composite. Journal of Crystal Growth, 2006, 288, 192-194.	1.5	16
724	Hole injection or blocking? The role of CuPc in Alq3-based organic light-emitting devices. Journal of Crystal Growth, 2006, 288, 105-109.	1.5	5
725	Effect of doping on optical and transport properties of charge carriers in Alq3. Journal of Crystal Growth, 2006, 288, 115-118.	1.5	15
726	Zinc oxide quantum dots embedded films by metal organic chemical vapor deposition. Journal of Crystal Growth, 2006, 290, 518-522.	1.5	41
727	Refractive indices of textured indium tin oxide and zinc oxide thin films. Thin Solid Films, 2006, 510, 95-101.	1.8	74
728	Band parameters and electronic structures of wurtzite ZnO and ZnOâ^•MgZnO quantum wells. Journal of Applied Physics, 2006, 99, 013702.	2.5	74
729	Lasing from a One-Dimensional Photonic Crystal Made of Dye-Doped Holographic Polymer-Dispersed Liquid Crystal Gratings. Japanese Journal of Applied Physics, 2006, 45, L559-L561.	1.5	5
730	Comment on "Singlet-singlet and singlet-heat annihilations in fluorescence-based organic light-emitting diodes under steady-state high current density―[Appl. Phys. Lett. 86, 213506 (2005)]. Applied Physics Letters, 2006, 88, 096101.	3.3	5
731	Aligned ZnO nanorods synthesized by a simple hydrothermal reaction. Journal Physics D: Applied Physics, 2006, 39, 1690-1693.	2.8	55
732	Stable field emission from hydrothermally grown ZnO nanotubes. Applied Physics Letters, 2006, 88, 213102.	3.3	203
733	Fabrication and Field Emission of Flower-like ZnO Nanowhiskers. , 2006, , .		O
734	Organic light-emitting devices with a mixture emitting layer of tris-(8-hydroxyquinoline) aluminum and 4,4′-bis(carbazol-9-yl)-biphenyl. Applied Physics Letters, 2006, 88, 243505.	3.3	15
735	Cluster coarsening in zinc oxide thin films by postgrowth annealing. Journal of Applied Physics, 2006, 100, 033502.	2.5	57
736	Electrically tunable two-dimensional holographic photonic crystal fabricated by a single diffractive element. Applied Physics Letters, 2006, 89, 171101.	3.3	58
737	Zinc oxide hexagram whiskers. Applied Physics Letters, 2006, 88, 093101.	3.3	39
738	Organic light-emitting devices with a hole-blocking layer inserted between the hole-injection layer and hole-transporting layer. Applied Physics Letters, 2006, 88, 083508.	3.3	33

#	Article	IF	CITATIONS
739	P-113: Generalized Optimization of Reflective Liquid Crystal Display for Direct-View and Single-Panel Projection Applications. Digest of Technical Papers SID International Symposium, 2005, 36, 731.	0.3	О
740	P-102: Electro-optical Characteristics of Holographic Polymer Dispersed Liquid Crystal Bragg Gratings. Digest of Technical Papers SID International Symposium, 2005, 36, 682.	0.3	1
741	A magnetic field-induced current-modulating opamp based on CMOS differential Tesla–Volt multiplier cell for MAGFET 1/f noise reduction. Sensors and Actuators A: Physical, 2005, 118, 292-297.	4.1	2
742	Multipod zinc oxide nanowhiskers. Journal of Crystal Growth, 2005, 277, 330-334.	1.5	22
743	Properties of polycrystalline ZnO thin films by metal organic chemical vapor deposition. Journal of Crystal Growth, 2005, 281, 571-576.	1.5	87
744	Ion beam co-sputtering deposition of Au/SiO2 nanocomposites. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 27, 362-368.	2.7	21
745	Effect of surfactant on the electro-optical properties of holographic polymer dispersed liquid crystal Bragg gratings. Optical Materials, 2005, 27, 1451-1455.	3.6	76
746	Structural and magnetic properties of iron-nitride thin films deposited using a filtered cathodic vacuum arc. Thin Solid Films, 2005, 478, 61-66.	1.8	22
747	Experimental study of aluminum-induced crystallization of amorphous silicon thin films. Surface and Coatings Technology, 2005, 198, 300-303.	4.8	33
748	Nickel induced lateral crystallization behavior of amorphous silicon films. Applied Surface Science, 2005, 240, 155-160.	6.1	9
749	Realization of intrinsic p-type ZnO thin films by metal organic chemical vapor deposition. Journal of Electronic Materials, 2005, 34, 1172-1176.	2.2	25
750	Optical Properties of Zinc Oxide Quantum Dots Embedded Films by Metal Organic Chemical Vapor Deposition. Materials Research Society Symposia Proceedings, 2005, 891, 1.	0.1	0
751	A polarization insensitive 2×2 optical switch fabricated by liquid crystal–polymer composite. Applied Physics Letters, 2005, 86, 041115.	3.3	44
752	Improving organic light-emitting devices by modifying indium tin oxide anode with an ultrathin tetrahedral amorphous carbon film. Journal of Applied Physics, 2005, 98, 046107.	2.5	15
753	Improvement of efficiency and stability of polymer light-emitting devices by modifying indium tin oxide anode surface with ultrathin tetrahedral amorphous carbon film. Applied Physics Letters, 2005, 86, 063506.	3.3	19
754	Organic light-emitting devices within situpostgrowth annealed organic layers. Applied Physics Letters, 2005, 87, 063505.	3.3	24
755	Network array of zinc oxide whiskers. Nanotechnology, 2005, 16, 70-73.	2.6	24
756	Band gap characteristics of anisotropic photonic crystals. , 2005, 5644, 335.		1

#	Article	IF	CITATIONS
757	Ultraviolet amplified spontaneous emission from self-organized network of zinc oxide nanofibers. Applied Physics Letters, 2005, 86, 011118.	3.3	65
758	Optical properties of nanocluster-assembled ZnO thin films by nanocluster-beam deposition. Applied Physics Letters, 2005, 87, 251912.	3.3	37
759	Geometric effect of nickel source on low-temperature polycrystalline silicon TFTs by metal-induced lateral crystallization. IEEE Electron Device Letters, 2005, 26, 814-816.	3.9	0
760	Magnetic nanobelts of iron-doped zinc oxide. Applied Physics Letters, 2005, 86, 173110.	3.3	30
761	Enhanced performance of tris-(8-hydroxyquinoline) aluminum-based organic light-emitting devices with LiF/Mg:Ag/Ag cathode. Optics Express, 2005, 13, 26.	3.4	30
762	Transparent organic light-emitting devices with LiF/Mg:Ag cathode. Optics Express, 2005, 13, 937.	3.4	52
763	Dynamic switching of optical vortices with dynamic gamma-correction liquid crystal spiral phase plate. Optics Express, 2005, 13, 10285.	3.4	31
764	Manganese-doped zinc oxide tetratubes and their photoluminescent properties. Journal of Applied Physics, 2005, 98, 113513.	2.5	29
765	The role of LiF buffer layer in tris-(8-hydroxyquinoline) aluminum-based organic light-emitting devices with Mg:Ag cathode. Journal of the Society for Information Display, 2005, 13, 443.	2.1	2
766	Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition. Journal of Applied Physics, 2005, 98, 013505.	2.5	638
767	The role of MgF2buffer layer in tris-(8-hydroxyquinoline)aluminium-based organic light-emitting devices with Mg:Ag cathode. Semiconductor Science and Technology, 2005, 20, 801-804.	2.0	13
768	The Electro-Optic Properties of a Fast Response, Three-Electrode Liquid Crystal Device. Japanese Journal of Applied Physics, 2004, 43, 1068-1072.	1.5	2
769	The electro-optic properties of a vertically aligned fast response liquid crystal display with three-electrode driving. Journal Physics D: Applied Physics, 2004, 37, 994-997.	2.8	30
770	Electro-optical properties of a nematic liquid crystal cell by double-side fringe-field switching. Journal of Applied Physics, 2004, 96, 3520-3523.	2.5	2
771	NANOSTRUCTURAL ZnO FABRICATED BY VAPOR-PHASE TRANSPORT IN AIR. International Journal of Modern Physics B, 2004, 18, 225-232.	2.0	4
772	Ultraviolet Lasing Phenomenon of Zinc Oxide Hexagonal Microtubes. Japanese Journal of Applied Physics, 2004, 43, 5273-5278.	1.5	11
773	Fabrication of ITO thin films by filtered cathodic vacuum arc deposition. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 106, 300-304.	3.5	29
774	Field aided lateral crystallization of amorphous silicon with large grain formation. Thin Solid Films, 2004, 458, 149-153.	1.8	9

#	Article	IF	CITATIONS
775	Self-organized nanocomb of ZnO fabricated by Au-catalyzed vapor-phase transport. Journal of Crystal Growth, 2004, 270, 498-504.	1.5	47
776	Growth and characterization of zinc oxide nano/micro-fibers by thermal chemical reactions and vapor transport deposition in air. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 103-107.	2.7	84
777	Improving reliability of poly-Si TFTs with channel layer and gate oxide passivated by NH3/N2O plasma. Microelectronics Reliability, 2004, 44, 435-442.	1.7	13
778	Fabrication of zinc oxide nanostructures on gold-coated silicon substrate by thermal chemical reactions vapor transport deposition in air. Ceramics International, 2004, 30, 1725-1729.	4.8	25
779	In situ resistance measurement during FCVA deposition of ZnO thin films. Ceramics International, 2004, 30, 2019-2022.	4.8	0
780	A CMOS Differential Tesla-Volt Multiplier Cell. IEEE Electron Device Letters, 2004, 25, 326-327.	3.9	3
781	Magnetic nanobraids of iron-doped amorphous silica. Applied Physics Letters, 2004, 85, 5364-5366.	3.3	9
782	Zinc oxide nanodisk. Applied Physics Letters, 2004, 85, 3878-3880.	3.3	212
783	Vertically aligned liquid crystal light valve controlled by double-side fringe-field switching with memory effect. Applied Physics Letters, 2004, 84, 4397-4399.	3.3	0
784	Zinc oxide nanowires and nanorods fabricated by vapour-phase transport at low temperature. Nanotechnology, 2004, 15, 839-842.	2.6	39
785	UV light source from a zinc oxide microtube. Journal of the Society for Information Display, 2004, 12, 505.	2.1	O
786	Nanostructural zinc oxide and its electrical and optical properties. Journal of Applied Physics, 2004, 95, 661-666.	2.5	93
787	Photoluminescent properties of copper-doped zinc oxide nanowires. Nanotechnology, 2004, 15, 856-861.	2.6	231
788	Field emission from gallium-doped zinc oxide nanofiber array. Applied Physics Letters, 2004, 84, 1540-1542.	3.3	255
789	Generating doughnut-shaped beams with large charge numbers by use of liquid-crystal spiral phase plates. Applied Optics, 2004, 43, 2292.	2.1	28
790	52.4: Fast Response LCD with Alternate Vertical and Fringe Field Switching. Digest of Technical Papers SID International Symposium, 2004, 35, 1424.	0.3	1
791	Field emission from one-dimensional nanostructured zinc oxide. International Journal of Nanotechnology, 2004, 1, 452.	0.2	23
792	Improving hydrogenation efficiency of polycrystalline silicon thin film transistors by a new approach. Microelectronics Journal, 2003, 34, 1079-1085.	2.0	0

#	Article	IF	Citations
793	Influence of substrate bias on the mechanical properties of ta-C:Co films prepared by filtered cathodic vacuum arc technique. Surface and Coatings Technology, 2003, 169-170, 393-396.	4.8	10
794	Field emission from modified nanocomposite carbon films prepared by filtered cathodic vacuum arc at high negative pulsed bias. Applied Surface Science, 2003, 214, 351-358.	6.1	28
795	Improved luminescent efficiency of a red organic dye with modified molecular structure. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 100, 59-62.	3.5	9
796	Field emission from zinc oxide nanopins. Applied Physics Letters, 2003, 83, 3806-3808.	3.3	332
797	Retardation-film-compensated reflective bistable twisted nematic liquid-crystal displays. Applied Optics, 2003, 42, 3853.	2.1	4
798	Room-Temperature Ultraviolet Lasing from Zinc Oxide Microtubes. Japanese Journal of Applied Physics, 2003, 42, L1229-L1231.	1.5	86
799	Influences of central metal ions on the electroluminescene and transport properties of tris-(8-hydroxyquinoline) metal chelates. Applied Physics Letters, 2003, 82, 3017-3019.	3.3	24
800	Fast response wide viewing angle liquid crystal cell with double-side fringe-field switching. Applied Physics Letters, 2003, 83, 5154-5156.	3.3	22
801	Weak magnetic field pattern detection by CMOS magnetic latch. IEEE Electron Device Letters, 2003, 24, 652-654.	3.9	8
802	Characteristics and Growth Mechanism of ZnO Whiskers Fabricated by Vapor Phase Transport. Japanese Journal of Applied Physics, 2003, 42, 4949-4952.	1.5	39
803	55.4: 270° Twisted Nematic Liquid Crystal Light Valve with Fast Response. Digest of Technical Papers SID International Symposium, 2003, 34, 1480.	0.3	0
804	A Fast Response, Three-Electrode Liquid Crystal Device. Japanese Journal of Applied Physics, 2003, 42, L763-L765.	1.5	28
805	Aligned ZnO Nanofibre Array Prepared by Vapour Transport in Air. Chinese Physics Letters, 2003, 20, 1319-1322.	3.3	11
806	In SituResistance Measurement of Nickel-Induced Lateral Crystallization of Amorphous Silicon. Japanese Journal of Applied Physics, 2003, 42, L898-L900.	1.5	3
807	P-3: Improving Reliability of Low-Temperature Poly-Si TFTs by Nitrous Oxide Plasma Treatment. Digest of Technical Papers SID International Symposium, 2003, 34, 212.	0.3	0
808	Improving diamond–metal adhesion with graded TiCN interlayers. Journal of Applied Physics, 2002, 91, 2051-2054.	2.5	23
809	SOLUTION CERTAINTY IN THECu(110)-(2 \tilde{A} — 1)-2O2-SURFACE CRYSTALLOGRAPHY. International Journal of Modern Physics B, 2002, 16, 71-78.	2.0	6
810	Towards achieving maximum magnetic sensitivity for cross-coupled CMOS magnetic field-effect transistor pair. Electronics Letters, 2002, 38, 709.	1.0	3

#	Article	IF	CITATIONS
811	Retardation Film Compensated Transmittive Bistable Twisted Nematic Liquid Crystal Displays. Japanese Journal of Applied Physics, 2002, 41, 2046-2052.	1.5	3
812	P-67: Compensated Bistable Twisted Nematic Liquid Crystal Displays. Digest of Technical Papers SID International Symposium, 2002, 33, 460.	0.3	0
813	P-1: Generic Design of Silicon Backplane for LCoS Microdisplays. Digest of Technical Papers SID International Symposium, 2002, 33, 200.	0.3	1
814	Low power CMOS level shifters by bootstrapping technique. Electronics Letters, 2002, 38, 876.	1.0	56
815	Time-Dependent Analysis of High-Gain Triggering in Semi-insulating GaAs Photoconductive Switches. Chinese Physics Letters, 2001, 18, 1479-1480.	3.3	7
816	Dielectric suppression and its effect on photoabsorption of nanometric semiconductors. Journal Physics D: Applied Physics, 2001, 34, 2359-2362.	2.8	47
817	A multilayer inplane bending piezoelectric actuator for dual-stage head-positioning control system. Journal of Materials Science: Materials in Electronics, 2001, 12, 111-116.	2.2	8
818	An extended `quantum confinement' theory: surface-coordination imperfection modifies the entire band structure of a nanosolid. Journal Physics D: Applied Physics, 2001, 34, 3470-3479.	2.8	82
819	Bond contraction and lone pair interaction at nitride surfaces. Journal of Applied Physics, 2001, 90, 2615-2617.	2.5	85
820	Intense and stable blue-light emission of Pb(ZrxTi1â^'x)O3. Applied Physics Letters, 2001, 79, 1082-1084.	3.3	20
821			
021	Improved ITO thin films with a thin ZnO buffer layer by sputtering. Thin Solid Films, 2000, 360, 75-81.	1.8	99
822	Improved ITO thin films with a thin ZnO buffer layer by sputtering. Thin Solid Films, 2000, 360, 75-81. Tuning dielectric constant and Young's modulus by nanofabrication., 2000, 4228, 302.	1.8	99
		1.8	
822	Tuning dielectric constant and Young's modulus by nanofabrication. , 2000, 4228, 302. Frequency shift in the photoluminescence of nanometric SiOx: surface bond contraction and		0
822 823	Tuning dielectric constant and Young's modulus by nanofabrication., 2000, 4228, 302. Frequency shift in the photoluminescence of nanometric SiOx: surface bond contraction and oxidation. Journal of Physics Condensed Matter, 1999, 11, L547-L550. Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition.	1.8	0 22
822 823 824	Tuning dielectric constant and Young's modulus by nanofabrication., 2000, 4228, 302. Frequency shift in the photoluminescence of nanometric SiOx: surface bond contraction and oxidation. Journal of Physics Condensed Matter, 1999, 11, L547-L550. Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition. Journal of Applied Physics, 1999, 86, 408-411. Pulsed laser deposited crystalline ultrathin indium tin oxide films and their conduction mechanisms.	1.8 2.5	0 22 510
822 823 824 825	Tuning dielectric constant and Young's modulus by nanofabrication., 2000, 4228, 302. Frequency shift in the photoluminescence of nanometric SiOx: surface bond contraction and oxidation. Journal of Physics Condensed Matter, 1999, 11, L547-L550. Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition. Journal of Applied Physics, 1999, 86, 408-411. Pulsed laser deposited crystalline ultrathin indium tin oxide films and their conduction mechanisms. Thin Solid Films, 1998, 335, 299-302. Liquid-target pulsed laser deposition of gallium nitride thin films. Applied Surface Science, 1998,	1.8 2.5 1.8	0 22 510

#	Article	IF	CITATIONS
829	Ultra Thin Indium Tin Oxide Films On Various Substrates By Pulsed Laser Deposition. Materials Research Society Symposia Proceedings, 1997, 485, 267.	0.1	4
830	Analysis of simultaneous Q-switching and frequency doubling in KTP. Journal of Modern Optics, 1997, 44, 997-1004.	1.3	2
831	Correlation between plasma dynamics and thin film properties in pulsed laser deposition. Applied Surface Science, 1997, 109-110, 595-600.	6.1	48
832	Growth ofcâ€axis oriented gallium nitride thin films on an amorphous substrate by the liquidâ€target pulsed laser deposition technique. Journal of Applied Physics, 1996, 80, 4226-4228.	2.5	79
833	On the initial growth of indium tin oxide on glass. Applied Physics Letters, 1996, 68, 2663-2665.	3.3	103
834	Gallium nitride films made by liquid target pulsed laser deposition. , 1996, , .		0
835	Liquid target pulsed laser deposition and its applications to growing diamond/diamondlike carbon and gallium nitride thin films. , $1996, , .$		0
836	In-situ resistance measurements during pulsed laser deposition of ultrathin films. Applied Surface Science, 1996, 106, 51-54.	6.1	3
837	ZnO nanoresistors by vapor phase transport method., 0,,.		0
838	Optimization of the Au Stud Bump Number for the Flip-Chip Packaged InGaN LEDs. Advanced Materials Research, 0, 753-755, 2515-2520.	0.3	0
839	Perovskite Nanocrystal Luminescent Composite via In-situ Ligand Polymerization Towards Display Application. Journal of Materials Chemistry C, O, , .	5.5	5
840	Improvement of the efficiency and stability of inkjetâ€printed green quantum dot lightâ€emitting diodes by controlling the extra shell of quantum dot. Journal of the Society for Information Display, 0, , .	2.1	1