
Marcy Hernick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3755148/publications.pdf Version: 2024-02-01

MADCY HEDNICK

#	Article	IF	CITATIONS
1	A Process for Curricular Improvement Based on Evaluation of Student Performance on Milestone Examinations. American Journal of Pharmaceutical Education, 2016, 80, 159.	2.1	7
2	Test-Enhanced Learning in an Immunology and Infectious Disease Medicinal Chemistry/Pharmacology Course. American Journal of Pharmaceutical Education, 2015, 79, 97.	2.1	19
3	Molecular Determinants of <i>N</i> -Acetylglucosamine Recognition and Turnover by <i>N</i> -Acetyl-1- <scp>d</scp> - <i>myo</i> -inosityl-2-amino-2-deoxy-l̂±- <scp>d</scp> -glucopyranoside Deacetylase (MshB). Biochemistry, 2015, 54, 3784-3790.	2.5	3
4	Identity of cofactor bound to mycothiol conjugate amidase (Mca) influenced by expression and purification conditions. BioMetals, 2015, 28, 755-763.	4.1	1
5	Recombinant Expression of a Functional Myo-Inositol-1-Phosphate Synthase (MIPS) in Mycobacterium smegmatis. Protein Journal, 2015, 34, 380-390.	1.6	5
6	Improving student understanding of lipids concepts in a biochemistry course using test-enhanced learning. Chemistry Education Research and Practice, 2015, 16, 918-928.	2.5	7
7	Automated docking studies provide insights into molecular determinants of ligand recognition by <i>N</i> â€acetylâ€1â€ <scp>d</scp> â€myoâ€inositylâ€2â€aminoâ€2â€deoxyâ€î±â€ <scp>d</scp> â€glucopyra (MshB). Biopolymers, 2014, 101, 406-417.	no sid e dea	acetylase
8	Structure and Function of the LmbE-like Superfamily. Biomolecules, 2014, 4, 527-545.	4.0	11
9	Mycothiol: a target for potentiation of rifampin and other antibiotics against <i>Mycobacterium tuberculosis</i> . Expert Review of Anti-Infective Therapy, 2013, 11, 49-67.	4.4	28
10	Examination of Mechanism of N-Acetyl-1-d-myo-inosityl-2-amino-2-deoxy-α-d-glucopyranoside Deacetylase (MshB) Reveals Unexpected Role for Dynamic Tyrosine. Journal of Biological Chemistry, 2012, 287, 10424-10434.	3.4	14
11	Metalloenzymes: Native Co-factor or Experimental Artifact?. Biochemistry and Analytical Biochemistry: Current Research, 2012, 01, .	0.4	3
12	A limitation of the continuous spectrophotometric assay for the measurement of myo-inositol-1-phosphate synthase activity. Analytical Biochemistry, 2011, 417, 228-232.	2.4	2
13	A fluorescence-based assay for measuring N-acetyl-1-d-myo-inosityl-2-amino-2-deoxy-α-d-glucopyranoside deacetylase activity. Analytical Biochemistry, 2011, 414, 278-281.	2.4	20
14	The Activity and Cofactor Preferences of N-Acetyl-1-d-myo-inosityl-2-amino-2-deoxy-α-d-glucopyranoside Deacetylase (MshB) Change Depending on Environmental Conditions. Journal of Biological Chemistry, 2011, 286, 20275-20282.	3.4	24
15	Fluorescence-Based Methods to Assay Inhibitors of Lipopolysaccharide Synthesis. Methods in Molecular Biology, 2011, 739, 123-133.	0.9	2
16	Mechanisms of Metal-Dependent Hydrolases in Metabolism. , 2010, , 547-581.		14
17	The <i>Arabidopsis thaliana Myo-</i> Inositol 1-Phosphate Synthase1 Gene Is Required for <i>Myo</i> -inositol Synthesis and Suppression of Cell Death. Plant Cell, 2010, 22, 888-903.	6.6	179
18	Active Site Metal Ion in UDP-3-O-((R)-3-Hydroxymyristoyl)-N-acetylglucosamine Deacetylase (LpxC) Switches between Fe(II) and Zn(II) Depending on Cellular Conditions*. Journal of Biological Chemistry, 2010, 285, 33788-33796.	3.4	37

MARCY HERNICK

#	Article	IF	CITATIONS
19	Activation of <i>Escherichia coli</i> UDP-3- <i>O</i> -[(<i>R</i>)-3-hydroxymyristoyl]- <i>N</i> -acetylglucosamine Deacetylase by Fe ²⁺ Yields a More Efficient Enzyme with Altered Ligand Affinity. Biochemistry, 2010, 49, 2246-2255.	2.5	32
20	Residue Ionization in LpxC Directly Observed by ⁶⁷ Zn NMR Spectroscopy. Journal of the American Chemical Society, 2008, 130, 12671-12679.	13.7	20
21	A Method to Assay Inhibitors of Lipopolysaccharide Synthesis. Methods in Molecular Medicine, 2008, 142, 143-154.	0.8	1
22	Catalytic metal ion switching in zincâ€dependent deacetylases. FASEB Journal, 2008, 22, 611.14.	0.5	0
23	Molecular Recognition byEscherichia coliUDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine Deacetylase Is Modulated by Bound Metal Ionsâ€. Biochemistry, 2006, 45, 14573-14581.	2.5	12
24	Catalytic Mechanism and Molecular Recognition ofE.coliUDP-3-O-(R-3-Hydroxymyristoyl)-N-acetylglucosamine Deacetylase Probed by Mutagenesisâ€. Biochemistry, 2006, 45, 15240-15248.	2.5	33
25	UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine Deacetylase Functions through a General Acid-Base Catalyst Pair Mechanism. Journal of Biological Chemistry, 2005, 280, 16969-16978.	3.4	62
26	Zinc hydrolases: the mechanisms of zinc-dependent deacetylases. Archives of Biochemistry and Biophysics, 2005, 433, 71-84.	3.0	169
27	Studies on the Mechanisms of Activation of Indolequinone Phosphoramidate Prodrugs. Journal of Medicinal Chemistry, 2003, 46, 148-154.	6.4	22
28	Design, Synthesis, and Biological Evaluation of Indolequinone Phosphoramidate Prodrugs Targeted to DT-diaphorase. Journal of Medicinal Chemistry, 2002, 45, 3540-3548.	6.4	42