Michael Poulsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3754943/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The chemical ecology of the fungus-farming termite symbiosis. Natural Product Reports, 2022, 39, 231-248.	5.2	28
2	Avian gut microbiomes taking flight. Trends in Microbiology, 2022, 30, 268-280.	3.5	64
3	Comparative Genomic and Metabolomic Analysis of <i>Termitomyces</i> Species Provides Insights into the Terpenome of the Fungal Cultivar and the Characteristic Odor of the Fungus Garden of <i>Macrotermes natalensis</i> Termites. MSystems, 2022, 7, e0121421.	1.7	8
4	Specific gut bacterial responses to natural diets of tropical birds. Scientific Reports, 2022, 12, 713.	1.6	18
5	Orthogonal protocols for DNA extraction from filamentous fungi. STAR Protocols, 2022, 3, 101126.	0.5	6
6	The drivers of avianâ€haemosporidian prevalence in tropical lowland forests of New Guinea in three dimensions. Ecology and Evolution, 2022, 12, e8497.	0.8	3
7	Morphometrics, Distribution, and DNA Barcoding: An Integrative Identification Approach to the Genus Odontotermes (Termitidae: Blattodea) of Khyber Pakhtunkhwa, Pakistan. Forests, 2022, 13, 674.	0.9	2
8	Symbiont-Mediated Digestion of Plant Biomass in Fungus-Farming Insects. Annual Review of Entomology, 2021, 66, 297-316.	5.7	37
9	GNPS-guided discovery of xylacremolide C and D, evaluation of their putative biosynthetic origin and bioactivity studies of xylacremolide A and B. RSC Advances, 2021, 11, 18748-18756.	1.7	2
10	Disentangling the Relative Roles of Vertical Transmission, Subsequent Colonizations, and Diet on Cockroach Microbiome Assembly. MSphere, 2021, 6, .	1.3	15
11	Flexibility and resilience of great tit (Parus major) gut microbiomes to changing diets. Animal Microbiome, 2021, 3, 20.	1.5	30
12	Femaleâ€biased sex allocation and lack of inbreeding avoidance in <i>Cubitermes</i> termites. Ecology and Evolution, 2021, 11, 5598-5605.	0.8	5
13	Comparative Genomics Reveals Prophylactic and Catabolic Capabilities of <i>Actinobacteria</i> within the Fungus-Farming Termite Symbiosis. MSphere, 2021, 6, .	1.3	17
14	Species-specific but not phylosymbiotic gut microbiomes of New Guinean passerine birds are shaped by diet and flight-associated gut modifications. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210446.	1.2	29
15	COVID-19 drug practices risk antimicrobial resistance evolution. Lancet Microbe, The, 2021, 2, e135-e136.	3.4	47
16	The Termite Fungal Cultivar <i>Termitomyces</i> Combines Diverse Enzymes and Oxidative Reactions for Plant Biomass Conversion. MBio, 2021, 12, e0355120.	1.8	16
17	Genome reduction and relaxed selection is associated with the transition to symbiosis in the basidiomycete genus Podaxis. IScience, 2021, 24, 102680.	1.9	9
18	Comparative Genomic and Metabolic Analysis of Streptomyces sp. RB110 Morphotypes Illuminates Genomic Rearrangements and Formation of a New 46-Membered Antimicrobial Macrolide. ACS Chemical Biology, 2021, 16, 1482-1492.	1.6	4

#	Article	IF	CITATIONS
19	Phylogenetic and phylogenomic analyses reveal two new genera and three new species of ophiostomatalean fungi from termite fungus combs. Mycologia, 2021, 113, 1-19.	0.8	2
20	Isolation, characterization, and genome assembly of <i>Barnettozyma botsteinii</i> sp. nov. and novel strains of <i>Kurtzmaniella quercitrusa</i> isolated from the intestinal tract of the termite <i>Macrotermes bellicosus</i> . G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	7
21	Resistance and Vulnerability of Honeybee (Apis mellifera) Gut Bacteria to Commonly Used Pesticides. Frontiers in Microbiology, 2021, 12, 717990.	1.5	16
22	Species- and Caste-Specific Gut Metabolomes in Fungus-Farming Termites. Metabolites, 2021, 11, 839.	1.3	5
23	Great Tit (Parus major) Uropygial Gland Microbiomes and Their Potential Defensive Roles. Frontiers in Microbiology, 2020, 11, 1735.	1.5	13
24	Asexual and sexual reproduction are two separate developmental pathways in a <i>Termitomyces</i> species. Biology Letters, 2020, 16, 20200394.	1.0	7
25	You don't have the guts: a diverse set of fungi survive passage through Macrotermes bellicosus termite guts. BMC Evolutionary Biology, 2020, 20, 163.	3.2	7
26	The impact of early life antibiotic use on atopic and metabolic disorders. Evolution, Medicine and Public Health, 2020, 2020, 279-289.	1.1	12
27	Spatiotemporal patterns of avian host–parasite interactions in the face of biogeographical range expansions. Molecular Ecology, 2020, 29, 2431-2448.	2.0	12
28	Cloacal swabs and alcohol bird specimens are good proxies for compositional analyses of gut microbial communities of Great tits (Parus major). Animal Microbiome, 2020, 2, 9.	1.5	32
29	Synergies Between Division of Labor and Gut Microbiomes of Social Insects. Frontiers in Ecology and Evolution, 2020, 7, .	1.1	20
30	Nocardia macrotermitis sp. nov. and Nocardia aurantia sp. nov., isolated from the gut of the fungus-growing termite Macrotermes natalensis. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 5226-5234.	0.8	16
31	Streptomyces smaragdinus sp. nov., isolated from the gut of the fungus growing-termite Macrotermes natalensis. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 5806-5811.	0.8	15
32	Efomycins K and L From a Termite-Associated Streptomyces sp. M56 and Their Putative Biosynthetic Origin. Frontiers in Microbiology, 2019, 10, 1739.	1.5	23
33	Fungiculture in Termites Is Associated with a Mycolytic Gut Bacterial Community. MSphere, 2019, 4, .	1.3	35
34	Foraging Macrotermes natalensis Fungus-Growing Termites Avoid a Mycopathogen but Not an Entomopathogen. Insects, 2019, 10, 185.	1.0	10
35	Exploring interactions between Blastocystis sp., Strongyloides spp. and the gut microbiomes of wild chimpanzees in Senegal. Infection, Genetics and Evolution, 2019, 74, 104010.	1.0	16
36	Disease-free monoculture farming by fungus-growing termites. Scientific Reports, 2019, 9, 8819.	1.6	36

#	Article	IF	CITATIONS
37	The scent of symbiosis: gut bacteria may affect social interactions in leaf-cutting ants. Animal Behaviour, 2019, 150, 239-254.	0.8	31
38	Termite Taxonomy, Challenges and Prospects: West Africa, A Case Example. Insects, 2019, 10, 32.	1.0	22
39	Symbiotic Plant Biomass Decomposition in Fungus-Growing Termites. Insects, 2019, 10, 87.	1.0	38
40	Gut microbial compositions mirror casteâ€specific diets in a major lineage of social insects. Environmental Microbiology Reports, 2019, 11, 196-205.	1.0	34
41	Can interaction specificity in the fungus-farming termite symbiosis be explained by nutritional requirements of the fungal crop?. Fungal Ecology, 2019, 38, 54-61.	0.7	15
42	Reviewing the taxonomy of Podaxis: Opportunities for understanding extreme fungal lifestyles. Fungal Biology, 2019, 123, 183-187.	1.1	4
43	Hemimetabolous genomes reveal molecular basis of termite eusociality. Nature Ecology and Evolution, 2018, 2, 557-566.	3.4	223
44	Enzyme Activities at Different Stages of Plant Biomass Decomposition in Three Species of Fungus-Growing Termites. Applied and Environmental Microbiology, 2018, 84, .	1.4	31
45	A Visual Guide for Studying Behavioral Defenses to Pathogen Attacks in Leaf-Cutting Ants. Journal of Visualized Experiments, 2018, , .	0.2	7
46	Natural Products from Actinobacteria Associated with Fungus-Growing Termites. Antibiotics, 2018, 7, 83.	1.5	61
47	Comparative Analyses of the Digestive Tract Microbiota of New Guinean Passerine Birds. Frontiers in Microbiology, 2018, 9, 1830.	1.5	47
48	Expanding the Rubterolone Family: Intrinsic Reactivity and Directed Diversification of PKSâ€derived Pyrans. Chemistry - A European Journal, 2018, 24, 11319-11324.	1.7	15
49	Mixed-Mode Transmission Shapes Termite Gut Community Assemblies. Trends in Microbiology, 2018, 26, 557-559.	3.5	10
50	Promises and challenges in insect–plant interactions. Entomologia Experimentalis Et Applicata, 2018, 166, 319-343.	0.7	66
51	Frontispiece: Expanding the Rubterolone Family: Intrinsic Reactivity and Directed Diversification of PKS-derived Pyrans. Chemistry - A European Journal, 2018, 24, .	1.7	0
52	Macrotermycins A–D, Glycosylated Macrolactams from a Termite-Associated <i>Amycolatopsis</i> sp. M39. Organic Letters, 2017, 19, 1000-1003.	2.4	115
53	Isolation, Biosynthesis and Chemical Modifications of Rubterolones A–F: Rare Tropolone Alkaloids from <i>Actinomadura</i> sp. 5â€2. Chemistry - A European Journal, 2017, 23, 9338-9345.	1.7	39
54	Linear Peptides Are the Major Products of a Biosynthetic Pathway That Encodes for Cyclic Depsipeptides. Organic Letters, 2017, 19, 1772-1775.	2.4	35

#	Article	IF	CITATIONS
55	Draft genome of the fungus-growing termite pathogenic fungus Ophiocordyceps bispora (Ophiocordycipitaceae, Hypocreales, Ascomycota). Data in Brief, 2017, 11, 537-542.	0.5	9
56	Pycnoscelus surinamensis cockroach gut microbiota respond consistently to a fungal diet without mirroring those of fungus-farming termites. PLoS ONE, 2017, 12, e0185745.	1.1	10
57	Potential for Nitrogen Fixation in the Fungus-Growing Termite Symbiosis. Frontiers in Microbiology, 2016, 7, 1993.	1.5	37
58	Natural products from microbes associated with insects. Beilstein Journal of Organic Chemistry, 2016, 12, 314-327.	1.3	101
59	Phylogenetic analyses of Podaxis specimens from Southern Africa reveal hidden diversity and new insights into associations with termites. Fungal Biology, 2016, 120, 1065-1076.	1.1	10
60	Pseudoxylallemycins A–F, Cyclic Tetrapeptides with Rare Allenyl Modifications Isolated from <i>Pseudoxylaria</i> sp. X802: A Competitor of Fungus-Growing Termite Cultivars. Organic Letters, 2016, 18, 3338-3341.	2.4	50
61	Bacterial communities in termite fungus combs are comprised of consistent gut deposits and contributions from the environment. Microbial Ecology, 2016, 71, 207-220.	1.4	48
62	Draft genome sequences of Pantoea agglomerans and Pantoea vagans isolates associated with termites. Standards in Genomic Sciences, 2016, 11, 23.	1.5	29
63	The role of the glucose-sensing transcription factor carbohydrate-responsive element-binding protein pathway in termite queen fertility. Open Biology, 2016, 6, 160080.	1.5	8
64	Diet is the primary determinant of bacterial community structure in the guts of higher termites. Molecular Ecology, 2015, 24, 5284-5295.	2.0	143
65	Towards an integrated understanding of the consequences of fungus domestication on the fungusâ€growing termite gut microbiota. Environmental Microbiology, 2015, 17, 2562-2572.	1.8	34
66	Somatic incompatibility and genetic structure of fungal crops in sympatric Atta colombica and Acromyrmex echinatior leaf-cutting ants. Fungal Ecology, 2015, 18, 10-17.	0.7	13
67	A genomic comparison of two termites with different social complexity. Frontiers in Genetics, 2015, 6, 9.	1.1	60
68	The Enterobacterium Trabulsiella odontotermitis Presents Novel Adaptations Related to Its Association with Fungus-Growing Termites. Applied and Environmental Microbiology, 2015, 81, 6577-6588.	1.4	18
69	Convergent Bacterial Microbiotas in the Fungal Agricultural Systems of Insects. MBio, 2014, 5, e02077.	1.8	96
70	Identifying the core microbial community in the gut of fungusâ€growing termites. Molecular Ecology, 2014, 23, 4631-4644.	2.0	151
71	Interaction between Workers during a Short Time Window Is Required for Bacterial Symbiont Transmission in Acromyrmex Leaf-Cutting Ants. PLoS ONE, 2014, 9, e103269.	1.1	36
72	Natalamycin A, an ansamycin from a termite-associated Streptomyces sp Chemical Science, 2014, 5, 4333-4338.	3.7	83

5

#	Article	IF	CITATIONS
73	Complementary symbiont contributions to plant decomposition in a fungus-farming termite. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14500-14505.	3.3	243
74	The fungus-growing termite Macrotermes natalensis harbors bacillaene-producing Bacillus sp. that inhibit potentially antagonistic fungi. Scientific Reports, 2013, 3, 3250.	1.6	117
75	Comparison of 26 Sphingomonad Genomes Reveals Diverse Environmental Adaptations and Biodegradative Capabilities. Applied and Environmental Microbiology, 2013, 79, 3724-3733.	1.4	151
76	Association between Pseudonocardia symbionts and Atta leaf-cutting ants suggested by improved isolation methods. International Microbiology, 2013, 16, 17-25.	1.1	12
77	Towards a Better Understanding of the Evolution of Specialized Parasites of Fungus-Growing Ant Crops. Psyche: Journal of Entomology, 2012, 2012, 1-10.	0.4	19
78	Microtermolides A and B from Termite-Associated <i>Streptomyces</i> sp. and Structural Revision of Vinylamycin. Organic Letters, 2012, 14, 2822-2825.	2.4	95
79	Exploring the Potential for Actinobacteria as Defensive Symbionts in Fungus-Growing Termites. Microbial Ecology, 2012, 63, 975-985.	1.4	99
80	Behind every great ant, there is a great gut. Molecular Ecology, 2012, 21, 2054-2057.	2.0	19
81	The Role of Symbiont Genetic Distance and Potential Adaptability in Host Preference Towards <i>Pseudonocardia</i> Symbionts in <i>Acromyrmex</i> Leaf-Cutting Ants. Journal of Insect Science, 2011, 11, 1-12.	0.6	2
82	Specificity in the symbiotic association between fungus-growing ants and protective <i>Pseudonocardia</i> bacteria. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1814-1822.	1.2	135
83	Sceliphrolactam, a Polyene Macrocyclic Lactam from a Wasp-Associated <i>Streptomyces</i> sp Organic Letters, 2011, 13, 752-755.	2.4	127
84	Chemical Analyses of Wasp-Associated Streptomyces Bacteria Reveal a Prolific Potential for Natural Products Discovery. PLoS ONE, 2011, 6, e16763.	1.1	125
85	Preliminary In Vitro Insights into the Use of Natural Fungal Pathogens of Leaf-cutting Ants as Biocontrol Agents. Current Microbiology, 2011, 63, 250-258.	1.0	32
86	Caste specialization in behavioral defenses against fungus garden parasites in Acromyrmex octospinosus leaf-cutting ants. Insectes Sociaux, 2011, 58, 65-75.	0.7	28
87	Anthropogenic effects on interaction outcomes: examples from insect-microbial symbioses in forest and savanna ecosystems. Symbiosis, 2011, 53, 101-121.	1.2	26
88	Recruitment of minor workers for defense against a specialized parasite ofAttaleaf-cutting ant fungus gardens. Ethology Ecology and Evolution, 2011, 23, 61-75.	0.6	10
89	Variation in <i>Pseudonocardia</i> antibiotic defence helps govern parasiteâ€induced morbidity in <i>Acromyrmex</i> leafâ€cutting ants. Environmental Microbiology Reports, 2010, 2, 534-540.	1.0	77
90	Symbiont Interactions in a Tripartite Mutualism: Exploring the Presence and Impact of Antagonism between Two Fungus-Growing Ant Mutualists. PLoS ONE, 2010, 5, e8748.	1.1	29

#	Article	IF	CITATIONS
91	Biomedical exploitation of the fungus-growing ant symbiosis. Drug News and Perspectives, 2010, 23, 203.	1.9	5
92	Insect Symbioses: A Case Study of Past, Present, and Future Fungus-growing Ant Research. Environmental Entomology, 2009, 38, 78-92.	0.7	66
93	Caste-specific symbiont policing by workers of Acromyrmex fungus-growing ants. Behavioral Ecology, 2009, 20, 378-384.	1.0	20
94	Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis. Nature Chemical Biology, 2009, 5, 391-393.	3.9	360
95	EPHEMERAL WINDOWS OF OPPORTUNITY FOR HORIZONTAL TRANSMISSION OF FUNGAL SYMBIONTS IN LEAF-CUTTING ANTS. Evolution; International Journal of Organic Evolution, 2009, 63, 2235-2247.	1.1	25
96	On ants, plants and fungi. New Phytologist, 2009, 182, 785-788.	3.5	3
97	Antagonistic Bacterial Interactions Help Shape Host-Symbiont Dynamics within the Fungus-Growing Ant-Microbe Mutualism. PLoS ONE, 2007, 2, e960.	1.1	44
98	Symbiont recognition of mutualistic bacteria by Acromyrmex leaf-cutting ants. ISME Journal, 2007, 1, 313-320.	4.4	48
99	The origin of the chemical profiles of fungal symbionts and their significance for nestmate recognition in Acromyrmex leaf-cutting ants. Behavioral Ecology and Sociobiology, 2007, 61, 1637-1649.	0.6	43
100	Specificity in Chemical Profiles of Workers, Brood and Mutualistic Fungi in Atta, Acromyrmex, and Sericomyrmex Fungus-growing Ants. Journal of Chemical Ecology, 2007, 33, 2281-2292.	0.9	36
101	Coevolved Crypts and Exocrine Glands Support Mutualistic Bacteria in Fungus-Growing Ants. Science, 2006, 311, 81-83.	6.0	296
102	Differential resistance and the importance of antibiotic production in Acromyrmex echinatior leaf-cutting ant castes towards the entomopathogenic fungus Aspergillus nomius. Insectes Sociaux, 2006, 53, 349-355.	0.7	35
103	Specificity of the mutualistic association between actinomycete bacteria and two sympatric species of Acromyrmex leaf-cutting ants. Molecular Ecology, 2005, 14, 3597-3604.	2.0	72
104	Mutualistic Fungi Control Crop Diversity in Fungus-Growing Ants. Science, 2005, 307, 741-744.	6.0	143
105	Density-dependence and within-host competition in a semelparous parasite of leaf-cutting ants. BMC Evolutionary Biology, 2004, 4, 45.	3.2	64
106	The effect of metapleural gland secretion on the growth of a mutualistic bacterium on the cuticle of leaf-cutting ants. Die Naturwissenschaften, 2003, 90, 406-409.	0.6	38
107	Within-colony transmission and the cost of a mutualistic bacterium in the leaf-cutting ant Acromyrmex octospinosus. Functional Ecology, 2003, 17, 260-269.	1.7	62
108	Mutualistic bacteria and a possible trade-off between alternative defence mechanisms in Acromyrmex leaf-cutting ants. Insectes Sociaux, 2002, 49, 15-19.	0.7	54

#	Article	IF	CITATIONS
109	Experimental evidence for the costs and hygienic significance of the antibiotic metapleural gland secretion in leaf-cutting ants. Behavioral Ecology and Sociobiology, 2002, 52, 151-157.	0.6	139