List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3754632/publications.pdf Version: 2024-02-01

<u> Снім-Існі Уцел</u>

#	Article	IF	CITATIONS
1	Synthesis of Well-Defined Amphiphilic Block Copolymers Having Phospholipid Polymer Sequences as a Novel Biocompatible Polymer Micelle Reagent. Biomacromolecules, 2005, 6, 663-670.	2.6	188
2	Glycerol/starch/Na+-montmorillonite nanocomposites: A XRD, FTIR, DSC and 1H NMR study. Carbohydrate Polymers, 2011, 83, 1591-1597.	5.1	156
3	Stimuliâ€Responsive Liquid Marbles: Controlling Structure, Shape, Stability, and Motion. Advanced Functional Materials, 2016, 26, 7206-7223.	7.8	140
4	Effects of Polyelectrolyte Chain Stiffness, Charge Mobility, and Charge Sequences on Binding to Proteins and Micelles. Biomacromolecules, 2006, 7, 1025-1035.	2.6	127
5	Thermo-Responsive Diblock Copolymers of Poly(<i>N</i> -isopropylacrylamide) and Poly(<i>N</i> -vinyl-2-pyrroridone) Synthesized via Organotellurium-Mediated Controlled Radical Polymerization (TERP). Macromolecules, 2007, 40, 5907-5915.	2.2	127
6	pH-Responsive Micellization of Amphiphilic Diblock Copolymers Synthesized via Reversible Additionâ^'Fragmentation Chain Transfer Polymerization. Macromolecules, 2003, 36, 4208-4215.	2.2	124
7	Self-Assembly of Cholesterol-Containing Water-Soluble Polymers. International Journal of Polymer Science, 2012, 2012, 1-10.	1.2	108
8	Heat-Induced Association and Dissociation Behavior of Amphiphilic Diblock Copolymers Synthesized via Reversible Additionâ^'Fragmentation Chain Transfer Radical Polymerization. Macromolecules, 2004, 37, 7507-7513.	2.2	97
9	Salt Effect on the Heat-Induced Association Behavior of Gold Nanoparticles Coated with Poly(<i>N</i> -isopropylacrylamide) Prepared via Reversible Additionâ^Fragmentation Chain Transfer (RAFT) Radical Polymerization. Langmuir, 2007, 23, 12842-12848.	1.6	95
10	Preparation and Characterization of a pH-Responsive Nanogel Based on a Photo-Cross-Linked Micelle Formed From Block Copolymers with Controlled Structure. Langmuir, 2009, 25, 5258-5265.	1.6	94
11	Mesoporous Iron Oxide Synthesized Using Poly(styrene- <i>b</i> -acrylic acid- <i>b</i> ethylene glycol) Block Copolymer Micelles as Templates for Colorimetric and Electrochemical Detection of Glucose. ACS Applied Materials & Interfaces, 2018, 10, 1039-1049.	4.0	90
12	Hydrophobic Self-Association of Cholesterol Moieties Covalently Linked to Polyelectrolytes:Â Effect of Spacer Bond. Langmuir, 1998, 14, 6059-6067.	1.6	88
13	Synthesis of Hollow CaCO ₃ Nanospheres Templated by Micelles of Poly(styrene- <i>b</i> -acrylic acid- <i>b</i> -ethylene glycol) in Aqueous Solutions. Langmuir, 2011, 27, 379-384.	1.6	76
14	Reversible pH-Induced Formation and Disruption of Unimolecular Micelles of an Amphiphilic Polyelectrolyte. Macromolecules, 2002, 35, 5243-5249.	2.2	75
15	Synthesis of sequence-controlled copolymers from extremely polar and apolar monomers by living radical polymerization and their phase-separated structures. Journal of Polymer Science Part A, 2005, 43, 6073-6083.	2.5	74
16	Fluorescence Studies of pH-Responsive Unimolecular Micelles Formed from Amphiphilic Polysulfonates Possessing Long-Chain Alkyl Carboxyl Pendants. Macromolecules, 2002, 35, 10182-10188.	2.2	64
17	Multifunctional Coreâ€Shellâ€Coronaâ€Type Polymeric Micelles for Anticancer Drugâ€Delivery and Imaging. Chemistry - A European Journal, 2013, 19, 4812-4817.	1.7	64
18	Synthesis of Oppositely Charged Block Copolymers of Poly(ethylene glycol) via Reversible Additionâ^'Fragmentation Chain Transfer Radical Polymerization and Characterization of Their Polyion Complex Micelles in Water. Macromolecules, 2009, 42, 376-383.	2.2	63

#	Article	IF	CITATIONS
19	Ultraviolet-light-responsive Liquid Marbles. Chemistry Letters, 2013, 42, 586-588.	0.7	62
20	pH-Responsive Hairy Particles Synthesized by Dispersion Polymerization with a Macroinitiator as an Inistab and Their Use as a Gas-Sensitive Liquid Marble Stabilizer. Macromolecules, 2012, 45, 2863-2873.	2.2	60
21	Thermo-responsive liquid marbles. Polymer Journal, 2014, 46, 145-148.	1.3	58
22	Electrospun PLA: PCL composites embedded with unmodified and 3-aminopropyltriethoxysilane (ASP) modified halloysite nanotubes (HNT). Applied Physics A: Materials Science and Processing, 2013, 110, 433-442.	1.1	56
23	Gold nanoparticles supported on mesoporous iron oxide for enhanced CO oxidation reaction. Nanoscale, 2018, 10, 4779-4785.	2.8	54
24	Micrometer-Sized Gold–Silica Janus Particles as Particulate Emulsifiers. Langmuir, 2013, 29, 5457-5465.	1.6	53
25	Development of a Novel Antifouling Platform for Biosensing Probe Immobilization from Methacryloyloxyethyl Phosphorylcholine-Containing Copolymer Brushes. Langmuir, 2012, 28, 5872-5881.	1.6	51
26	Preparation and Characterization of Polyion Complex Micelles with Phosphobetaine Shells. Langmuir, 2013, 29, 9651-9661.	1.6	50
27	Preparation of upper critical solution temperature (UCST) responsive diblock copolymers bearing pendant ureido groups and their micelle formation behavior in water. Soft Matter, 2015, 11, 5204-5213.	1.2	47
28	Self-Association of Cholesterol-End-Capped Poly(sodium 2-(acrylamido)-2-methylpropanesulfonate) in Aqueous Solution. Macromolecules, 2000, 33, 1224-1231.	2.2	45
29	Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries. Nanoscale, 2011, 3, 4768.	2.8	45
30	pH-responsive disruption of â€~liquid marbles' prepared from water and poly(6-(acrylamido) hexanoic) Tj ET	Qq0 <u>0</u> 0 rg	BT /Overlock
31	Near-infrared-responsive Liquid Marbles Stabilized with Carbon Nanotubes. Chemistry Letters, 2013, 42, 719-721.	0.7	45
32	pH- and temperature-responsive aqueous foams stabilized by hairy latex particles. Soft Matter, 2015, 11, 572-579.	1.2	45
33	Adsorption Characteristics of Synthesized Polyelectrolytes onto Alumina Nanoparticles and their Application in Antibiotic Removal. Langmuir, 2020, 36, 13001-13011.	1.6	44
34	Intermolecular Interactions and Self-Assembly in Aqueous Solution of a Mixture of Anionic–Neutral and Cationic–Neutral Block Copolymers. Macromolecules, 2015, 48, 7222-7229.	2.2	43
35	Modeling Adsorption of Cationic Surfactants at Air/Water Interface without Using the Gibbs Equation. Langmuir, 2013, 29, 4743-4749.	1.6	41
36	Reversible Vesicle–Spherical Micelle Transition in a Polyion Complex Micellar System Induced by Changing the Mixing Ratio of Copolymer Components. Macromolecules, 2016, 49, 3091-3099.	2.2	39

SHIN-ICHI YUSA

#	Article	IF	CITATIONS
37	A new and consistent model for dynamic adsorption of CTAB at air/water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 406, 24-30.	2.3	38
38	Synthesis of stimuliâ€responsive macroazoinitiators and their use as an inistab toward hairy polymer latex particles. Journal of Polymer Science Part A, 2009, 47, 3431-3443.	2.5	37
39	Novel synthesis route for Ag@SiO2 core–shell nanoparticles via micelle template of double hydrophilic block copolymer. RSC Advances, 2012, 2, 5938.	1.7	37
40	Surface modification with well-defined biocompatible triblock copolymers. Colloids and Surfaces B: Biointerfaces, 2007, 57, 226-236.	2.5	36
41	Non-surface Activity and Micellization Behavior of Cationic Amphiphilic Block Copolymer Synthesized by Reversible Addition–Fragmentation Chain Transfer Process. Langmuir, 2011, 27, 9237-9244.	1.6	36
42	Thermoresponsive Polyphosphoesters Bearing Enzyme-cleavable Side Chains. Chemistry Letters, 2009, 38, 1054-1055.	0.7	34
43	Self-Association of a Thermosensitive Amphiphilic Block Copolymer Poly(<i>N</i> -isopropylacrylamide)- <i>b</i> -poly(<i>N</i> -vinyl-2-pyrrolidone) in Aqueous Solution upon Heating. Macromolecules, 2013, 46, 226-235.	2.2	33
44	Synergistic Adsorption of MIBC/CTAB Mixture at the Air/Water Interface and Applicability of Gibbs Adsorption Equation. Langmuir, 2014, 30, 5790-5796.	1.6	33
45	Gas Bubbles Stabilized by Janus Particles with Varying Hydrophilic–Hydrophobic Surface Characteristics. Langmuir, 2018, 34, 933-942.	1.6	33
46	Synthesis of thermoâ€responsive 4â€arm starâ€shaped porphyrinâ€centered poly(<i>N,N</i> â€diethylacrylamid via reversible additionâ€fragmentation chain transfer radical polymerization. Journal of Polymer Science Part A, 2009, 47, 6827-6838.	e) 2.5	32
47	Solution Behavior of Poly(n-Isopropylacrylamide) in Water: Effect of Additives. Journal of Dispersion Science and Technology, 2011, 32, 1111-1118.	1.3	32
48	Aqueous polymeric micelles of poly[N-isopropylacrylamide-b-sodium 2-(acrylamido)-2-methylpropanesulfonate] with a spiropyran dimer pendant: quadruple stimuli-responsiveness. Soft Matter, 2012, 8, 9628.	1.2	32
49	Adsorptive removal of cefixime using a novel adsorbent based on synthesized polycation coated nanosilica rice husk. Progress in Organic Coatings, 2021, 158, 106361.	1.9	29
50	Cobalt oxide hollow nanoparticles as synthesized by templating a tri-block copolymer micelle with a core–shell–corona structure: a promising anode material for lithium ion batteries. New Journal of Chemistry, 2015, 39, 4726-4730.	1.4	28
51	Effect of Polycation Structure on Interaction with Lipid Membranes. Journal of Physical Chemistry B, 2017, 121, 7318-7326.	1.2	27
52	Liquid Marbles in Nature: Craft of Aphids for Survival. Langmuir, 2019, 35, 6169-6178.	1.6	27
53	Polycation–Anionic Lipid Membrane Interactions. Langmuir, 2020, 36, 12435-12450.	1.6	27
54	Formation of Polyion Complex (PIC) Micelles and Vesicles with Anionic pH-Responsive Unimer Micelles and Cationic Diblock Copolymers in Water. Langmuir, 2016, 32, 3945-3953.	1.6	26

#	Article	IF	CITATIONS
55	Kinetics of Morphological Transition between Cylindrical and Spherical Micelles in a Mixture of Anionic–Neutral and Cationic–Neutral Block Copolymers Studied by Time-Resolved SAXS and USAXS. Macromolecules, 2018, 51, 3654-3662.	2.2	25

Stimuli-induced core-corona inversion of micelles of water-soluble poly(sodium) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $\frac{50}{1.8}$ 702 Td $\frac{22}{24}$ -(acryland 2) (acryland 2) (

57	pH-responsive polymeric micelles with core–shell–corona architectures as intracellular anti-cancer drug carriers. Science and Technology of Advanced Materials, 2013, 14, 044402.	2.8	24
58	Facile strategy for stability control of gold nanoparticles synthesized by aqueous reduction method. Current Applied Physics, 2010, 10, 708-714.	1.1	23
59	Polyion Complex Vesicles with Solvated Phosphobetaine Shells Formed from Oppositely Charged Diblock Copolymers. Polymers, 2017, 9, 49.	2.0	23
60	Structure-Selective Dye Uptake into an Aggregate of a Copolymer with Linear Polyelectrolyte Block and Hydrophobic Block Carrying Pendant Dendritic Moiety in Water. Journal of Physical Chemistry B, 2005, 109, 1226-1230.	1.2	22
61	Synthesis of hollow BaSO ₄ nanospheres templated by core–shell–corona type polymeric micelles. New Journal of Chemistry, 2012, 36, 125-129.	1.4	22
62	Synthesis of magnetic α-Fe2O3 and Fe3O4 hollow nanospheres for sustained release of ibuprofen. Materials Letters, 2012, 73, 4-7.	1.3	22
63	Hybridization of poly(2-methacryloyloxyethyl phosphorylcholine-block-2-ethylhexyl methacrylate) with segmented polyurethane for reducing thrombogenicity. Colloids and Surfaces B: Biointerfaces, 2013, 108, 239-245.	2.5	22
64	Stable polymersomes based on ionic–zwitterionic block copolymers modified with superparamagnetic iron oxide nanoparticles for biomedical applications. Journal of Materials Chemistry B, 2015, 3, 5523-5531.	2.9	22
65	Soft-templated synthesis of mesoporous nickel oxide using poly(styrene-block-acrylic) Tj ETQq1 1 0.784314 r	gBT /Qverlock	₹ 10 Tf 50 3 22
66	pH-Responsive Micellization of Amine-Containing Cationic Diblock Copolymers Prepared by Reversible Addition-Fragmentation Chain Transfer (RAFT) Radical Polymerization. Polymer Journal, 2005, 37, 480-488.	1.3	21
67	Incorporation and release behavior of amitriptylene in core–shell–corona type triblock copolymer micelles. Colloids and Surfaces B: Biointerfaces, 2011, 88, 734-740.	2.5	20
68	Preparation and characterization of sorbitol modified nanoclay with high amylose bionanocomposites. Carbohydrate Polymers, 2011, 85, 97-104.	5.1	20
69	Salt and Heat Induced Aggregation of Diblock Copolymers of Sodium 2-(acrylamido)-2-methylpropanesulfonate and N-Isopropylacrylamide in Aqueous Solutions. Journal of Dispersion Science and Technology, 2012, 33, 287-292.	1.3	20
70	Novel MoO3 and WO3 hollow nanospheres assembled with polymeric micelles. Materials Letters, 2012, 66, 25-28.	1.3	20
71	Thermoresponsive Liquid Marbles Prepared with Low Melting Point Powder. Chemistry Letters, 2015, 44, 1077-1079.	0.7	20

#	Article	IF	CITATIONS
73	Upper Critical Solution Temperature (UCST) Behavior of Polystyrene-Based Polyampholytes in Aqueous Solution. Polymers, 2019, 11, 265.	2.0	20
74	Interpolymer Association of Cholesterol Pendants Linked to a Polyelectrolyte As Studied by Quasielastic Light Scattering and Fluorescence Techniques. Langmuir, 1999, 15, 8826-8831.	1.6	19
75	Preparation of ureido group bearing polymers and their upper critical solution temperature in water. Journal of Polymer Science Part A, 2016, 54, 2845-2854.	2.5	19
76	Thermo-Responsive Behavior of Amphoteric Diblock Copolymers Bearing Sulfonate and Quaternary Amino Pendant Groups. Langmuir, 2019, 35, 1458-1464.	1.6	19
77	Micelle formation of poly(ethylene oxide-b-sodium 2-(acrylamido)-2-methyl-1-propane) Tj ETQq1 1 0.784314 rgBT Polymer Chemistry, 2010, 1, 347-353.	/Overlock 1.9	10 Tf 50 58 18
78	Solubilization of C ₆₀ by micellization with a thermoresponsive block copolymer in water: Characterization, singlet oxygen generation, and DNA photocleavage. Journal of Polymer Science Part A, 2011, 49, 2761-2770.	2.5	18
79	Novel LaBO3 hollow nanospheres of size 34±2nm templated by polymeric micelles. Journal of Colloid and Interface Science, 2012, 370, 51-57.	5.0	18
80	Sterically stabilized polypyrrole–palladium nanocomposite particles synthesized by aqueous chemical oxidative dispersion polymerization. Colloid and Polymer Science, 2013, 291, 223-230.	1.0	18
81	pH-responsive Liquid Marbles Prepared Using Fluorinated Fatty Acid. Chemistry Letters, 2016, 45, 547-549.	0.7	18
82	Unique Associative Properties of Copolymers of Sodium Acrylate and Oligo(ethylene oxide) Alkyl Ether Methacrylates in Water. Macromolecules, 2005, 38, 7837-7844.	2.2	17
83	Physicochemical Properties of Micelles of Poly(styrene- <i>b</i> -[3-(methacryloylamino)propyl]trimethylammonium chloride- <i>b</i> -ethylene) Tj ETQq1 1 C). ₮₷ 4314 ।	rgBT /Overlo
84	Water-soluble complexes formed from hydrogen bonding interactions between a poly(ethylene) Tj ETQq0 0 0 rgB	T /Qverloc	k 10 Tf 50 3
85	Chain-length dependence of polyion complex architecture bearing phosphobetaine block explored using SAXS and FFF-MALS. Polymer Journal, 2014, 46, 617-622.	1.3	17
86	All-inorganic inverse perovskite solar cells using zinc oxide nanocolloids on spin coated perovskite layer. Nano Convergence, 2017, 4, 18.	6.3	17
87	Self-association behavior of amphiphilic molecules based on incompletely condensed cage silsesquioxanes and poly(ethylene glycol)s. Polymer Journal, 2018, 50, 337-345.	1.3	17
88	Temperature-Responsive Behavior of Double Hydrophilic Carboxy-Sulfobetaine Block Copolymers and Their Self-Assemblies in Water. Langmuir, 2019, 35, 1571-1582.	1.6	17
89	Preparation of Water-soluble Polyion Complex (PIC) Micelles Covered with Amphoteric Random Copolymer Shells with Pendant Sulfonate and Quaternary Amino Groups. Polymers, 2018, 10, 205.	2.0	16
90	Anticoagulant Properties of Poly(sodium 2-(acrylamido)-2-methylpropanesulfonate)-Based Di- and Triblock Polymers. Biomacromolecules, 2018, 19, 3104-3118.	2.6	16

#	Article	IF	CITATIONS
91	pH-Responsive Aqueous Bubbles Stabilized With Polymer Particles Carrying Poly(4-vinylpyridine) Colloidal Stabilizer. Frontiers in Chemistry, 2018, 6, 269.	1.8	15
92	pH-Responsive Polyion Complex Vesicle with Polyphosphobetaine Shells. Langmuir, 2019, 35, 1249-1256.	1.6	15
93	pH- and thermo-responsive behavior of PNIPAM star containing terminal carboxy groups in aqueous solutions. Polymer, 2020, 203, 122735.	1.8	15
94	Thermo-responsive behavior of hybrid core cross-linked polymer micelles with biocompatible shells. Polymer, 2011, 52, 2810-2818.	1.8	14
95	Polymer coating glass to improve the protein antifouling effect. Polymer Journal, 2018, 50, 381-388.	1.3	14
96	Synthesis and Properties of Upper Critical Solution Temperature Responsive Nanogels. Langmuir, 2019, 35, 7261-7267.	1.6	14
97	CO ₂ -Gas-Responsive Liquid Marble. Langmuir, 2020, 36, 6971-6976.	1.6	14
98	Optimized Molecular Structure of Photoreactive Biocompatible Block Copolymers for Surface Modification of Metal Substrates. ACS Applied Materials & Interfaces, 2012, 4, 3254-3260.	4.0	13
99	A Comparative Study of Cellular Uptake and Subcellular Localization of Doxorubicin Loaded in Selfâ€Assemblies of Amphiphilic Copolymers with Pendant Dendron by MDAâ€MBâ€231 Human Breast Cancer Cells. Macromolecular Bioscience, 2016, 16, 882-895.	2.1	13
100	Micelle and Surface Tension of Double-Chain Cationic Surfactants. ACS Omega, 2018, 3, 10907-10911.	1.6	13
101	Drug-loading capacity of polylactide-based micro- and nanoparticles – Experimental and molecular modeling study. International Journal of Pharmaceutics, 2020, 591, 120031.	2.6	13
102	Synthesis of Thermosensitive Poly(<i>N</i> -vinylamide) Derivatives Bearing Oligo Ethylene Glycol Chain for Kinetic Hydrate Inhibitor. Macromolecules, 2018, 51, 7845-7852.	2.2	12
103	Conjugation of Polysulfobetaine via Poly(pyrogallol) Coatings for Improving the Antifouling Efficacy of Biomaterials. ACS Omega, 2021, 6, 3517-3524.	1.6	12
104	Thermo-Responsive and Biocompatible Diblock Copolymers Prepared via Reversible Addition-Fragmentation Chain Transfer (RAFT) Radical Polymerization. Polymers, 2014, 6, 846-859.	2.0	11
105	Poly(dimethylsiloxane) (PDMS) surface patterning by biocompatible photo-crosslinking block copolymers. RSC Advances, 2015, 5, 46686-46693.	1.7	11
106	Doxorubicin-loaded micelles of amphiphilic diblock copolymer with pendant dendron improve antitumor efficacy: In vitro and in vivo studies. International Journal of Pharmaceutics, 2017, 534, 136-143.	2.6	11
107	Controlled Micelle Formation and Stable Capture of Hydrophobic Drug by Alkylated POSS Methacrylate Block Copolymers. ACS Applied Polymer Materials, 2019, 1, 2108-2119.	2.0	11
108	Oligopeptide-side chained alginate nanocarrier for melittin-targeted chemotherapy. Polymer Journal, 2019, 51, 771-780.	1.3	11

#	Article	IF	CITATIONS
109	Self-Association Behavior of Cell Membrane-Inspired Amphiphilic Random Copolymers in Water. Polymers, 2019, 11, 327.	2.0	11
110	Different antifouling effects of random and block copolymers comprising 2-methacryloyloxyethyl phosphorylcholine and dodecyl methacrylate. European Polymer Journal, 2020, 136, 109932.	2.6	11
111	Lyotropic Morphology Transition of Double Zwitterionic Diblock Copolymer Aqueous Solutions. Macromolecular Chemistry and Physics, 2021, 222, 2000377.	1.1	11
112	Formation Kinetics of Polymer Vesicles from Spherical and Cylindrical Micelles Bearing the Polyelectrolyte Complex Core Studied by Time-Resolved USAXS and SAXS. Macromolecules, 2022, 55, 684-695.	2.2	11
113	Low-Friction Adsorbed Layers of a Triblock Copolymer Additive in Oil-Based Lubrication. Langmuir, 2015, 31, 12140-12147.	1.6	10
114	Selective adsorption of modified nucleoside cancer biomarkers by hybrid molecularly imprinted adsorbents. Journal of Separation Science, 2016, 39, 3072-3080.	1.3	10
115	Water-soluble complex formation of fullerenes with a biocompatible polymer. Polymer Journal, 2016, 48, 999-1005.	1.3	10
116	Highly Effective and Safe Polymeric Inhibitors of Herpes Simplex Virus in Vitro and in Vivo. ACS Applied Materials & Interfaces, 2019, 11, 26745-26752.	4.0	10
117	Micellar formation of cationic surfactants. Heliyon, 2019, 5, e02425.	1.4	10
118	Micellization and Phase Separation in Aqueous Solutions of Thermosensitive Block Copolymer Poly(<i>N</i> -isopropylacrylamide)- <i>b</i> -poly(<i>N</i> -vinyl-2-pyrrolidone) upon Heating. Macromolecules, 2019, 52, 4812-4819.	2.2	10
119	Solution Properties of Amphoteric Random Copolymers Bearing Pendant Sulfonate and Quaternary Ammonium Groups with Controlled Structures. Langmuir, 2019, 35, 1690-1698.	1.6	10
120	Heparin-Binding Copolymer as a Complete Antidote for Low-Molecular-Weight Heparins in Rats. Journal of Pharmacology and Experimental Therapeutics, 2020, 373, 51-61.	1.3	10
121	Self-association behavior in water of an amphiphilic diblock copolymer comprised of anionic and dendritic blocks. Polymer Chemistry, 2011, 2, 1815.	1.9	9
122	Surface patterned graft copolymerization of hydrophilic monomers onto hydrophobic polymer film upon UV irradiation. Journal of Polymer Science Part A, 2014, 52, 2822-2829.	2.5	9
123	pH-responsive micelles and vesicles formed from a water-soluble schizophrenic diblock copolymer. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 3117-3123.	2.7	9
124	Fluorescence Correlation Spectroscopy Monitors the Hydrophobic Collapse of pH-Responsive Hairy Nanoparticles at the Individual Particle Level. Macromolecules, 2015, 48, 7237-7244.	2.2	9
125	Preparation of Giant Polyion Complex Vesicles (G-PICsomes) with Polyphosphobetaine Shells Composed of Oppositely Charged Diblock Copolymers. Chemistry Letters, 2017, 46, 824-827.	0.7	9
126	Soluble Network Polymers Based on Trifunctional Open-cage Silsesquioxanes. Chemistry Letters, 2019, 48, 1266-1269.	0.7	9

#	Article	IF	CITATIONS
127	The neutralization of heparan sulfate by heparin-binding copolymer as a potential therapeutic target. RSC Advances, 2019, 9, 3020-3029.	1.7	9
128	Solution-Mediated Modulation of Pseudomonas aeruginosa Biofilm Formation by a Cationic Synthetic Polymer. Antibiotics, 2019, 8, 61.	1.5	9
129	Collapse Behavior of Polyion Complex (PIC) Micelles upon Salt Addition and Reforming Behavior by Dialysis and Its Temperature Responsivity. Langmuir, 2020, 36, 15485-15492.	1.6	9
130	Upper Critical Solution Temperature Behavior of pH-Responsive Amphoteric Statistical Copolymers in Aqueous Solutions. ACS Omega, 2021, 6, 9153-9163.	1.6	9
131	Hybrid micelle formation from poly(ethylene oxide-b-sodium) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 587 Science, 2010, 288, 991-996.	Td (2-acry 1.0	lamido-1-pro 8
132	pH-responsive flocculation and dispersion behavior of Janus particles in water. Polymer Journal, 2012, 44, 181-188.	1.3	8
133	Hollow nanoparticles prepared from pHâ€responsive template polymer micelles. Journal of Polymer Science Part A, 2012, 50, 2596-2603.	2.5	8
134	Preparation of amphiphilic diblock copolymers with pendant hydrophilic phosphorylcholine and hydrophobic dendron groups and their self-association behavior in water. Journal of Polymer Science Part A, 2013, 51, 4923-4931.	2.5	8
135	Selfâ€Assembly of Polymeric Micelles Made of Asymmetric Polystyreneâ€ <i>b</i> â€Polyacrylic Acidâ€ <i>b</i> â€Polyethylene Oxide for the Synthesis of Mesoporous Nickel Ferrite. European Journal of Inorganic Chemistry, 2017, 2017, 1328-1332.	1.0	8
136	Electrostatic Formation of Liquid Marbles Using Thermo-responsive Polymer-coated Particles. Chemistry Letters, 2019, 48, 578-581.	0.7	8
137	Core-functionalized nanoaggregates: preparation <i>via</i> polymerization-induced self-assembly and their applications. New Journal of Chemistry, 2021, 45, 12776-12791.	1.4	8
138	Single-Line EPR Spectra from Radicals Encapsulated in Aggregates of Amphiphilic Block Copolymers with Hydrophobic Dendritic Pendants in Water. Macromolecular Rapid Communications, 2006, 27, 1764-1768.	2.0	7
139	Fabrication of Copper(II) Oxide Hollow Nanosphere Using ABC Block Copolymer Templates and Its Application as Anode Materials in Lithium Ion Batteries. Chemistry Letters, 2014, 43, 1426-1428.	0.7	7
140	The forces and physical properties of polymer particulate monolayers at air/aqueous interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 470, 322-332.	2.3	7
141	pH-Induced Association and Dissociation of Intermolecular Complexes Formed by Hydrogen Bonding between Diblock Copolymers. Polymers, 2017, 9, 367.	2.0	7
142	Synthesis of Amphiphilic Statistical Copolymers Bearing Methoxyethyl and Phosphorylcholine Groups and Their Self-Association Behavior in Water. Polymers, 2020, 12, 1808.	2.0	7
143	Temperature and pH-Dependent Response of Poly(Acrylic Acid) and Poly(Acrylic Acid-co-Methyl) Tj ETQq1 1 0.78	4314 rgB1 2.0	[/Qverlock]
144	Water-soluble polymer micelles formed from amphiphilic diblock copolymers bearing pendant phosphorylcholine and methoxyethyl groups. Polymer Journal, 2021, 53, 805-814.	1.3	7

#	Article	IF	CITATIONS
145	Synthesis of Hollow Zinc Oxide Nanoparticles by Templating Micelles of Poly(styrene- <i>b</i> -acrylic) Tj ETQq1 1 884-890.	0.784314 2.0	rgBT /Overl 6
146	Polyphosphoesterâ€based paclitaxel complexes. Journal of Applied Polymer Science, 2015, 132, .	1.3	6
147	Complexes Covered with Phosphorylcholine Groups Prepared by Mixing Anionic Diblock Copolymers and Cationic Surfactants. Langmuir, 2017, 33, 5236-5244.	1.6	6
148	Ultrasound- and Thermo-Responsive Ionic Liquid Polymers. Polymers, 2018, 10, 301.	2.0	6
149	Confined film structure and friction properties of triblock copolymer additives in oil-based lubrication. Polymer Journal, 2019, 51, 41-49.	1.3	6
150	Synthesis, aggregation and adsorption behaviour of a thermoresponsive pentablock copolymer. Polymer International, 2020, 69, 1113-1121.	1.6	6
151	Singlet oxygen generation by sonication using a water-soluble fullerene (C60) complex: a potential application for sonodynamic therapy. Polymer Journal, 2020, 52, 1387-1394.	1.3	6
152	Thermo-Responsive Behavior of Mixed Aqueous Solution of Hydrophilic Polymer with Pendant Phosphorylcholine Group and Poly(Acrylic Acid). Polymers, 2021, 13, 148.	2.0	6
153	Development and application of pH-responsive polymers. Polymer Journal, 2022, 54, 235-242.	1.3	6
154	Aggregation behavior in water of amphiphilic diblock copolymers bearing biocompatible phosphorylcholine and cholesteryl groups. Polymer Journal, 2015, 47, 71-76.	1.3	5
155	Stability of Aqueous Film with a Photo-Responsive Surfactant. Journal of Chemical Engineering of Japan, 2016, 49, 714-719.	0.3	5
156	pH-Responsive Association Behavior of Biocompatible Random Copolymers Containing Pendent Phosphorylcholine and Fatty Acid. Langmuir, 2022, 38, 5119-5127.	1.6	5
157	Synthesis of Zinc Borate Hollow Nanospheres Using Polymeric Micelles with Core–Corona Architecture as a Template. Bulletin of the Chemical Society of Japan, 2015, 88, 124-126.	2.0	4
158	Photo-induced <i>in situ</i> crosslinking of polymer brushes with dimethyl maleimide moieties for dynamically stimulating stem cell differentiation. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 1331-1340.	1.9	4
159	Physical properties of mixed Langmuir monolayers of polystyrene particles with poly(N,N-dimethylaminoethylmethacrylate) hairs and a poly(2-hydroxyethyl methacrylate) polymer at an air/water interface. Soft Matter, 2017, 13, 1583-1593.	1.2	4
160	Oxidation-responsive Liquid Marbles. Chemistry Letters, 2019, 48, 644-646.	0.7	4
161	Separated Micelles Formation of pH-Responsive Random and Block Copolymers Containing Phosphorylcholine Groups. Polymers, 2022, 14, 577.	2.0	4
162	Polyphosphoester-based Paclitaxel Complexes: Biological Evaluation. Anticancer Research, 2016, 36, 1613-20.	0.5	4

#	Article	IF	CITATIONS
163	pH-responsive aggregation control of multiarm star polymers depending on the ionic segment sequence of arm polymers. Polymer Journal, 2022, 54, 715-725.	1.3	4
164	pH- and Thermo-Responsive Water-Soluble Smart Polyion Complex (PIC) Vesicle with Polyampholyte Shells. Polymers, 2022, 14, 1659.	2.0	4
165	Photochemical hole burning study of unimacromolecular micelles with controlled radii embedded in poly(vinyl alcohol). Macromolecular Chemistry and Physics, 1999, 200, 1535-1541.	1.1	3
166	Formation and Disruption of Unimolecular Micelle Triggered by Variation of pH. Kobunshi Ronbunshu, 2004, 61, 399-407.	0.2	3
167	Thiol-terminated hydroxy-functional polymer as a transtab toward polymer latex particles. Colloid and Polymer Science, 2013, 291, 1171-1180.	1.0	3
168	pH-Responsive Intra- and Inter-Molecularly Micelle Formation of Anionic Diblock Copolymer in Water. Polymers, 2016, 8, 56.	2.0	3
169	Influence of molecular orientation on mixtures of 4-n-pentyl-4′-cyanobiphenyl and biphenyl-dimethacrylate monomers for polymerization. Polymer Journal, 2017, 49, 457-463.	1.3	3
170	Water-soluble complex formation of fullerene and thermo-responsive diblock copolymer. Journal of Polymer Science Part A, 2017, 55, 2432-2439.	2.5	3
171	Photo Irradiation-Induced Core Crosslinked Poly(ethylene glycol)-block-poly(aspartic acid) Micelles: Optimization of Block Copolymer Synthesis and Characterization of Core Crosslinked Micelles. Polymers, 2017, 9, 710.	2.0	3
172	Fundamental properties, self-assembling behavior, and their temperature and salt responsivity of ionic amphiphilic diblock copolymer having poly(N-isopropylacrylamide) in aqueous solution. Colloid and Polymer Science, 2018, 296, 77-88.	1.0	3
173	Interpolymer association of amphiphilic diblock copolymers bearing pendant siloxane and phosphorylcholine groups. Journal of Polymer Science Part A, 2019, 57, 1500-1507.	2.5	3
174	Colloidal Stabilizer-Assisted Polymerization-Induced Precipitation Method for Colloidally Stable Polyacid Particles. Langmuir, 2019, 35, 6993-7002.	1.6	3
175	pH- and thermoresponsive aggregation behavior of polymer-grafted magnetic nanoparticles. Polymer Journal, 2021, 53, 1011-1018.	1.3	3
176	Effect of the Addition of a Cross-Linker and the Water pH on the Physical Properties of Films of pH-Responsive Polymer Particles at Air/Water Interfaces. ACS Omega, 2017, 2, 7837-7848.	1.6	3
177	Amphoteric Statistical Copolymers with Well-controlled Structure and Upper Critical Solution Temperature in Aqueous Solutions. Chemistry Letters, 2020, 49, 1443-1446.	0.7	3
178	Self-Organized Nanoparticles of Random and Block Copolymers of Sodium 2-(Acrylamido)-2-methyl-1-propanesulfonate and Sodium 11-(Acrylamido)undecanoate as Safe and Effective Zika Virus Inhibitors. Pharmaceutics, 2022, 14, 309.	2.0	3
179	Preparation of Biocompatible Poly(2-(methacryloyloxy)ethyl phosphorylcholine) Hollow Particles Using Silica Particles as a Template. Langmuir, 2022, 38, 5812-5819.	1.6	3
180	Polyion complex (PIC) micelles formed from oppositely charged styrene-based polyelectrolytes via electrostatic, hydrophobic, and π–΀ interactions. Polymer Journal, 0, , .	1.3	3

#	Article	IF	CITATIONS
181	Nanoscopic Aggregation in Amphiphilic Random Copolymer Bulk Films Studied with Photochemical Hole Burning. Macromolecular Chemistry and Physics, 2001, 202, 1331-1337.	1.1	2
182	Development of a water-resistant and detergent-washable powder coated with a stimuli-responsive polymer and its application to suncare products. International Journal of Cosmetic Science, 2009, 31, 479-479.	1.2	2
183	Dispersion polymerization using hydroxyâ€functional macroazoinitiators as an inistab. Journal of Polymer Science Part A, 2011, 49, 1633-1643.	2.5	2
184	Synthesis of Nanometer-sized Hollow Calcium Tungstate Particles by Using Micelles of Poly(styrene- <i>b</i> -acrylic acid- <i>b</i> -ethylene oxide) as a Soft Template. Chemistry Letters, 2013, 42, 735-737.	0.7	2
185	Preparation of a Thermo- and Photoresponsive Water-soluble Polymer. Chemistry Letters, 2015, 44, 1491-1493.	0.7	2
186	Temperature-Responsive Diblock Copolymers Bearing Biocompatible Pendant Phosphorylcholine Groups. Kobunshi Ronbunshu, 2016, 73, 192-197.	0.2	2
187	Preparation of an amphiphilic diblock copolymer composed of polystyrene and hydrophilic alternating copolymer blocks. Polymer Journal, 2020, 52, 189-197.	1.3	2
188	Morphology transition of polyion complex (PIC) micelles with carboxybetaine as a shell induced at different block ratios and their pH-responsivity. Colloid and Polymer Science, 2022, 300, 125-138.	1.0	2
189	Preparation of a thermo-responsive drug carrier consisting of a biocompatible triblock copolymer and fullerene. Journal of Materials Chemistry B, 2021, , .	2.9	2
190	Association Behavior of Amphiphilic ABA Triblock Copolymer Composed of Poly(2-methoxyethyl) Tj ETQq0 0 0 rg	BT/Overlo 2.0	$\operatorname{pck}_2^{10}$ Tf 50 3
191	Formation of Water-Soluble Complexes from Fullerene with Biocompatible Block Copolymers Bearing Pendant Glucose and Phosphorylcholine. Langmuir, 2022, 38, 5744-5751.	1.6	2
192	Photoâ€induced association behavior of poly(sodium acrylate) bearing a small amount of malachite green. Journal of Polymer Science Part A, 2011, 49, 4586-4593.	2.5	1
193	Liquid Marbles: Stimuliâ€Responsive Liquid Marbles: Controlling Structure, Shape, Stability, and Motion (Adv. Funct. Mater. 40/2016). Advanced Functional Materials, 2016, 26, 7198-7198.	7.8	1
194	Preparation of pH-responsive Clear Liquid Marble. Chemistry Letters, 2021, 50, 1274-1277.	0.7	1
195	Polystyrene-based Amphoteric Diblock Copolymers with Upper Critical Solution Temperature (UCST) in Aqueous Solutions. Chemistry Letters, 2021, 50, 1114-1117.	0.7	1
196	Facile preparation of water-soluble multiwalled carbon nanotubes bearing phosphorylcholine groups for heat generation under near-infrared irradiation. Polymer Journal, 2021, 53, 1001-1009.	1.3	1
197	Reversal Activity and Toxicity of Heparin-Binding Copolymer after Subcutaneous Administration of Enoxaparin in Mice. International Journal of Molecular Sciences, 2021, 22, 11149.	1.8	1
198	Stimulus-Sensitive Liquid Marble. Journal of the Japan Society of Colour Material, 2016, 89, 75-80.	0.0	1

#	Article	IF	CITATIONS
199	Association Behavior of a Homopolymer Containing Choline Phosphonate Groups in Aqueous Solutions. Chemistry Letters, 2022, 51, 103-106.	0.7	1
200	Monitoring of Anticoagulant Activity of Dabigatran and Rivaroxaban in the Presence of Heparins. Journal of Clinical Medicine, 2022, 11, 2236.	1.0	1
201	"Foam Marble―Stabilized with One Type of Polymer Particle. Langmuir, 2022, 38, 7603-7610.	1.6	1
202	Polymer Vesicles Formed by Mixing of Amphiphilic Polymer and Hydrophobic Cholesterol-containing Homopolymer in Water. Transactions of the Materials Research Society of Japan, 2014, 39, 269-274.	0.2	0
203	Preparation of Biocompatible Poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) <i>via</i> Organotellulium-Medicated Radical Polymerization (TERP). Kobunshi Ronbunshu, 2015, 72, 335-340.	0.2	0
204	An Organic-Inorganic Hybrid Thermo-Responsive Valve. Kobunshi Ronbunshu, 2017, 74, 182-187.	0.2	0
205	Exothermic Behavior of Cyanine Dye-Containing Polymer Micelle Irradiated by Near Infrared (NIR) in Water. Kobunshi Ronbunshu, 2019, 76, 52-60.	0.2	0
206	Fern-Leaf Morphology Formed from an Amphiphilic Polycation Block Copolymer in the Presence of Sodium Chloride. Kobunshi Ronbunshu, 2019, 76, 74-78.	0.2	0
207	Amphiphilic Block Copolymers Bearing Hydrophobic Î ³ -Tocopherol Groups with Labile Acetal Bond. Polymers, 2020, 12, 36.	2.0	0
208	Role of Hydrophilic Monomers in α â€Tocopherolâ€Based Copolymers in Causing Cell Death by ROS Production. Macromolecular Chemistry and Physics, 2021, 222, 2100099.	1.1	0
209	Amphiphilic Diblock Copolymers Composed of a Hydrophobic Pendant Dendron-containing Block. Oleoscience, 2014, 14, 67-72.	0.0	0
210	Water-soluble Polymers Designed by Controlled Polymerization andApplication of Their Aggregates. Journal of the Adhesion Society of Japan, 2018, 54, 336-342.	0.0	0
211	A New Year's Message 2022. Polymers, 2022, 14, 500.	2.0	0
212	pH.Responsive Polyion Complex (PIC) Vesicles Covered with Phosphorylcholine Groups.Containing Shells. Membrane, 2022, 47, 147-154.	0.0	0
213	Stable Water-soluble Polyion Complex Micelles Composed of Oppositely Charged Diblock Copolymers and Reinforced by Hydrophobic Interactions. Chemistry Letters, 2022, 51, 877-880.	0.7	0