Beata Paczosa-Bator

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3754609/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	All-solid-state selective electrodes using carbon black. Talanta, 2012, 93, 424-427.	5.5	80
2	Potentiometric Sensors with Carbon Black Supporting Platinum Nanoparticles. Analytical Chemistry, 2013, 85, 10255-10261.	6.5	69
3	Ion-selective electrodes with superhydrophobic polymer/carbon nanocomposites as solid contact. Carbon, 2015, 95, 879-887.	10.3	55
4	All-solid-state nitrate selective electrode with graphene/tetrathiafulvalene nanocomposite as high redox and double layer capacitance solid contact. Electrochimica Acta, 2016, 210, 407-414.	5.2	48
5	Platinum nanoparticles intermediate layer in solid-state selective electrodes. Analyst, The, 2012, 137, 5272.	3.5	45
6	Diagnostic of functionality of polymer membrane – based ion selective electrodes by impedance spectroscopy. Analytical Methods, 2010, 2, 1490.	2.7	43
7	Application of Nanostructured TCNQ to Potentiometric Ion-Selective K ⁺ and Na ⁺ Electrodes. Analytical Chemistry, 2015, 87, 1718-1725.	6.5	42
8	Effects of type of nanosized carbon black on the performance of an all-solid-state potentiometric electrode for nitrate. Mikrochimica Acta, 2014, 181, 1093-1099.	5.0	37
9	Conducting polymer films as model biological membranes. Electrochimica Acta, 2006, 51, 2173-2181.	5.2	32
10	Adsorptive stripping voltammetric determination of vanadium(V) witch chloranilic acid using cyclic renewable mercury film silver based electrode. Journal of Electroanalytical Chemistry, 2009, 633, 333-338.	3.8	32
11	Glassy carbon electrode modified with carbon black for sensitive estradiol determination by means of voltammetry and flow injection analysis with amperometric detection. Analytical Biochemistry, 2018, 544, 7-12.	2.4	32
12	Improved Nitrate Sensing Using Solid Contact Ion Selective Electrodes Based on TTF and Its Radical Salt. Journal of the Electrochemical Society, 2015, 162, B257-B263.	2.9	28
13	TTF-TCNQ Solid Contact Layer in All-Solid-State Ion-Selective Electrodes for Potassium or Nitrate Determination. Journal of the Electrochemical Society, 2018, 165, B60-B65.	2.9	28
14	Carbon black as a glassy carbon electrode modifier for high sensitive melatonin determination. Journal of Electroanalytical Chemistry, 2017, 799, 278-284.	3.8	26
15	New high sensitive hydrocortisone determination by means of adsorptive stripping voltammetry on renewable mercury film silver based electrode. Electrochimica Acta, 2015, 182, 67-72.	5.2	25
16	Poly(3-octylthiophene-2,5-diyl) - nanosized ruthenium dioxide composite material as solid-contact layer in polymer membrane-based K+-selective electrodes. Electrochimica Acta, 2019, 322, 134718.	5.2	25
17	Determination of the leaching of polymeric ion-selective membrane components by stripping voltammetry. Talanta, 2010, 81, 1003-1009.	5.5	24
18	Application of cold plasma corona discharge in preparation of laccase-based biosensors for dopamine determination. Materials Science and Engineering C, 2020, 116, 111199.	7.3	23

#	Article	lF	CITATIONS
19	Influence of morphology and topography on potentiometric response of magnesium and calcium sensitive PEDOT films doped with adenosine triphosphate (ATP). Analytica Chimica Acta, 2006, 555, 118-127.	5.4	22
20	Molecular organic materials intermediate layers modified with carbon black in potentiometric sensors for chloride determination. Electrochimica Acta, 2018, 283, 1753-1762.	5.2	21
21	A Novel Method of High Sensitive Determination of Prednisolone on Renewable Mercury Film Silver Based Electrode. Electroanalysis, 2016, 28, 394-400.	2.9	20
22	Application of a glassy carbon electrode modified with carbon black nanoparticles for highly sensitive voltammetric determination of quetiapine. Analytical Methods, 2017, 9, 6662-6668.	2.7	20
23	Ruthenium dioxide nanoparticles as a high-capacity transducer in solid-contact polymer membrane-based pH-selective electrodes. Mikrochimica Acta, 2019, 186, 777.	5.0	20
24	Sensitive Voltammetric Determination of Ethinyl Estradiol on Carbon Black Modified Electrode. Journal of the Electrochemical Society, 2017, 164, H885-H889.	2.9	19
25	New Electrochemical Sensor of Prolonged Application for Metformin Determination Based on Hydrated Ruthenium Dioxideâ€Carbon Blackâ€Nafion Modified Glassy Carbon Electrode. Electroanalysis, 2020, 32, 1875-1884.	2.9	18
26	Conducting polymers in modelling transient potential of biological membranes. Bioelectrochemistry, 2007, 71, 66-74.	4.6	17
27	The Complex Crystal of NaTCNQ–TCNQ Supported on Different Carbon Materials as Ion-to-Electron Transducer in All-Solid-State Sodium-Selective Electrode. Journal of the Electrochemical Society, 2016, 163, B573-B579.	2.9	17
28	Optimization of Ruthenium Dioxide Solid Contact in Ion-Selective Electrodes. Membranes, 2020, 10, 182.	3.0	17
29	High Sensitive Voltammetric Levothyroxine Sodium Determination on Renewable Mercury Film Silver Based Electrode. Journal of the Electrochemical Society, 2016, 163, H605-H609.	2.9	16
30	Fast cathodic stripping voltammetric determination of elemental sulfur in petroleum fuels using renewable mercury film silver based electrode. Fuel, 2012, 97, 876-878.	6.4	15
31	Carbon-Supported Platinum Nanoparticle Solid-State Ion Selective Electrodes for the Determination of Potassium. Analytical Letters, 2015, 48, 2773-2785.	1.8	15
32	High Sensitive Method for Determination of the Toxic Bisphenol A in Food/Beverage Packaging and Thermal Paper Using Glassy Carbon Electrode Modified with Carbon Black Nanoparticles. Food Analytical Methods, 2017, 10, 3825-3835.	2.6	15
33	High selective potentiometric sensor for determination of nanomolar con-centration of Cu(II) using a polymeric electrode modified by a graphene/7,7,8,8-tetracyanoquinodimethane nanoparticles. Talanta, 2017, 170, 41-48.	5.5	15
34	Spironolactone voltammetric determination on renewable amalgam film electrode. Steroids, 2018, 130, 1-6.	1.8	15
35	Highly sensitive voltammetric determination of dexamethasone on amalgam film electrode. Journal of Electroanalytical Chemistry, 2018, 809, 147-152.	3.8	15
36	Ruthenium Dioxide as High-Capacitance Solid-Contact Layer in K ⁺ -Selective Electrodes Based on Polymer Membrane. Journal of the Electrochemical Society, 2019, 166, B1470-B1476.	2.9	14

BEATA PACZOSA-BATOR

#	Article	IF	CITATIONS
37	Thiomersal determination on a renewable mercury film silver-based electrode using adsorptive striping voltammetry. Analytical Methods, 2016, 8, 1187-1193.	2.7	13
38	The influence of an intermediate layer on the composition stability of a polymeric ion-selective membrane. Electrochimica Acta, 2012, 85, 104-109.	5.2	11
39	Application of graphene supporting platinum nanoparticles layer in electrochemical sensors with potentiometric and voltammetric detection. Ionics, 2018, 24, 2455-2464.	2.4	11
40	Nimesulide Determination on Carbon Black-Nafion Modified Glassy Carbon Electrode by Means of Adsorptive Stripping Voltammetry. Electrocatalysis, 2021, 12, 641-649.	3.0	10
41	Sensitive and fast determination of papaverine by adsorptive stripping voltammetry on renewable mercury film electrode. Open Chemistry, 2013, 11, 736-741.	1.9	9
42	A simple way to modify selectivity of sodium sensitive electrodes by using organic conductive crystals. Ionics, 2019, 25, 2311-2321.	2.4	9
43	Highly Sensitive Levodopa Determination by Means of Adsorptive Stripping Voltammetry on Ruthenium Dioxide-Carbon Black-Nafion Modified Glassy Carbon Electrode. Sensors, 2021, 21, 60.	3.8	9
44	Voltammetric Electrode Based on Nafion and Poly(2,3–dihydrothieno–1,4–dioxin)–poly(styrenesulfonate) Film for Fast and High Sensitive Determination of Metamizole. Journal of the Electrochemical Society, 2016, 163, B146-B152.	2.9	8
45	High Capacity Nanocomposite Layers Based on Nanoparticles of Carbon Materials and Ruthenium Dioxide for Potassium Sensitive Electrode. Materials, 2021, 14, 1308.	2.9	8
46	Voltammetry and Flow Injection Analysis with Amperometric Detection for Sensitive Sodium Metamizole Determination on Glassy Carbon Electrode Modified with SWCNTs/Nafion. ECS Journal of Solid State Science and Technology, 2016, 5, M3005-M3011.	1.8	7
47	Potentiometric Sensor with High Capacity Composite Composed of Ruthenium Dioxide and Poly(3,4-ethylenedioxythiophene) Polystyrene Sulfonate. Materials, 2021, 14, 1891.	2.9	7
48	New Electrochemical Sensor Based on Hierarchical Carbon Nanofibers with NiCo Nanoparticles and Its Application for Cetirizine Hydrochloride Determination. Materials, 2022, 15, 3648.	2.9	7
49	Biomimetic study ofÂtheÂCa2+-Mg2+ andÂK+-Li+ antagonism onÂbiologically active sites: new methodology toÂstudy potential dependent ion exchange. Magnesium Research, 2009, 22, 10-20.	0.5	6
50	Voltammetric Determination of Codeine on Glassy Carbon Electrode Modified with Nafion/MWCNTs. Journal of Analytical Methods in Chemistry, 2015, 2015, 1-7.	1.6	6
51	Voltammetric Determination of Drospirenone on Mercury Film Electrode. Journal of the Electrochemical Society, 2017, 164, H311-H315.	2.9	6
52	High Sensitive Voltammetric Determination of Betamethasone on an Amalgam Film Electrode. Journal of the Electrochemical Society, 2018, 165, H646-H651.	2.9	6
53	Highly Sensitive AdSV Method for Fe(III) Determination in Presence of Solochrome Violet RS on Renewable Amalgam Film Electrode. Electroanalysis, 2019, 31, 1690-1696.	2.9	6
54	Potassium-Selective Solid-Contact Electrode with High-Capacitance Hydrous Iridium Dioxide in the Transduction Layer. Membranes, 2021, 11, 259.	3.0	6

BEATA PACZOSA-BATOR

#	Article	IF	CITATIONS
55	Highly sensitive voltammetric determination of captopril on renewable amalgam film electrode. Talanta, 2022, 237, 122937.	5.5	5
56	A Novel Voltametric Measurements of Beta Blocker Drug Propranolol on Glassy Carbon Electrode Modified with Carbon Black Nanoparticles. Materials, 2021, 14, 7582.	2.9	5
57	Hydrous Cerium Dioxide-Based Materials as Solid-Contact Layers in Potassium-Selective Electrodes. Membranes, 2022, 12, 349.	3.0	4
58	The determination of molybdenum in selected mushrooms by stripping voltammetry. Open Chemistry, 2011, 9, 352-356.	1.9	3
59	Fast and sensitive metronidazole determination by means of voltammetry on renewable amalgam silver based electrode without the preconcentration step. Journal of the Serbian Chemical Society, 2017, 82, 879-890.	0.8	3
60	Highly Sensitive Adsorptive Stripping Voltammetric Method for Sitagliptin Determination on Renewable Amalgam Film Electrode. Journal of the Electrochemical Society, 2020, 167, 136510.	2.9	3
61	Hierarchical Nanocomposites Electrospun Carbon NanoFibers/Carbon Nanotubes as a Structural Element of Potentiometric Sensors. Materials, 2022, 15, 4803.	2.9	3
62	Application of hanging copper amalgam drop electrode for voltammetric determination of selenium content in fruiting bodies of selected mushrooms. International Journal of Environmental Analytical Chemistry, 2014, 94, 269-276.	3.3	2
63	Graphene Flakes Decorated with Dispersed Gold Nanoparticles as Nanomaterial Layer for ISEs. Membranes, 2021, 11, 548.	3.0	0