
## Eric A Schmelz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3754253/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | ABA Is an Essential Signal for Plant Resistance to Pathogens Affecting JA Biosynthesis and the Activation of Defenses in Arabidopsis. Plant Cell, 2007, 19, 1665-1681.                                                         | 3.1 | 755       |
| 2  | Airborne signals prime plants against insect herbivore attack. Proceedings of the National Academy of<br>Sciences of the United States of America, 2004, 101, 1781-1785.                                                       | 3.3 | 745       |
| 3  | Fragments of ATP synthase mediate plant perception of insect attack. Proceedings of the National<br>Academy of Sciences of the United States of America, 2006, 103, 8894-8899.                                                 | 3.3 | 375       |
| 4  | Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants.<br>Proceedings of the National Academy of Sciences of the United States of America, 2003, 100,<br>10552-10557.                  | 3.3 | 311       |
| 5  | Quantification, correlations and manipulations of wound-induced changes in jasmonic acid and nicotine in Nicotiana sylvestris. Planta, 1997, 201, 397-404.                                                                     | 1.6 | 288       |
| 6  | <i>tasselseed1</i> Is a Lipoxygenase Affecting Jasmonic Acid Signaling in Sex Determination of Maize.<br>Science, 2009, 323, 262-265.                                                                                          | 6.0 | 275       |
| 7  | Circadian Regulation of the PhCCD1 Carotenoid Cleavage Dioxygenase Controls Emission of β-Ionone, a<br>Fragrance Volatile of Petunia Flowers. Plant Physiology, 2004, 136, 3504-3514.                                          | 2.3 | 269       |
| 8  | The use of vapor phase extraction in metabolic profiling of phytohormones and other metabolites.<br>Plant Journal, 2004, 39, 790-808.                                                                                          | 2.8 | 247       |
| 9  | Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize. Proceedings of the<br>National Academy of Sciences of the United States of America, 2011, 108, 5455-5460.                                   | 3.3 | 241       |
| 10 | Biosynthesis, elicitation and roles of monocot terpenoid phytoalexins. Plant Journal, 2014, 79, 659-678.                                                                                                                       | 2.8 | 233       |
| 11 | Disulfooxy fatty acids from the American bird grasshopper Schistocerca americana, elicitors of plant<br>volatiles. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104,<br>12976-12981. | 3.3 | 230       |
| 12 | Phytohormone-based activity mapping of insect herbivore-produced elicitors. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 653-657.                                               | 3.3 | 229       |
| 13 | Identification of loci affecting flavour volatile emissions in tomato fruits. Journal of Experimental<br>Botany, 2006, 57, 887-896.                                                                                            | 2.4 | 226       |
| 14 | Wound-induced changes in root and shoot jasmonic acid pools correlate with induced nicotine<br>synthesis inNicotiana sylvestris spegazzini and comes. Journal of Chemical Ecology, 1994, 20, 2139-2157.                        | 0.9 | 223       |
| 15 | Novel Acidic Sesquiterpenoids Constitute a Dominant Class of Pathogen-Induced Phytoalexins in<br>Maize  Â. Plant Physiology, 2011, 156, 2082-2097.                                                                             | 2.3 | 193       |
| 16 | Quantitative relationships between induced jasmonic acid levels and volatile emission in Zea mays<br>during Spodoptera exigua herbivory. Planta, 2003, 216, 665-673.                                                           | 1.6 | 179       |
| 17 | Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense.<br>Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5707-5712.                  | 3.3 | 179       |
| 18 | The influence of intact-plant and excised-leaf bioassay designs on volicitin- and jasmonic acid-induced sesquiterpene volatile release in Zea mays. Planta, 2001, 214, 171-179.                                                | 1.6 | 169       |

| #  | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | XopD SUMO Protease Affects Host Transcription, Promotes Pathogen Growth, and Delays Symptom<br>Development in <i>Xanthomonas</i> -Infected Tomato Leaves Â. Plant Cell, 2008, 20, 1915-1929.                                                           | 3.1 | 164       |
| 20 | Attraction of Spodoptera frugiperda Larvae to Volatiles from Herbivore-Damaged Maize Seedlings.<br>Journal of Chemical Ecology, 2006, 32, 1911-1924.                                                                                                   | 0.9 | 162       |
| 21 | ZmPep1, an Ortholog of Arabidopsis Elicitor Peptide 1, Regulates Maize Innate Immunity and Enhances<br>Disease Resistance À Â. Plant Physiology, 2011, 155, 1325-1338.                                                                                 | 2.3 | 160       |
| 22 | Susceptible to intolerance - a range of hormonal actions in a susceptibleArabidopsispathogen response. Plant Journal, 2003, 33, 245-257.                                                                                                               | 2.8 | 152       |
| 23 | A 13-lipoxygenase, TomloxC, is essential for synthesis of C5 flavour volatiles in tomato. Journal of<br>Experimental Botany, 2014, 65, 419-428.                                                                                                        | 2.4 | 147       |
| 24 | Dynamic maize responses to aphid feeding are revealed by a time series of transcriptomic and metabolomic assays. Plant Physiology, 2015, 169, pp.01039.2015.                                                                                           | 2.3 | 142       |
| 25 | Ethylene-Regulated Floral Volatile Synthesis in Petunia Corollas. Plant Physiology, 2005, 138, 255-266.                                                                                                                                                | 2.3 | 140       |
| 26 | Simultaneous quantification of jasmonic acid and salicylic acid in plants by vapor-phase extraction<br>and gas chromatography-chemical ionization-mass spectrometry. Analytical Biochemistry, 2003, 312,<br>242-250.                                   | 1.1 | 138       |
| 27 | Accumulation of terpenoid phytoalexins in maize roots is associated with drought tolerance. Plant,<br>Cell and Environment, 2015, 38, 2195-2207.                                                                                                       | 2.8 | 137       |
| 28 | Synergistic interactions between volicitin, jasmonic acid and ethylene mediate insect-induced volatile emission in Zea mays. Physiologia Plantarum, 2003, 117, 403-412.                                                                                | 2.6 | 133       |
| 29 | Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate. Plant Journal, 2010, 62, 113-123.                                                                                | 2.8 | 133       |
| 30 | Multiple Hormones Act Sequentially to Mediate a Susceptible Tomato Pathogen Defense Response.<br>Plant Physiology, 2003, 133, 1181-1189.                                                                                                               | 2.3 | 130       |
| 31 | Nitrogen Deficiency Increases Volicitin-Induced Volatile Emission, Jasmonic Acid Accumulation, and<br>Ethylene Sensitivity in Maize. Plant Physiology, 2003, 133, 295-306.                                                                             | 2.3 | 128       |
| 32 | Maize death acids, 9-lipoxygenase–derived cyclopente(a)nones, display activity as cytotoxic<br>phytoalexins and transcriptional mediators. Proceedings of the National Academy of Sciences of the<br>United States of America, 2015, 112, 11407-11412. | 3.3 | 128       |
| 33 | Differential volatile emissions and salicylic acid levels from tobacco plants in response to different<br>strains of Pseudomonas syringae. Planta, 2003, 217, 767-775.                                                                                 | 1.6 | 124       |
| 34 | Cowpea Chloroplastic ATP Synthase Is the Source of Multiple Plant Defense Elicitors during Insect<br>Herbivory Â. Plant Physiology, 2007, 144, 793-805.                                                                                                | 2.3 | 121       |
| 35 | Pythium infection activates conserved plant defense responses in mosses. Planta, 2009, 230, 569-579.                                                                                                                                                   | 1.6 | 110       |
| 36 | Effects of elevated [ <scp><scp>CO<sub>2</sub></scp>&lt; [scp&gt;] on maize defence against mycotoxigenic<br/><i><scp>F</scp>usarium verticillioides</i>. Plant, Cell and Environment, 2014, 37, 2691-2706.</scp>                                      | 2.8 | 107       |

| #  | Article                                                                                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | <i>&gt;Physcomitrella patens</i> activates reinforcement of the cell wall, programmed cell death and<br>accumulation of evolutionary conserved defence signals, such as salicylic acid and<br>12â€oxoâ€phytodienoic acid, but not jasmonic acid, upon <i>Botrytis cinerea</i> infection. Molecular<br>Plant Pathology, 2012, 13, 960-974. | 2.0 | 105       |
| 38 | Biosynthesis and function of terpenoid defense compounds in maize (Zea mays). Planta, 2019, 249, 21-30.                                                                                                                                                                                                                                   | 1.6 | 103       |
| 39 | Identification of Genes in the Phenylalanine Metabolic Pathway by Ectopic Expression of a MYB<br>Transcription Factor in Tomato Fruit. Plant Cell, 2011, 23, 2738-2753.                                                                                                                                                                   | 3.1 | 97        |
| 40 | An apoplastic peptide activates salicylic acid signalling in maize. Nature Plants, 2018, 4, 172-180.                                                                                                                                                                                                                                      | 4.7 | 97        |
| 41 | The effects of climate change associated abiotic stresses on maize phytochemical defenses.<br>Phytochemistry Reviews, 2018, 17, 37-49.                                                                                                                                                                                                    | 3.1 | 96        |
| 42 | Discovery, Biosynthesis and Stress-Related Accumulation of Dolabradiene-Derived Defenses in Maize.<br>Plant Physiology, 2018, 176, 2677-2690.                                                                                                                                                                                             | 2.3 | 94        |
| 43 | Immunological "Memory" in the Induced Accumulation of Nicotine in Wild Tobacco. Ecology, 1996, 77, 236-246.                                                                                                                                                                                                                               | 1.5 | 89        |
| 44 | The Novel Monocot-Specific 9-Lipoxygenase ZmLOX12 Is Required to Mount an Effective<br>Jasmonate-Mediated Defense Against <i>Fusarium verticillioides</i> in Maize. Molecular Plant-Microbe<br>Interactions, 2014, 27, 1263-1276.                                                                                                         | 1.4 | 89        |
| 45 | Homologous RXLR effectors from <i>Hyaloperonospora arabidopsidis</i> and <i>Phytophthora sojae</i> suppress immunity in distantly related plants. Plant Journal, 2012, 72, 882-893.                                                                                                                                                       | 2.8 | 88        |
| 46 | A receptor-like protein mediates plant immune responses to herbivore-associated molecular patterns.<br>Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31510-31518.                                                                                                                           | 3.3 | 86        |
| 47 | Allocation of nitrogen to an inducible defense and seed production in Nicotiana attenuata.<br>Oecologia, 1998, 115, 541-552.                                                                                                                                                                                                              | 0.9 | 83        |
| 48 | Effects of octadecanoid metabolites and inhibitors on induced nicotine accumulation inNicotiana sylvestris. Journal of Chemical Ecology, 1996, 22, 61-74.                                                                                                                                                                                 | 0.9 | 80        |
| 49 | Coronatine and salicylic acid: the battle between Arabidopsis andPseudomonasfor phytohormone control. Molecular Plant Pathology, 2005, 6, 79-83.                                                                                                                                                                                          | 2.0 | 78        |
| 50 | Systemic Acquired Tolerance to Virulent Bacterial Pathogens in Tomato. Plant Physiology, 2005, 138,<br>1481-1490.                                                                                                                                                                                                                         | 2.3 | 78        |
| 51 | Interactions betweenSpinacia oleraceaandBradysia impatiens: A role for phytoecdysteroids. Archives of Insect Biochemistry and Physiology, 2002, 51, 204-221.                                                                                                                                                                              | 0.6 | 76        |
| 52 | Rapidly Induced Chemical Defenses in Maize Stems and Their Effects on Short-term Growth of Ostrinia nubilalis. Journal of Chemical Ecology, 2011, 37, 984-991.                                                                                                                                                                            | 0.9 | 75        |
| 53 | The Attraction of Spodoptera frugiperda Neonates to Cowpea Seedlings is Mediated by Volatiles<br>Induced by Conspecific Herbivory and the Elicitor Inceptin. Journal of Chemical Ecology, 2008, 34,<br>291-300.                                                                                                                           | 0.9 | 74        |
| 54 | Fungal-induced protein hyperacetylation in maize identified by acetylome profiling. Proceedings of the<br>National Academy of Sciences of the United States of America, 2018, 115, 210-215.                                                                                                                                               | 3.3 | 71        |

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Cotton Plant, Gossypium hirsutum L., Defense in Response to Nitrogen Fertilization. Journal of<br>Chemical Ecology, 2008, 34, 1553-1564.                                                                                                    | 0.9 | 62        |
| 56 | Selinene Volatiles Are Essential Precursors for Maize Defense Promoting Fungal Pathogen Resistance.<br>Plant Physiology, 2017, 175, 1455-1468.                                                                                              | 2.3 | 61        |
| 57 | Impacts of insect oral secretions on defoliation-induced plant defense. Current Opinion in Insect<br>Science, 2015, 9, 7-15.                                                                                                                | 2.2 | 60        |
| 58 | Multiple genes recruited from hormone pathways partition maize diterpenoid defences. Nature Plants, 2019, 5, 1043-1056.                                                                                                                     | 4.7 | 60        |
| 59 | Insect-Induced Synthesis of Phytoecdysteroids in Spinach, Spinacia oleracea. Journal of Chemical Ecology, 1999, 25, 1739-1757.                                                                                                              | 0.9 | 58        |
| 60 | Insect-Induced Daidzein, Formononetin and Their Conjugates in Soybean Leaves. Metabolites, 2014, 4,<br>532-546.                                                                                                                             | 1.3 | 53        |
| 61 | Genetic elucidation of interconnected antibiotic pathways mediating maize innate immunity. Nature<br>Plants, 2020, 6, 1375-1388.                                                                                                            | 4.7 | 52        |
| 62 | The maizeviviparous15locus encodes the molybdopterin synthase small subunit. Plant Journal, 2006, 45, 264-274.                                                                                                                              | 2.8 | 50        |
| 63 | Cell wall invertase-deficient miniature1 kernels have altered phytohormone levels. Phytochemistry, 2008, 69, 692-699.                                                                                                                       | 1.4 | 49        |
| 64 | European Corn Borer (Ostrinia nubilalis) Induced Responses Enhance Susceptibility in Maize. PLoS<br>ONE, 2013, 8, e73394.                                                                                                                   | 1.1 | 49        |
| 65 | An Amino Acid Substitution Inhibits Specialist Herbivore Production of an Antagonist Effector and<br>Recovers Insect-Induced Plant Defenses  Â. Plant Physiology, 2012, 160, 1468-1478.                                                     | 2.3 | 48        |
| 66 | Title is missing!. Journal of Chemical Ecology, 1998, 24, 339-360.                                                                                                                                                                          | 0.9 | 44        |
| 67 | Activation of Shikimate, Phenylpropanoid, Oxylipins, and Auxin Pathways in Pectobacterium carotovorum Elicitors-Treated Moss. Frontiers in Plant Science, 2016, 7, 328.                                                                     | 1.7 | 43        |
| 68 | Commercial hybrids and mutant genotypes reveal complex protective roles for inducible terpenoid defenses in maize. Journal of Experimental Botany, 2018, 69, 1693-1705.                                                                     | 2.4 | 42        |
| 69 | Ethylene signaling regulates natural variation in the abundance of antifungal acetylated<br>diferuloylsucroses and <i>Fusarium graminearum</i> resistance in maize seedling roots. New<br>Phytologist, 2019, 221, 2096-2111.                | 3.5 | 42        |
| 70 | The maizeViviparous10/Viviparous13locus encodes theCnx1gene required for molybdenum cofactor biosynthesis. Plant Journal, 2006, 45, 250-263.                                                                                                | 2.8 | 41        |
| 71 | Development of a Lesion-Mimic Phenotype in a Transgenic Wheat Line Overexpressing Genes for<br>Pathogenesis-Related (PR) Proteins Is Dependent on Salicylic Acid Concentration. Molecular<br>Plant-Microbe Interactions, 2003, 16, 916-925. | 1.4 | 39        |
| 72 | Interactive Effects of Elevated [CO2] and Drought on the Maize Phytochemical Defense Response against Mycotoxigenic Fusarium verticillioides. PLoS ONE, 2016, 11, e0159270.                                                                 | 1.1 | 39        |

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Spatial Patterns of Aflatoxin Levels in Relation to Ear-Feeding Insect Damage in Pre-Harvest Corn.<br>Toxins, 2011, 3, 920-931.                                                                                                | 1.5 | 38        |
| 74 | Effects of Soldier-Derived Terpenes on Soldier Caste Differentiation in the Termite Reticulitermes flavipes. Journal of Chemical Ecology, 2009, 35, 256-264.                                                                   | 0.9 | 37        |
| 75 | Accumulation of 5-hydroxynorvaline in maize (Zea mays) leaves is induced by insect feeding and abiotic stress. Journal of Experimental Botany, 2015, 66, 593-602.                                                              | 2.4 | 36        |
| 76 | Biosynthesis and antifungal activity of fungus-induced <i>O</i> -methylated flavonoids in maize. Plant<br>Physiology, 2022, 188, 167-190.                                                                                      | 2.3 | 32        |
| 77 | Functional Characterization of Two Class II Diterpene Synthases Indicates Additional Specialized<br>Diterpenoid Pathways in Maize (Zea mays). Frontiers in Plant Science, 2018, 9, 1542.                                       | 1.7 | 29        |
| 78 | Synthesis of Caeliferins, Elicitors of Plant Immune Responses: Accessing Lipophilic Natural Products via Cross Metathesis. Organic Letters, 2011, 13, 5900-5903.                                                               | 2.4 | 27        |
| 79 | Inducible De Novo Biosynthesis of Isoflavonoids in Soybean Leaves by Spodoptera litura Derived<br>Elicitors: Tracer Techniques Aided by High Resolution LCMS. Journal of Chemical Ecology, 2016, 42,<br>1226-1236.             | 0.9 | 27        |
| 80 | Soldier caste influences on candidate primer pheromone levels and juvenile hormone-dependent caste<br>differentiation in workers of the termite Reticulitermes flavipes. Journal of Insect Physiology, 2011, 57,<br>771-777.   | 0.9 | 24        |
| 81 | Fungal and herbivore elicitation of the novel maize sesquiterpenoid, zealexin A4, is attenuated by elevated CO2. Planta, 2018, 247, 863-873.                                                                                   | 1.6 | 24        |
| 82 | Phytoecdysteroid Turnover in Spinach: Long-term Stability Supports a Plant Defense Hypothesis.<br>Journal of Chemical Ecology, 2000, 26, 2883-2896.                                                                            | 0.9 | 21        |
| 83 | Phytohormones Mediate Volatile Emissions During The Interaction Of Compatible and Incompatible<br>Pathogens: The Role Of Ethylene In Pseudomonas syringae Infected Tobacco. Journal of Chemical<br>Ecology, 2005, 31, 439-459. | 0.9 | 21        |
| 84 | Tissue-specificPhBPBTexpression is differentially regulated in response to endogenous ethylene.<br>Journal of Experimental Botany, 2008, 59, 609-618.                                                                          | 2.4 | 20        |
| 85 | Headâ€group acylation of monogalactosyldiacylglycerol is a common stress response, and the<br>acylâ€galactose acyl composition varies with the plant species and applied stress. Physiologia<br>Plantarum, 2014, 150, 517-528. | 2.6 | 18        |
| 86 | Phenolic Compounds Accumulate Specifically in Maternallyâ€Đerived Tissues of Developing Maize<br>Kernels. Cereal Chemistry, 2007, 84, 350-356.                                                                                 | 1.1 | 16        |
| 87 | A maize death acid, 10-oxo-11-phytoenoic acid, is the predominant cyclopentenone signal present during multiple stress and developmental conditions. Plant Signaling and Behavior, 2016, 11, e1120395.                         | 1.2 | 16        |
| 88 | <i>Brachypodium</i> Phenylalanine Ammonia Lyase (PAL) Promotes Antiviral Defenses against<br><i>Panicum mosaic virus</i> and Its Satellites. MBio, 2021, 12, .                                                                 | 1.8 | 16        |
| 89 | The Arabidopsis MAP kinase kinase 7. Plant Signaling and Behavior, 2008, 3, 272-274.                                                                                                                                           | 1.2 | 14        |
| 90 | Getting back to the grass roots: harnessing specialized metabolites for improved crop stress resilience. Current Opinion in Biotechnology, 2021, 70, 174-186.                                                                  | 3.3 | 13        |

| #   | Article                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | A fragmentation study of isoflavones by IT-TOF-MS using biosynthesized isotopes. Bioscience,<br>Biotechnology and Biochemistry, 2018, 82, 1309-1315.                                                                                                                     | 0.6 | 12        |
| 92  | Plant height heterosis is quantitatively associated with expression levels of plastid ribosomal proteins. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .                                                                  | 3.3 | 10        |
| 93  | A sorghum genome-wide association study (GWAS) identifies a WRKY transcription factor as a<br>candidate gene underlying sugarcane aphid (Melanaphis sacchari) resistance. Planta, 2022, 255, 37.                                                                         | 1.6 | 10        |
| 94  | Biosynthetic pathway of aliphatic formates via a Baeyer–Villiger oxidation in mechanism present in<br>astigmatid mites. Proceedings of the National Academy of Sciences of the United States of America,<br>2017, 114, 2616-2621.                                        | 3.3 | 9         |
| 95  | Comparative analyses of responses to exogenous and endogenous antiherbivore elicitors enable a<br>forward genetics approach to identify maize gene candidates mediating sensitivity to<br>herbivoreâ€associated molecular patterns. Plant Journal, 2021, 108, 1295-1316. | 2.8 | 9         |
| 96  | Survey of Sensitivity to Fatty Acid-Amino Acid Conjugates in the Solanaceae. Journal of Chemical Ecology, 2020, 46, 330-343.                                                                                                                                             | 0.9 | 5         |
| 97  | Signatures of plant defense response specificity mediated by herbivoreâ€associated molecular patterns<br>in legumes. Plant Journal, 2022, 110, 1255-1270.                                                                                                                | 2.8 | 5         |
| 98  | Evaluation of spatial and temporal patterns of insect damage and aflatoxin level in the preâ€harvest corn fields to improve management tactics. Insect Science, 2014, 21, 572-583.                                                                                       | 1.5 | 3         |
| 99  | Influence of brown stink bug feeding, planting date and sampling time on common smut infection of maize. Insect Science, 2014, 21, 564-571.                                                                                                                              | 1.5 | 3         |
| 100 | <i>Fusarium verticillioides</i> Induces Maize-Derived Ethylene to Promote Virulence by Engaging<br>Fungal G-Protein Signaling. Molecular Plant-Microbe Interactions, 2021, 34, 1157-1166.                                                                                | 1.4 | 3         |
| 101 | Seed Treatment with Live or Dead <i><scp>F</scp>usarium verticillioides</i> Equivalently Reduces the Severity of Subsequent Stalk Rot. Journal of Phytopathology, 2014, 162, 201-204.                                                                                    | 0.5 | 2         |
| 102 | Synthesis and Determination of Absolute Configuration of Zealexin A1, a Sesquiterpenoid Phytoalexin from Zea mays. European Journal of Organic Chemistry, 2021, 2021, 1174-1178.                                                                                         | 1.2 | 2         |
| 103 | Efficient synthesis of zealexin B1, a maize sesquiterpenoid phytoalexin, viaSuzuki-Miyaura coupling.<br>Tetrahedron Letters, 2022, 91, 153641.                                                                                                                           | 0.7 | 2         |
| 104 | A nonproteinogenic amino acid, β-tyrosine, accumulates in young rice leaves via long-distance phloem transport from mature leaves. Bioscience, Biotechnology and Biochemistry, 2022, 86, 427-434.                                                                        | 0.6 | 2         |
| 105 | Shielding the oil reserves: the scutellum as a source of chemical defenses. Plant Physiology, 2022, 188, 1944-1949.                                                                                                                                                      | 2.3 | 2         |
| 106 | Acoustical Communication in Heteroptera (Hemiptera: Heteroptera). , 2008, , 23-33.                                                                                                                                                                                       |     | 1         |
| 107 | Augmentative Biological Control. , 2008, , 327-334.                                                                                                                                                                                                                      |     | 1         |

| #   | Article                                                                                          | IF | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------|----|-----------|
| 109 | American Grasshopper, Schistocerca americana (Drury) (Orthoptera: Acrididae). , 2008, , 141-144. |    | Ο         |
| 110 | Aleyrodidae. , 2008, , 97-97.                                                                    |    | 0         |
| 111 | Assassin Bugs, Kissing Bugs and Others (Hemiptera: Reduviidae). , 2008, , 311-319.               |    | Ο         |
| 112 | Abafi-Aigner, Lajos (Ludwig Aigner). , 2008, , 1-1.                                              |    | 0         |
| 113 | Abbott, John. , 2008, , 2-2.                                                                     |    | Ο         |
| 114 | Active Dispersal. , 2008, , 39-39.                                                               |    | 0         |