Man Wong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3754218/publications.pdf

Version: 2024-02-01

239 papers 3,423 citations

32 h-index 197535 49 g-index

240 all docs

240 docs citations

240 times ranked 2036 citing authors

#	Article	IF	CITATIONS
1	Nickel induced crystallization of amorphous silicon thin films. Journal of Applied Physics, 1998, 84, 194-200.	1.1	238
2	High performance low temperature metal-induced unilaterally crystallized polycrystalline silicon thin film transistors for system-on-panel applications. IEEE Transactions on Electron Devices, 2000, 47, 404-409.	1.6	163
3	Characterization of the MIC/MILC interface and its effects on the performance of MILC thin-film transistors. IEEE Transactions on Electron Devices, 2000, 47, 1061-1067.	1.6	112
4	Coupling Efficiency Enhancement in Organic Light-Emitting Devices Using Microlens Array—Theory and Experiment. Journal of Display Technology, 2005, 1, 278-282.	1.3	100
5	High-efficiency microcavity top-emitting organic light-emitting diodes using silver anode. Applied Physics Letters, 2006, 88, 073517.	1.5	100
6	Effects of longitudinal grain boundaries on the performance of MILC-TFTs. IEEE Electron Device Letters, 1999, 20, 97-99.	2.2	73
7	Rapid thermal annealing of polysilicon thin films. Journal of Microelectromechanical Systems, 1998, 7, 356-364.	1.7	71
8	Identifying the Optimum Morphology in Highâ€Performance Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1401775.	10.2	67
9	Comparative study of metal or oxide capped indium–tin oxide anodes for organic light-emitting diodes. Journal of Applied Physics, 2003, 93, 3253-3258.	1.1	66
10	Mechanism and Origin of Hysteresis in Oxide Thin-Film Transistor and Its Application on 3-D Nonvolatile Memory. IEEE Transactions on Electron Devices, 2017, 64, 438-446.	1.6	52
11	Praseodymium oxide coated anode for organic light-emitting diode. Applied Physics Letters, 2002, 80, 3485-3487.	1.5	50
12	Degradation Behaviors of Metal-Induced Laterally Crystallized n-Type Polycrystalline Silicon Thin-Film Transistors Under DC Bias Stresses. IEEE Transactions on Electron Devices, 2007, 54, 225-232.	1.6	46
13	Reversible Anion Exchange Reaction in Solid Halide Perovskites and Its Implication in Photovoltaics. Journal of Physical Chemistry C, 2015, 119, 26883-26888.	1.5	45
14	High-performance polycrystalline SiGe thin-film transistors using Al2O3 gate insulators. IEEE Electron Device Letters, 1998, 19, 502-504.	2.2	44
15	Integrating Poly-Silicon and InGaZnO Thin-Film Transistors for CMOS Inverters. IEEE Transactions on Electron Devices, 2017, 64, 3668-3671.	1.6	43
16	The effects of high temperature annealing on metal-induced laterally crystallized polycrystalline silicon. IEEE Transactions on Electron Devices, 2000, 47, 2061-2067.	1.6	42
17	Active-matrix organic light-emitting diode displays realized using metal-induced unilaterally crystallized polycrystalline silicon thin-film transistors. IEEE Transactions on Electron Devices, 2002, 49, 991-996.	1.6	42
18	Efficient organic light-emitting diode using semitransparent silver as anode. Applied Physics Letters, 2005, 87, 173505.	1.5	41

#	Article	IF	CITATIONS
19	An Effective Channel Mobility-Based Analytical On-Current Model for Polycrystalline Silicon Thin-Film Transistors. IEEE Transactions on Electron Devices, 2007, 54, 869-874.	1.6	41
20	Self-Aligned Indium–Gallium–Zinc Oxide Thin-Film Transistor With Phosphorus-Doped Source/Drain Regions. IEEE Electron Device Letters, 2012, 33, 1150-1152.	2.2	40
21	A Bottom-Gate Indium-Gallium-Zinc Oxide Thin-Film Transistor With an Inherent Etch-Stop and Annealing-Induced Source and Drain Regions. IEEE Transactions on Electron Devices, 2015, 62, 574-579.	1.6	40
22	Pressure loss in constriction microchannels. Journal of Microelectromechanical Systems, 2002, 11, 236-244.	1.7	39
23	Bridged-Grain Solid-Phase-Crystallized Polycrystalline-Silicon Thin-Film Transistors. IEEE Electron Device Letters, 2012, 33, 1414-1416.	2.2	39
24	Characteristics of Thin-Film Transistors Fabricated on Fluorinated Zinc Oxide. IEEE Electron Device Letters, 2012, 33, 549-551.	2.2	39
25	Zinc-Oxide Thin-Film Transistor With Self-Aligned Source/Drain Regions Doped With Implanted Boron for Enhanced Thermal Stability. IEEE Transactions on Electron Devices, 2012, 59, 393-399.	1.6	38
26	Self-Aligned Indium–Gallium–Zinc Oxide Thin-Film Transistor With Source/Drain Regions Doped by Implanted Arsenic. IEEE Electron Device Letters, 2013, 34, 60-62.	2.2	38
27	Investigation of High-Performance ITO-Stabilized ZnO TFTs With Hybrid-Phase Microstructural Channels. IEEE Transactions on Electron Devices, 2017, 64, 3174-3182.	1.6	38
28	A Comparative Study on Fluorination and Oxidation of Indium–Gallium–Zinc Oxide Thin-Film Transistors. IEEE Electron Device Letters, 2018, 39, 196-199.	2.2	37
29	Analytical solutions to the one-dimensional oxide-silicon-oxide system. IEEE Transactions on Electron Devices, 2003, 50, 1793-1800.	1.6	36
30	Top-Emitting OLED Using Praseodymium Oxide Coated Platinum as Hole Injectors. IEEE Transactions on Electron Devices, 2004, 51, 1207-1210.	1.6	35
31	Analysis of Degradation Mechanisms in Low-Temperature Polycrystalline Silicon Thin-Film Transistors under Dynamic Drain Stress. IEEE Transactions on Electron Devices, 2012, 59, 1730-1737.	1.6	33
32	High-performance and reliable elevated-metal metal-oxide thin-film transistor for high-resolution displays. , 2016 , , .		33
33	High-performance staggered top-gate thin-film transistors with hybrid-phase microstructural ITO-stabilized ZnO channels. Applied Physics Letters, 2016, 109, .	1.5	32
34	Blue Organic Light-Emitting Diode Based on 1,2,3,4,5-Pentaphenyl-1- (8-Phenyl-1,7-Octadiynyl)Silole. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10, 10-15.	1.9	31
35	The Resistivity of Zinc Oxide Under Different Annealing Configurations and Its Impact on the Leakage Characteristics of Zinc Oxide Thin-Film Transistors. IEEE Transactions on Electron Devices, 2014, 61, 1077-1084.	1.6	31
36	Performance of thin-film transistors with ultrathin Ni-MILC polycrystalline silicon channel layers. IEEE Electron Device Letters, 1999, 20, 167-169.	2.2	30

#	Article	IF	CITATIONS
37	A Quasi Two-Dimensional Conduction Model for Polycrystalline Silicon Thin-Film Transistor Based on Discrete Grains. IEEE Transactions on Electron Devices, 2008, 55, 2148-2156.	1.6	30
38	Elevated-Metal Metal-Oxide (EMMO) Thin-Film Transistor: Technology and Characteristics. IEEE Electron Device Letters, 2016, , 1-1.	2.2	30
39	Stress Power Dependent Self-Heating Degradation of Metal-Induced Laterally Crystallized n-Type Polycrystalline Silicon Thin-Film Transistors. IEEE Transactions on Electron Devices, 2007, 54, 3276-3284.	1.6	29
40	Characterization of an individual grain boundary in metal-induced laterally crystallized polycrystalline silicon thin-film devices. IEEE Transactions on Electron Devices, 2001, 48, 1655-1660.	1.6	28
41	Dopant and thickness dependence of metal-induced lateral crystallization of amorphous silicon films. Journal of Applied Physics, 2002, 91, 1236-1241.	1.1	28
42	Dopant emission mechanism and the effects of host materials on the behavior of doped organic light-emitting diodes. IEEE Transactions on Electron Devices, 2002, 49, 1540-1544.	1.6	27
43	Negative Bias Temperature Instability Dominated Degradation of Metal-Induced Laterally Crystallized p-Type Polycrystalline Silicon Thin-Film Transistors. IEEE Transactions on Electron Devices, 2009, 56, 587-594.	1.6	27
44	Characteristics of Plasma-Fluorinated Zinc Oxide Thin-Film Transistors. IEEE Electron Device Letters, 2012, 33, 1147-1149.	2.2	26
45	Analytical I-V relationship incorporating field-dependent mobility for a symmetrical DG MOSFET with an undoped body. IEEE Transactions on Electron Devices, 2006, 53, 1389-1397.	1.6	25
46	Polysilicon Thin Film-Transistors With Uniform and Reliable Performance Using Solution-Based Metal-Induced Crystallization. IEEE Transactions on Electron Devices, 2007, 54, 1244-1248.	1.6	25
47	Fluorination-Enabled Monolithic Integration of Enhancement- and Depletion-Mode Indium-Gallium-Zinc Oxide TFTs. IEEE Electron Device Letters, 2018, 39, 692-695.	2.2	25
48	A Comparative Study on the Effects of Annealing on the Characteristics of Zinc Oxide Thin-Film Transistors With Gate-Stacks of Different Gas-Permeability. IEEE Electron Device Letters, 2014, 35, 841-843.	2.2	24
49	An oxidation-last annealing for enhancing the reliability of indium-gallium-zinc oxide thin-film transistors. Applied Physics Letters, $2017,110,\ldots$	1.5	24
50	Integrated micro-heat-pipe fabrication technology. Journal of Microelectromechanical Systems, 2003, 12, 138-146.	1.7	23
51	DC sputtered indium-tin oxide transparent cathode for organic light-emitting diode. IEEE Electron Device Letters, 2003, 24, 315-317.	2.2	23
52	Bridged-Grain Polycrystalline Silicon Thin-Film Transistors. IEEE Transactions on Electron Devices, 2013, 60, 1965-1970.	1.6	21
53	Characterization of DC-Stress-Induced Degradation in Bridged-Grain Polycrystalline Silicon Thin-Film Transistors. IEEE Transactions on Electron Devices, 2014, 61, 3206-3212.	1.6	20
54	Polycrystalline Silicon Films and Thin-Film Transistors Using Solution-Based Metal-Induced Crystallization. Journal of Display Technology, 2006, 2, 265-273.	1.3	19

#	Article	IF	CITATIONS
55	Characteristics of Elevated-Metal Metal-Oxide Thin-Film Transistors Based on Indium-Tin-Zinc Oxide. IEEE Electron Device Letters, 2017, 38, 894-897.	2.2	19
56	Geometric Effect Elimination and Reliable Trap State Density Extraction in Charge Pumping of Polysilicon Thin-Film Transistors. IEEE Electron Device Letters, 2009, 30, 517-519.	2.2	18
57	Two-Stage Degradation of p-Channel Poly-Si Thin-Film Transistors Under Dynamic Negative Bias Temperature Stress. IEEE Transactions on Electron Devices, 2011, 58, 3034-3041.	1.6	18
58	Resilience of Fluorinated Indium-Gallium-Zinc Oxide Thin-Film Transistor Against Hydrogen-Induced Degradation. IEEE Electron Device Letters, 2020, 41, 729-732.	2.2	17
59	On the Threshold Voltage of Symmetrical DG MOS Capacitor With Intrinsic Silicon Body. IEEE Transactions on Electron Devices, 2004, 51, 1600-1604.	1.6	16
60	Effects of Substrate Doping on the Linearly Extrapolated Threshold Voltage of Symmetrical DG MOS Devices. IEEE Transactions on Electron Devices, 2005, 52, 1616-1621.	1.6	16
61	A comprehensive analytical on-current model for polycrystalline silicon thin film transistors based on effective channel mobility. Journal of Applied Physics, 2008, 103, 094513.	1.1	16
62	Compact Modeling of Thin-Film Transistors for Flexible Hybrid IoT Design. IEEE Design and Test, 2019, 36, 6-14.	1.1	16
63	Low Leakage Current Vertical Thin-Film Transistors With InSnO-Stabilized ZnO Channel. IEEE Electron Device Letters, 2020, 41, 248-251.	2.2	16
64	Enhanced Thermal Stability of Elevated-Metal Metal-Oxide Thin-Film Transistors via Low-Temperature Nitrogen Post-Annealing. IEEE Transactions on Electron Devices, 2021, 68, 1649-1653.	1.6	16
65	Anisotropic conduction behavior in metal-induced laterally crystallized polycrystalline silicon thin films. Applied Physics Letters, 2000, 76, 448-450.	1.5	15
66	An Analytical Expression for the Transfer Characteristics of a Polycrystalline Silicon Thin-Film Transistor With an Undoped Channel. IEEE Transactions on Electron Devices, 2009, 56, 1493-1498.	1.6	15
67	Realization and Characterization of a Bulk-Type All-Silicon High Pressure Sensor. Journal of Microelectromechanical Systems, 2018, 27, 231-238.	1.7	15
68	A Physical Model for Metal–Oxide Thin-Film Transistor Under Gate-Bias and Illumination Stress. IEEE Transactions on Electron Devices, 2018, 65, 142-149.	1.6	15
69	A Bottom-Gate Metal–Oxide Thin-Film Transistor With Self-Aligned Source/Drain Regions. IEEE Transactions on Electron Devices, 2018, 65, 2820-2826.	1.6	15
70	Characterization of low-temperature processed single-crystalline silicon thin-film transistor on glass. IEEE Electron Device Letters, 2003, 24, 574-576.	2.2	14
71	High Precision Active-Matrix Self-Capacitive Touch Panel Based on Fluorinated ZnO Thin-Film Transistor. Journal of Display Technology, 2015, 11, 22-29.	1.3	14
72	Synthesis, characterization and fabrication of ultrathin iron pyrite (FeS ₂) thin films and field-effect transistors. RSC Advances, 2016, 6, 8290-8296.	1.7	14

#	Article	IF	CITATIONS
73	Pâ€15: The Use of Fluorination to Enhance the Performance and the Reliability of Elevatedâ€Metal Metalâ€Oxide Thinâ€Film Transistors. Digest of Technical Papers SID International Symposium, 2018, 49, 1235-1238.	0.1	14
74	Suppression of the Short-Channel Effect in Dehydrogenated Elevated-Metal Metal- Oxide (EMMO) Thin-Film Transistors. IEEE Transactions on Electron Devices, 2020, 67, 3001-3004.	1.6	14
75	Thermally Induced Variation of the Turn-ON Voltage of an Indium–Gallium–Zinc Oxide Thin-Film Transistor. IEEE Transactions on Electron Devices, 2015, 62, 3703-3708.	1.6	13
76	Threshold Voltage Adjustment in Hybrid-Microstructural ITO-Stabilized ZnO TFTs via Gate Electrode Engineering. IEEE Electron Device Letters, 2018, 39, 975-978.	2.2	13
77	Evaluation of Positive-Bias-Stress-Induced Degradation in InSnZnO Thin-Film Transistors by Low Frequency Noise Measurement. IEEE Electron Device Letters, 2022, 43, 886-889.	2.2	13
78	Fabrication of High-Performance Bridged-Grain Polycrystalline Silicon TFTs by Laser Interference Lithography. IEEE Transactions on Electron Devices, 2016, 63, 1085-1090.	1.6	12
79	Low-Temperature-Processed Power Schottky Diode Based on Amorphous Indium-Tin-Zinc-Oxide/Indium-Gallium-Zinc-Oxide Bilayer. IEEE Transactions on Electron Devices, 2019, 66, 4759-4763.	1.6	12
80	Effects of high temperature post-annealing on the properties of solution-based metal-induced crystallized polycrystalline silicon films. Journal of Materials Science: Materials in Electronics, 2007, 18, 355-358.	1.1	11
81	MEMS pressure sensors for high-temperature high-pressure downhole applications. , 2016, , .		11
82	Suppressed Degradation of Elevated-Metal Metal–Oxide Thin-Film Transistors Under Bipolar Gate Pulse Stress. IEEE Electron Device Letters, 2018, 39, 707-710.	2.2	11
83	Self-Aligned Elevated-Metal Metal-Oxide Thin-Film Transistors for Displays and Flexible Electronics. , 2019, , .		11
84	Implemention of linear doping profiles for high voltage thin-film SOI devices. , 0, , .		10
85	Floating low-temperature radio-frequency plasma oxidation of polycrystalline silicon-germanium. Applied Physics Letters, 1998, 73, 360-362.	1.5	10
86	24.3: Active-Matrix Organic Light-Emitting Diode Display Implemented Using Metal-Induced Unilaterally Crystallized Polycrystalline Silicon Thin-Film Transistors. Digest of Technical Papers SID International Symposium, 2001, 32, 380.	0.1	10
87	Metal-replaced junction for reducing the junction parasitic resistance of a TFT. IEEE Electron Device Letters, 2006, 27, 269-271.	2.2	10
88	High-performance polycrystalline silicon thin-film transistors integrating sputtered aluminum-oxide gate dielectric with bridged-grain active channel. Semiconductor Science and Technology, 2013, 28, 115003.	1.0	10
89	Study of the Characteristics of Solid Phase Crystallized Bridged-Grain Poly-Si TFTs. IEEE Transactions on Electron Devices, 2014, 61, 1410-1416.	1.6	10
90	Low-Power Design for Unipolar ITO-Stabilized ZnO TFT RFID Code Generator Using Differential Logic Decoder. IEEE Transactions on Electron Devices, 2019, 66, 4768-4773.	1.6	10

#	Article	IF	CITATIONS
91	Fluorinated indiumâ€galliumâ€zinc oxide thinâ€film transistor with reduced vulnerability to hydrogenâ€induced degradation. Journal of the Society for Information Display, 2020, 28, 520-527.	0.8	10
92	A High Gain Low-Noise Amplifier Based on ITO-Stabilized ZnO Thin-Film Transistors. IEEE Transactions on Electron Devices, 2020, 67, 5537-5543.	1.6	10
93	Significant Reduction of Dynamic Negative Bias Stress-Induced Degradation in Bridged-Grain Poly-Si TFTs. IEEE Electron Device Letters, 2015, 36, 141-143.	2,2	9
94	OFF-State-Stress-Induced Instability in Switching Polycrystalline Silicon Thin-Film Transistors and Its Improvement by a Bridged-Grain Structure. IEEE Electron Device Letters, 2018, 39, 1684-1687.	2.2	9
95	Neuromorphic Implementation of Logic Functions Based on Parallel Dual-Gate Thin-Film Transistors. IEEE Electron Device Letters, 2022, 43, 741-744.	2.2	9
96	Effects of high-temperature rapid thermal annealing on the residual stress of LPCVD-polysilicon thin films. , 0 , , .		8
97	Three-mask polycrystalline silicon TFT with metallic gate and junctions. IEEE Electron Device Letters, 2006, 27, 564-566.	2.2	8
98	An Analytical Model for the Transfer Characteristics of a Polycrystalline Silicon Thin-Film Transistor With a Double Exponential Grain-Boundary Trap-State Energy Dispersion. IEEE Electron Device Letters, 2009, 30, 1072-1074.	2.2	8
99	An Analytical Expression for Threshold Voltage of Polycrystalline-Silicon Thin-Film Transistors. IEEE Electron Device Letters, 2010, 31, 815-817.	2.2	8
100	A Two-Stage Degradation Model of p-Channel Low-Temperature Poly-Si Thin-Film Transistors Under Positive Bias Temperature Stress. IEEE Transactions on Electron Devices, 2011, 58, 3501-3505.	1.6	8
101	A Self-Scanned Active-Matrix Tactile Sensor Realized Using Silicon-Migration Technology. Journal of Microelectromechanical Systems, 2015, 24, 677-684.	1.7	8
102	Dynamic-Gate-Stress-Induced Degradation in Bridged-Grain Polycrystalline Silicon Thin-Film Transistors. IEEE Transactions on Electron Devices, 2016, 63, 3964-3970.	1.6	8
103	"Driving―Stress-Induced Degradation in Polycrystalline Silicon Thin-Film Transistors and Its Suppression by a Bridged-Grain Structure. IEEE Electron Device Letters, 2017, 38, 52-55.	2.2	8
104	Degradation Induced by Forward Synchronized Stress in Poly-Si TFTs and Its Reduction by a Bridged-Grain Structure. IEEE Electron Device Letters, 2019, 40, 1467-1470.	2.2	8
105	On the formation of solid state crystallized intrinsic polycrystalline germanium thin films. Journal of Materials Research, 1997, 12, 2548-2551.	1.2	7
106	Low-temperature annealing of polycrystalline Si/sub $1-x/Ge/sub\ x/$ after dopant implantation. IEEE Transactions on Electron Devices, 1997, 44, 1958-1964.	1.6	7
107	P-128: Inverted Top-Emitting Organic Light-Emitting Devices Using Vanadium Pentoxide as Anode Buffer Layer. Digest of Technical Papers SID International Symposium, 2005, 36, 793.	0.1	7
108	A New Observation of the Elliot Curve Waveform in Charge Pumping of Poly-Si TFTs. IEEE Electron Device Letters, 2011, 32, 506-508.	2.2	7

#	Article	IF	Citations
109	High stability fluorinated zinc oxide thin film transistor and its application on high precision active-matrix touch panel. , $2013, , .$		7
110	A 1200-atmosphere bulk-type all-silicon pressure sensor. , 2017, , .		7
111	Extracting the Critical Breakdown Electrical Field of Amorphous Indium-Gallium-Zinc-Oxide From the Avalanche Breakdown of n-Indium-Gallium-Zinc-Oxide/p ⁺ -Nickel-Oxide Heterojunction Diode. IEEE Electron Device Letters, 2020, 41, 1017-1020.	2.2	7
112	A Novel Envelope Detector Based on Unipolar Metal-Oxide TFTs. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 2367-2371.	2.2	7
113	Ultraviolet to Near-Infrared Broadband Phototransistors Based on Hybrid InGaZnO/C8-BTBT Heterojunction Structure. IEEE Electron Device Letters, 2021, 42, 998-1001.	2.2	7
114	Fluorinated Metal-Oxide Thin-Film Transistors for Circuit Implementation on a Flexible Substrate. , 2022, $1,58-63$.		7
115	Effect of Moisture Exchange Caused by Lowâ€Temperature Annealing on Device Characteristics and Instability in InSnZnO Thinâ€Film Transistors. Advanced Materials Interfaces, 2022, 9, .	1.9	7
116	The Implementation of Fundamental Digital Circuits With ITO-Stabilized ZnO TFTs for Transparent Electronics. IEEE Transactions on Electron Devices, 2018, 65, 5395-5399.	1.6	6
117	A Unified Degradation Model of Elevated-Metal Metal Oxide (EMMO) TFTs Under Positive Gate Bias With or Without an Illumination. IEEE Transactions on Electron Devices, 2021, 68, 1081-1087.	1.6	6
118	Low-Frequency Noise in Bridged-Grain Polycrystalline Silicon Thin-Film Transistors. IEEE Transactions on Electron Devices, 2022, 69, 1984-1988.	1.6	6
119	35.4: A 2.1-inch AMOLED Display Based on Metal-Induced Laterally Crystallized Polycrystalline Silicon Technology. Digest of Technical Papers SID International Symposium, 2004, 35, 1128.	0.1	5
120	Effective Channel Mobility of Poly-Silicon Thin Film Transistors. , 2006, , .		5
121	Solution-based metal induced crystallized polycrystalline silicon films and thin-film transistors. Journal of Materials Science: Materials in Electronics, 2007, 18, 117-121.	1.1	5
122	Instability of p-channel poly-Si thin-film transistors under dynamic negative bias temperature stress. , 2010, , .		5
123	Series Resistance Extraction in Poly-Si TFTs With Channel Length and Mobility Variations. IEEE Electron Device Letters, 2011, 32, 901-903.	2.2	5
124	Three-Mask Elevated-Metal Metal-Oxide Thin-Film Transistor With Self-Aligned Definition of the Active Island. IEEE Electron Device Letters, 2018, 39, 35-38.	2.2	5
125	A Planar Single-Actuator Bi-Stable Switch Based on Latch-Lock Mechanism. , 2019, , .		5
126	Highâ€Performance Polycrystalline Silicon Thinâ€Film Transistors without Source/Drain Doping by Utilizing Anisotropic Conductivity of Bridgedâ€Grain Lines. Advanced Electronic Materials, 2020, 6, 1900961.	2.6	5

#	Article	IF	CITATIONS
127	Reversely-Synchronized-Stress-Induced Degradation in Polycrystalline Silicon Thin-Film Transistors and Its Suppression by a Bridged-Grain Structure. IEEE Electron Device Letters, 2020, 41, 1213-1216.	2.2	5
128	Reliable High-Performance Amorphous InGaZnO Schottky Barrier Diodes With Silicon Dioxide Passivation Layer. IEEE Electron Device Letters, 2021, 42, 1338-1341.	2.2	5
129	Lowâ€temperature elevatedâ€metal metalâ€oxide thinâ€film transistors and circuit building blocks on a flexible substrate. Journal of the Society for Information Display, 2022, 30, 505-513.	0.8	5
130	Phase change in microchannel heat sink under forced convection boiling., 0,,.		4
131	Experimental investigation of electrokinetically generated in-plane vorticity in a microchannel., 0,,.		4
132	Degradation of solution based metal induced laterally crystallized p-type poly-Si TFTS under DC bias stresses. , $2008, , .$		4
133	Degradation of metal induced laterally crystallized n-type polysilicon TFTs under dynamic gate voltage stresses. , 2008, , .		4
134	76.4: A Simple Technology for Realizing Selfâ€Aligned Zinc Oxide Thinâ€Film Transistor. Digest of Technical Papers SID International Symposium, 2010, 41, 1139-1142.	0.1	4
135	Wide-band piezoresistive microphone for aero-acoustic applications. , 2012, , .		4
136	Degradation of Polycrystalline Silicon TFT CMOS Inverters under AC Operation. IEEE Transactions on Electron Devices, 2013, 60, 295-300.	1.6	4
137	Investigation of top gate GaN thin-film transistor fabricated by DC magnetron sputtering. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, 032203.	0.6	4
138	Gate Insulator Engineering in Top-Gated Indium-Tin-Oxide-Stabilized ZnO Thin-Film Transistors. IEEE Electron Device Letters, 2019, 40, 1104-1107.	2.2	4
139	Pâ€1.1: Characterization of the Offâ€State Current of an Elevatedâ€Metal Metalâ€Oxide Thinâ€Film Transistor. Digest of Technical Papers SID International Symposium, 2021, 52, 413-416.	0.1	4
140	Reliability of Poly-Si TFTs Under Voltage Pulse With Fast Transition Time. IEEE Electron Device Letters, 2021, 42, 1782-1785.	2.2	4
141	A Comparative Study on Inverters Built With Dual-Gate Thin-Film Transistors Based on Depletion- or Enhancement-Mode Technologies. IEEE Transactions on Electron Devices, 2022, 69, 3186-3191.	1.6	4
142	Compact Integration of Hydrogen–Resistant a–InGaZnO and Poly–Si Thin–Film Transistors. Micromachines, 2022, 13, 839.	1.4	4
143	Reduction of threshold voltage in metal-induced-laterally-crystallized thin film transistors. , 0, , .		3
144	A micro-channel heat sink with integrated temperature sensors for phase transition study., 1999,,.		3

#	Article	IF	CITATIONS
145	32.3: Metal-Induced Unilaterally Crystallized Polycrystalline Silicon Thin-Film Transistor Technology for Active-Matrix Organic Light-Emitting Diode Displays with Reduced Susceptibility to Cross-Talk. Digest of Technical Papers SID International Symposium, 2002, 33, 976.	0.1	3
146	27.4: Top-emitting Organic Light-Emitting Diode using Nanometer Platinum Layers as Hole Injector. Digest of Technical Papers SID International Symposium, 2003, 34, 974.	0.1	3
147	Pâ€230: Novel Electricalâ€Chemically Polished Stainless Steel Anode Organic Light Emission Device with Long Lifetime at High Luminance for Flexible Lighting. Digest of Technical Papers SID International Symposium, 2008, 39, 2064-2066.	0.1	3
148	A Reduced Mask-Count Technology for Complementary Polycrystalline Silicon Thin-Film Transistors With Self-Aligned Metal Electrodes. IEEE Electron Device Letters, 2009, 30, 33-35.	2.2	3
149	The design, fabrication and characterization of a piezoresistive tactile sensor for fingerprint sensing. , 2010, , .		3
150	Characterization of hot carrier degradation in n-type poly-Si TFTs under dynamic drain pulse Stress with DC gate bias. , 2010 , , .		3
151	Negative drain pulse stress induced two-stage degradation of P-channel poly-Si thin-film transistors. , 2011, , .		3
152	Positive bias temperature stress induced degradation in p-channel poly-Si thin-film transistors. , 2011, , .		3
153	Wide-band piezoresistive aero-acoustic microphone., 2011,,.		3
154	A technology for monolithic MEMS-CMOS integration and its application to the realization of an active-matrix tactile sensor. , 2014, , .		3
155	P-22: Turn-On Voltage Modulation of Indium-Gallium-Zinc-Oxide Thin-Film Transistors through Thermal Annealing Processes. Digest of Technical Papers SID International Symposium, 2016, 47, 1197-1199.	0.1	3
156	Pâ€130: Reliable Flexible Elevated Metal Metalâ€Oxide IGZO TFTs. Digest of Technical Papers SID International Symposium, 2018, 49, 1587-1589.	0.1	3
157	24â€2: Distinguished Student Paper: Fluorination for Enhancing the Resistance of Indiumâ€Galliumâ€Zinc Oxide Thinâ€Film Transistor against Hydrogenâ€Induced Degradation. Digest of Technical Papers SID International Symposium, 2020, 51, 347-350.	0.1	3
158	Stacked-Interconnect for Monolithic Integration of Low-Temperature Polysilicon and Amorphous Metal-Oxide Thin-Film Transistors. IEEE Electron Device Letters, 2021, 42, 1331-1333.	2.2	3
159	Self-Compensation Effect of Photo-Bias Instabilities in a-InGaZnO Thin-Film Transistors Induced by Unique Ion Migration. IEEE Transactions on Electron Devices, 2022, 69, 3206-3212.	1.6	3
160	A Bulk-Type High-Pressure MEMS Pressure Sensor With Dual-Cavity Induced Mechanical Amplification. Journal of Microelectromechanical Systems, 2022, 31, 683-689.	1.7	3
161	Application of metal-induced unilaterally crystallized polycrystalline silicon thin-film transistor technology to active-matrix organic light-emitting diode displays. , 0, , .		2
162	Suppression of leakage current in low-temperature metal-induced unilaterally crystallized polycrystalline silicon thin-film transistor using an improved process sequence and a gate-modulated lightly-doped drain structure. , 0, , .		2

#	Article	IF	CITATIONS
163	Characteristics and stability of improved re-crystallized metal-induced laterally crystallized polycrystalline-silicon thin-film transistors for display applications. Journal of the Society for Information Display, 2003, 11, 633.	0.8	2
164	Parallel and series multiple microchannel systems. , 0, , .		2
165	P-1: Peripherally Crystallized Polycrystalline Silicon (PCP) for Thin-Film Transistors. Digest of Technical Papers SID International Symposium, 2005, 36, 224.	0.1	2
166	Hot Carrier Induced Leakage Current Instability in Metal Induced Laterally Crystallized n-type Poly-Silicon Thin Film Transistors. , 2006, , .		2
167	P-17: Metal Induced Continuous Zonal Domain Polycrystalline Silicon and Thin Film Transistors. Digest of Technical Papers SID International Symposium, 2007, 38, 233-236.	0.1	2
168	Pâ€5: Selfâ€Release Nickel Induced Lateral Crystallized (SRâ€NILC) Low Temperature Polycrystalline Silicon Films and Thin Film Transistors. Digest of Technical Papers SID International Symposium, 2009, 40, 1096-1099.	0.1	2
169	Metal-Induced Continuous Zonal Domain (CZD) Polycrystalline Silicon Thin-Film Transistors and Its Application on Field Sequential Color Liquid Crystal Display. Journal of Display Technology, 2010, 6, 135-141.	1.3	2
170	8.1: <i>Invited Paper:</i> Enhanced Elevatedâ€Metal Metalâ€Oxide Thinâ€Film Transistor Technology. Digest of Technical Papers SID International Symposium, 2018, 49, 75-78.	0.1	2
171	Vertical ITO/SiO _X /a-Si:H Photodiode-Gated Low-Temperature Polycrystalline Silicon Thin-Film Transistor Intended for In-Display Fingerprint Imaging Applications. IEEE Electron Device Letters, 2018, 39, 1338-1341.	2.2	2
172	Pâ€11: Carrier Concentration Reduction by Fluorine Doping in Pâ€Type SnO Thinâ€Film Transistors. Digest of Technical Papers SID International Symposium, 2019, 50, 1251-1254.	0.1	2
173	A Timing Model for the Optimal Design of a Prototype Active-Matrix Display. IEEE Transactions on Electron Devices, 2020, 67, 3167-3174.	1.6	2
174	A costâ€effective fluorination method for enhancing the performance of metal oxide thinâ€film transistors. Journal of the Society for Information Display, 2021, 29, 318-327.	0.8	2
175	2000-Atmosphere Chip-Scale Packaged Bulk-Type Pressure Sensor with Dual-Cavity Induced Stress Amplification. , 2021, , .		2
176	15.1: Invited Paper: A Lowâ€Temperature Elevatedâ€Metal Metalâ€Oxide Thinâ€Film Transistor Technology for Flexible Electronics. Digest of Technical Papers SID International Symposium, 2021, 52, 202-205.	0.1	2
177	Effect of Interface Modification Conditions on Electrical Characteristics and Device Consistency of Organic Thin Film Transistors. IEEE Electron Device Letters, 2022, 43, 36-39.	2.2	2
178	Effect of Nitrogen Doping on Elevated-Metal Metal-Oxide (EMMO) Thin-Film Transistors. IEEE Transactions on Electron Devices, 2022, 69, 4271-4276.	1.6	2
179	Reverse short-channel effect in metal-induced laterally crystallized polysilicon thin-film transistors. IEEE Electron Device Letters, 1999, 20, 566-568.	2.2	1
180	Investigation of heavily doped silicon as an anode material for top-emitting organic light-emitting diode. , 0 , , .		1

#	Article	IF	CITATIONS
181	Characteristics of transistors fabricated on silicon-on-quartz prepared using a mechanically initiated exfoliation technique. IEEE Electron Device Letters, 2005, 26, 607-609.	2.2	1
182	P-10 Post-Crystallization of Metal-Induced Laterally Crystallized Poly-Si with YAG Laser. Digest of Technical Papers SID International Symposium, 2006, 37, 227.	0.1	1
183	Passivation Effects of Aluminum on Polycrystalline Silicon Thin-Film Transistor With Metal-Replaced Junctions. IEEE Electron Device Letters, 2007, 28, 126-128.	2.2	1
184	Post-annealing of solution-based metal-induced laterally crystallized poly-Si with triple-frequency YAG laser. Journal of Materials Science: Materials in Electronics, 2007, 18, 351-354.	1.1	1
185	Super-Large Domain Metal-Induced Radially Crystallized Poly-Si Made Using Ni(NO3)2/NH4OH Mixed Solution. Journal of Electronic Materials, 2007, 36, 1160-1165.	1.0	1
186	Optimization of charge pumping technique in polysilicon TFTs for geometric effect elimination and trap state density extraction. , 2008, , .		1
187	P-15: A 3 inch Active Matrix for Color Sequential-Liquid Crystal Display (CS-LCD) Based on Metal Induced Continuous Zonal Domain (CZD) Polycrystalline Silicon Technology. Digest of Technical Papers SID International Symposium, 2008, 39, 1223.	0.1	1
188	Anomalous & amp; $\#x201C$; sweeping stress & amp; $\#x201D$; induced degradation in n-type low temperature poly-Si thin film transistors., 2009,,.		1
189	Observation of combined self-heating and hot-carrier degradation in n-type poly-Si thin-film transistors. , 2009, , .		1
190	Characterization of self-aligned metal electrodes poly-Si TFTs with schottky barrier contact., 2010,,.		1
191	Stress induced hump in p-channel poly-Si TFTs under dynamic negative bias temperature stress. , 2011, , .		1
192	Degradation of static behaviour of poly-Si CMOS inverters under high frequency operation., 2011,,.		1
193	59.3: Bridgedâ€grain (BG) Eximer Laser Annealing (ELA) Polycrystalline Silicon Thin Film Transistors (TFTs). Digest of Technical Papers SID International Symposium, 2011, 42, 870-873.	0.1	1
194	Passivation of Poly-Si Thin Film Employing Si Self-Implantation and Its Application to TFTs. IEEE Journal of the Electron Devices Society, 2018, 6, 240-244.	1.2	1
195	Pâ€1.5: Edge Effects of Threeâ€Mask Elevatedâ€Metal Metalâ€Oxide Thinâ€Film Transistor and Their Elimination. Digest of Technical Papers SID International Symposium, 2018, 49, 531-534.	0.1	1
196	1.3: A Timing Model for the Design of an Activeâ€Matrix Display. Digest of Technical Papers SID International Symposium, 2019, 50, 13-16.	0.1	1
197	Pâ€4: Enhanced Scalability and Reliability of High Mobility Elevatedâ€Metal Metalâ€Oxide Thinâ€Film Transistors with Bandgap Engineering. Digest of Technical Papers SID International Symposium, 2020, 51, 1322-1325.	0.1	1
198	Dimension Scaling Effects on Conduction and Low Frequency Noise Characteristics of ITO-Stabilized ZnO Thin Film Transistors. IEEE Journal of the Electron Devices Society, 2020, 8, 435-441.	1.2	1

#	Article	IF	Citations
199	Thermal Budget Reduction in Metal Oxide Thin-Film Transistors via Planarization Process. IEEE Electron Device Letters, 2021, 42, 180-183.	2.2	1
200	Pâ€11: Selfâ€Heating Induced Degradation in a Metalâ€Oxide Thinâ€Film Transistor on a Flexible Substrate and Its Mitigation. Digest of Technical Papers SID International Symposium, 2021, 52, 1092-1095.	0.1	1
201	Pâ€1.2: Allâ€Oxide Thinâ€Film Transistors for Lowâ€Voltageâ€Operation Circuits. Digest of Technical Papers SID International Symposium, 2021, 52, 688-691.	0.1	1
202	Dopant Activation In Poly-SI/sub1-x/Ge/subx/ At Low Temperature. , 1997, , .		0
203	Low-Temperature Floating Plasma Oxidation of Poly-SiGe. Materials Research Society Symposia Proceedings, 1998, 508, 157.	0.1	O
204	Applications of germanium to low temperature micro-machining. , 1999, , .		0
205	Pâ€2: Reâ€Crystallized Metalâ€Induced Laterally Crystallized Polycrystalline Silicon for Systemâ€onâ€Panel Applications. Digest of Technical Papers SID International Symposium, 2000, 31, 531-533.	0.1	O
206	47.2: Hole Injection and Power Efficiency of Organic Light Emitting Diodes with Ultra-Thin Inorganic Buffer Layer on Indium Tin Oxide. Digest of Technical Papers SID International Symposium, 2002, 33, 1262.	0.1	0
207	Top-emitting organic light-emitting diode using Al as anode. , 0, , .		O
208	Fabrication and packaging of inertia micro-switch using metal-electroplating technology. , 0, , .		0
209	Poisson-boltzmann solutions to the one-dimensional oxide-silicon-oxide system. , 0, , .		O
210	Single-crystalline silicon thin-film transistor on glass. , 0, , .		0
211	Height effect on nucleation-site activity in microchannel convective boiling. , 0, , .		O
212	Unsteady in-plane vortex motion in a microchannel liquid flow. , 0, , .		0
213	An Investigation of Self-Heating Degradation of Metal Induced Laterally Crystallized N-Type Polysilicon Thin Film Transistors. , 2007, , .		O
214	P-168: Investigation of High-Efficiency Electrophosphorescent Organic Light-emitting Diodes with Double-Emission Layers. Digest of Technical Papers SID International Symposium, 2007, 38, 826-829.	0.1	0
215	A conduction model for intrinsic polycrystalline silicon thin-film transistor based on energy-dispersed trap states at discrete grain boundary. , 2008, , .		O
216	Low-temperature processed polycrystalline silicon thin-film transistor with aluminum-replaced source and drain regions. , 2008, , .		0

#	Article	IF	CITATIONS
217	Metal induced continuous grain polycrystalline silicon thin film transistors. , 2008, , .		0
218	Metal induced crystallization of aâ€6i using a nanoâ€layer of silicon oxide mask (MMIC). Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 608-611.	0.8	0
219	Niâ€Si oxide as an inducing crystallization source for making polyâ€Si. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 612-615.	0.8	0
220	A new method for series resistance extraction in poly-Si thin-film transistors. , 2010, , .		0
221	Substrate current and its correlation with degradation of poly-Si thin film transistors. , 2010, , .		0
222	Improved electrical characteristics of zinc oxide thin-film with fluorine passivation. , 2012, , .		0
223	Schottky Barrier Controlled Conduction in Poly-Si TFTs With Metal Source and Drain. IEEE Transactions on Electron Devices, 2013, 60, 1958-1964.	1.6	0
224	Silicon-migration technology for MEMS-CMOS monolithic integration. , 2014, , .		0
225	Elevated metal metal-oxide thin-film transistor — A new bottom-gate transistor architecture for flat-panel displays. , 2016, , .		O
226	HIGH-PRESSURE HIGH-TEMPERATURE BULK-TYPE PIEZORESISTIVE PRESSURE SENSOR., 2018,,.		0
227	Pâ€1.4: Elevatedâ€Metal Metalâ€Oxide Thinâ€Film Transistor with Fluorinated Indiumâ€Galliumâ€Zinc Oxide Channel towards Flexible Applications. Digest of Technical Papers SID International Symposium, 2018, 49, 528-530.	0.1	0
228	24.3: Shortâ€Channel Indiumâ€Calliumâ€Zinc Oxide Thinâ€Film Transistor Enabled by Thermal Dehydrogenation and Oxidizing Defectâ€Suppression. Digest of Technical Papers SID International Symposium, 2018, 49, 255-258.	0.1	0
229	30.1: Transparent Basic Logic Circuits with ITOâ€Stabilized ZnO Thin Film Transistors. Digest of Technical Papers SID International Symposium, 2018, 49, 322-325.	0.1	0
230	Pâ€21: Threeâ€Mask Elevatedâ€Metal Metalâ€Oxide Thinâ€Film Transistor Technology for Highâ€Resolution AMOLED Application. Digest of Technical Papers SID International Symposium, 2018, 49, 1256-1259.	0.1	0
231	8.2: <i>Invited Paper:</i> Elevatedâ€Metal Metalâ€Oxide Thinâ€Film Transistor with Selfâ€Aligned Source/Drain Regions. Digest of Technical Papers SID International Symposium, 2019, 50, 75-78.	0.1	0
232	Pâ€15: Gateâ€Biasâ€Stressâ€Induced Instability in Hybridâ€Phase Microstructural ITOâ€Stabilized ZnO TFTs. Dige of Technical Papers SID International Symposium, 2019, 50, 1267-1270.	est 0.1	0
233	Pâ€19: <i>Student Poster:</i> Enhanced Elevatedâ€Metal Metalâ€Oxide Thinâ€Film Transistors for Gateâ€Driver Circuit Fabricated on a Flexible Substrate. Digest of Technical Papers SID International Symposium, 2021, 52, 1124-1127.	0.1	0
234	8â€1: <i>Distinguished Paper:</i> A Costâ€Effective Fluorination Method for Enhancing the Performance of Metal Oxide Thinâ€Film Transistors Using a Fluorinated Planarization Layer. Digest of Technical Papers SID International Symposium, 2021, 52, 77-80.	0.1	0

#	Article	IF	CITATIONS
235	Pâ€18: <i>Student Poster:</i> Nonâ€Oxidizing Preâ€Annealing for Enhanced Fluorination of an Indiumâ€Galliumâ€Zinc Oxide Thinâ€Film Transistor. Digest of Technical Papers SID International Symposium, 2021, 52, 1120-1123.	0.1	0
236	Light-Illumination-Induced Degradation in Elevated-Metal Metal-Oxide Thin-Film Transistors without and with Fluorination. , $2021,\ldots$		0
237	29.5: Reliability Enhancement of an Indiumâ€Galliumâ€Zinc Oxide Thinâ€Film Transistor by Preâ€Fluorination Nonâ€Oxidizing Annealing. Digest of Technical Papers SID International Symposium, 2021, 52, 403-406.	0.1	0
238	2.2: Highâ€Resolution Activeâ€Matrix Organic Lightâ€Emitting Diode Display Realized Using Elevatedâ€Metal Metalâ€Oxide Transistor Technology. Digest of Technical Papers SID International Symposium, 2021, 52, 51-51.	0.1	0
239	Monolithic Integration of Fluorinated Metal-Oxide Thin-Film Transistor and Hydrogenated Amorphous Silicon Photo-Diode. , 2020, , .		0