Gabriela Graziani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3754191/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	FT-IR Spectral Signature of Sensitive and Multidrug-Resistant Osteosarcoma Cell-Derived Extracellular Nanovesicles. Cells, 2022, 11, 778.	4.1	3
2	Foot Orthosis and Sensorized House Slipper by 3D Printing. Materials, 2022, 15, 4064.	2.9	11
3	Nanostructure and biomimetics orchestrate mesenchymal stromal cell differentiation: An in vitro bioactivity study on new coatings for orthopedic applications. Materials Science and Engineering C, 2021, 123, 112031.	7.3	11
4	Phosphate treatments for stone conservation: 3-year field study in the Royal Palace of Versailles (France). Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	3.1	10
5	Ionized jet deposition of antimicrobial and stem cell friendly silver-substituted tricalcium phosphate nanocoatings on titanium alloy. Bioactive Materials, 2021, 6, 2629-2642.	15.6	21
6	3D Printing and Bioprinting to Model Bone Cancer: The Role of Materials and Nanoscale Cues in Directing Cell Behavior. Cancers, 2021, 13, 4065.	3.7	18
7	Perfused Platforms to Mimic Bone Microenvironment at the Macro/Milli/Microscale: Pros and Cons. Frontiers in Cell and Developmental Biology, 2021, 9, 760667.	3.7	4
8	Unravelling the Effect of Citrate on the Features and Biocompatibility of Magnesium Phosphate-Based Bone Cements. ACS Biomaterials Science and Engineering, 2020, 6, 5538-5548.	5.2	7
9	Citrate Supplementation Restores the Impaired Mineralisation Resulting from the Acidic Microenvironment: An In Vitro Study. Nutrients, 2020, 12, 3779.	4.1	2
10	Nanodecoration of electrospun polymeric fibers with nanostructured silver coatings by ionized jet deposition for antibacterial tissues. Materials Science and Engineering C, 2020, 113, 110998.	7.3	28
11	A Comprehensive Microstructural and Compositional Characterization of Allogenic and Xenogenic Bone: Application to Bone Grafts and Nanostructured Biomimetic Coatings. Coatings, 2020, 10, 522.	2.6	11
12	Fabrication and characterization of biomimetic hydroxyapatite thin films for bone implants by direct ablation of a biogenic source. Materials Science and Engineering C, 2019, 99, 853-862.	7.3	32
13	Nanostructured Ag thin films deposited by pulsed electron ablation. Applied Surface Science, 2019, 475, 917-925.	6.1	21
14	Calcium phosphate coatings for marble conservation: Influence of ethanol and isopropanol addition to the precipitation medium on the coating microstructure and performance. Corrosion Science, 2018, 136, 255-267.	6.6	38
15	Conversion of calcium sulfate dihydrate into calcium phosphates as a route for conservation of gypsum stuccoes and sulfated marble. Construction and Building Materials, 2018, 170, 290-301.	7.2	29
16	New method for controllable accelerated aging of marble: Use for testing of consolidants. Journal of the American Ceramic Society, 2018, 101, 4146-4157.	3.8	13
17	Phosphate-based treatments for consolidation of salt-bearing Globigerina limestone. IOP Conference Series: Materials Science and Engineering, 2018, 364, 012082.	0.6	6
18	New insights on protective treatments for marble by FIB-SEM. IOP Conference Series: Materials Science and Engineering, 2018, 364, 012092.	0.6	3

GABRIELA GRAZIANI

#	Article	IF	CITATIONS
19	A Review on Ionic Substitutions in Hydroxyapatite Thin Films: Towards Complete Biomimetism. Coatings, 2018, 8, 269.	2.6	92
20	Neutron radiography as a tool for assessing penetration depth and distribution of a phosphate consolidant for limestone. Construction and Building Materials, 2018, 187, 238-247.	7.2	11
21	Some Recent Findings On Marble Conservation By Aqueous Solutions Of Diammonium Hydrogen Phosphate. MRS Advances, 2017, 2, 2021-2026.	0.9	8
22	Penetration depth and redistribution of an aqueous ammonium phosphate solution used for porous limestone consolidation by brushing and immersion. Construction and Building Materials, 2017, 148, 571-578.	7.2	29
23	Thermal behavior of Carrara marble after consolidation by ammonium phosphate, ammonium oxalate and ethyl silicate. Materials and Design, 2017, 120, 345-353.	7.0	27
24	Plasma-assisted deposition of bone apatite-like thin films from natural apatite. Materials Letters, 2017, 199, 32-36.	2.6	18
25	Ion-substituted calcium phosphate coatings deposited by plasma-assisted techniques: A review. Materials Science and Engineering C, 2017, 74, 219-229.	7.3	84
26	Pulsed Electron Deposition of nanostructured bioactive glass coatings for biomedical applications. Ceramics International, 2017, 43, 15862-15867.	4.8	26
27	Resistance to simulated rain of hydroxyapatite- and calcium oxalate-based coatings for protection of marble against corrosion. Corrosion Science, 2017, 127, 168-174.	6.6	39
28	A Nanomechanical Investigation of Engineered Bone Tissue Comparing Elastoplastic and Viscoelastoplastic Modeling. Advances in Materials Science and Engineering, 2017, 2017, 1-8.	1.8	1
29	Experimental study on the salt weathering resistance of fired clay bricks consolidated by ethyl silicate. Materials and Structures/Materiaux Et Constructions, 2016, 49, 2525-2533.	3.1	5
30	An innovative phosphate-based consolidant for limestone. Part 2: Durability in comparison with ethyl silicate. Construction and Building Materials, 2016, 102, 931-942.	7.2	52
31	Hydroxyapatite coatings for marble protection: Optimization of calcite covering and acid resistance. Applied Surface Science, 2016, 368, 241-257.	6.1	71
32	A new prefabricated external thermal insulation composite board with ceramic finishing for buildings retrofitting. Materials and Structures/Materiaux Et Constructions, 2016, 49, 1527-1542.	3.1	12
33	An innovative phosphate-based consolidant for limestone. Part 1: Effectiveness and compatibility in comparison with ethyl silicate. Construction and Building Materials, 2016, 102, 918-930.	7.2	82
34	Solvent-based ethyl silicate for stone consolidation: influence of the application technique on penetration depth, efficacy and pore occlusion. Materials and Structures/Materiaux Et Constructions, 2015, 48, 3503-3515.	3.1	46
35	TEOS-based treatments for stone consolidation: acceleration of hydrolysis–condensation reactions by poulticing. Journal of Sol-Gel Science and Technology, 2015, 74, 398-405.	2.4	56
36	Consolidation of porous carbonate stones by an innovative phosphate treatment: mechanical strengthening and physical-microstructural compatibility in comparison with TEOS-based treatments. Heritage Science, 2015, 3, .	2.3	57

3

GABRIELA GRAZIANI

#	Article	IF	CITATIONS
37	Compressive behaviour of brick masonry triplets in wet and dry conditions. Construction and Building Materials, 2015, 82, 45-52.	7.2	38
38	Repair of sugaring marble by ammonium phosphate: Comparison with ethyl silicate and ammonium oxalate and pilot application to historic artifact. Materials and Design, 2015, 88, 1145-1157.	7.0	80
39	Brushing, poultice or immersion? The role of the application technique on the performance of a novel hydroxyapatite-based consolidating treatment for limestone. Journal of Cultural Heritage, 2015, 16, 173-184.	3.3	82
40	Towards the assessment of the shear behaviour of masonry in on-site conditions: A study on dry and salt/water conditioned brick masonry triplets. Construction and Building Materials, 2014, 65, 405-416.	7.2	33
41	Compatibility of photocatalytic TiO2-based finishing for renders in architectural restoration: A preliminary study. Building and Environment, 2014, 80, 125-135.	6.9	41
42	Rising moisture, salts and electrokinetic effects in ancient masonries: From laboratory testing to on-site monitoring. Journal of Cultural Heritage, 2014, 15, 112-120.	3.3	33
43	Mechanical Properties of Fired-Clay Brick Masonry Models in Moist and Dry Conditions. Key Engineering Materials, 0, 624, 307-312.	0.4	14