
Xinyang Miao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3754078/publications.pdf Version: 2024-02-01

XINVANC MIAO

#	Article	IF	CITATIONS
1	The mechanism of the terahertz spectroscopy for oil shale detection. Energy, 2018, 161, 46-51.	8.8	29
2	Two-step pyrolysis degradation mechanism of oil shale through comprehensive analysis of pyrolysis semi-cokes and pyrolytic gases. Energy, 2022, 241, 122871.	8.8	18
3	Ultraviolet laser-induced voltage in anisotropic shale. Journal Physics D: Applied Physics, 2018, 51, 045503.	2.8	15
4	Size Effect on Microparticle Detection. IEEE Transactions on Terahertz Science and Technology, 2018, 8, 477-481.	3.1	15
5	A New Approach for Desert Reservoir Exploration: Terahertz Prospecting. IEEE Transactions on Terahertz Science and Technology, 2020, 10, 68-73.	3.1	12
6	Simultaneous Determination of Organic Distribution and Content in Oil Shale by Terahertz Imaging. Energy & Fuels, 2020, 34, 1664-1668.	5.1	12
7	Application of THz technology in oil and gas optics. Science China: Physics, Mechanics and Astronomy, 2017, 60, 1.	5.1	10
8	Characterizing the oil and water distribution in low permeability core by reconstruction of terahertz images. Science China: Physics, Mechanics and Astronomy, 2016, 59, 1.	5.1	9
9	Reliable Evaluation of Oil–Water Two-Phase Flow Using a Method Based on Terahertz Time-Domain Spectroscopy. Energy & Fuels, 2017, 31, 2765-2770.	5.1	9
10	Transient laser-induced voltaic response in a partially illuminated dielectric core. Laser Physics, 2018, 28, 086001.	1.2	9
11	Ultraviolet laser-induced lateral photovoltaic response in anisotropic black shale. Applied Physics B: Lasers and Optics, 2017, 123, 1.	2.2	8
12	Characterizing the rock perforation process by laser-induced voltage response. Science China: Physics, Mechanics and Astronomy, 2018, 61, 1.	5.1	8
13	Evaluating Oil Potential in Shale Formations Using Terahertz Time-Domain Spectroscopy. Journal of Energy Resources Technology, Transactions of the ASME, 2018, 140, .	2.3	8
14	Comprehensive preparation and multiscale characterization of kerogen in oil shale. Energy, 2022, 252, 124005.	8.8	8
15	Discriminating the Mineralogical Composition in Drill Cuttings Based on Absorption Spectra in the Terahertz Range. Applied Spectroscopy, 2017, 71, 186-193.	2.2	7
16	Thermal spallation in rock revealed by ultraviolet laser-induced voltage. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	7
17	Leakage detection of oil tank using terahertz spectroscopy. Science China Technological Sciences, 2021, 64, 1947-1952.	4.0	7
18	Determining the Humidity-Dependent <i>Ortho</i> -to- <i>Para</i> Ratio of Water Vapor at Room Temperature Using Terahertz Spectroscopy. Applied Spectroscopy, 2018, 72, 1040-1046.	2.2	6

XINYANG MIAO

#	Article	IF	CITATIONS
19	Mechanism of the Laser-Induced Voltage Generated in Oil Shale under the Irradiation of a 532 nm Laser. Energy & Fuels, 2021, 35, 1398-1403.	5.1	6
20	Terahertz for the detection of the oil bearing characteristics of shale. Energy Reports, 2021, 7, 5162-5167.	5.1	6
21	Characterization of Wax Appearance Temperature of Waxy Model Oils Using Laser-induced Voltage . Physics of Fluids, 0, , .	4.0	5
22	Surface phase-transition dynamics of ice probed by terahertz time-domain spectroscopy. Journal of Physics Communications, 2018, 2, 085025.	1.2	4
23	Tuning Irreversible Magnetoresistance in Pr _{0.67} Sr _{0.33} MnO ₃ Film via Octahedral Rotation. ACS Applied Materials & Interfaces, 2020, 12, 43222-43230.	8.0	4
24	Applying a 532 nm Laser to Reduce the Viscosity of Crude Oil. Energy & Fuels, 2020, 34, 9509-9514.	5.1	4
25	Probing the Anisotropy of Shale by the Voltaic Response of Laser-Induced Plasma. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-6.	4.7	4
26	Thermal Terahertz Analysis for the Detection of Trace Organic Matter. Energy & Fuels, 2021, 35, 4075-4080.	5.1	4
27	Oblique-incidence reflectivity difference method combined with deep learning for predicting anisotropy of invisible-bedding shale. Energy Reports, 2020, 6, 795-801.	5.1	3
28	Determining the spatial distribution of laser-induced plasma by laser-induced voltaic measurement. Laser Physics Letters, 2021, 18, 096003.	1.4	3
29	Laser-induced voltage of shale due to photothermal effect. Laser Physics, 2021, 31, 096101.	1.2	3
30	Terahertz Spectroscopy Combined With Deep Learning for Predicting the Depth and Duration of Underground Sand Pollution by Crude Oil. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-8.	4.7	3
31	Ultrafast Deep-Ultraviolet Laser-Induced Voltage Response of Pyrite. Micromachines, 2021, 12, 1555.	2.9	3
32	Optical Detection for the Adsorption Kinetics of Surfactant Solutions on the Surface/Interface: Oblique-Incidence Reflectivity Difference Investigation. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-7.	4.7	2
33	A lateral photovoltaic detection for the anisotropic response of invisible-bedding tight shale. Applied Physics B: Lasers and Optics, 2020, 126, 1.	2.2	1
34	Evaluating the Hydrocarbon Yield of Oil Shale Using Electrically Tunable Terahertz Wave. Journal of Energy Resources Technology, Transactions of the ASME, 2021, 143, .	2.3	1
35	Characterizing the unconventional oil-gas reservoirs by laser-induced voltage measurement. , 2022, , .		0