Bo-Kuai Lai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3753912/publications.pdf

Version: 2024-02-01

361413 526287 1,273 29 20 27 citations h-index g-index papers 30 30 30 1195 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Scalable nanostructured membranes for solid-oxide fuel cells. Nature Nanotechnology, 2011, 6, 282-286.	31.5	188
2	Pt/Y0.16Zr0.84O1.92/Pt thin film solid oxide fuel cells: Electrode microstructure and stability considerations. Journal of Power Sources, 2011, 196, 2608-2614.	7.8	118
3	Electric-Field-Induced Domain Evolution in Ferroelectric Ultrathin Films. Physical Review Letters, 2006, 96, 137602.	7.8	107
4	Phase diagrams of epitaxial BaTiO3 ultrathin films from first principles. Applied Physics Letters, 2005, 86, 132904.	3.3	88
5	An experimental investigation into micro-fabricated solid oxide fuel cells with ultra-thin La0.6Sr0.4Co0.8Fe0.2O3 cathodes and yttria-doped zirconia electrolyte films. Journal of Power Sources, 2009, 186, 252-260.	7.8	77
6	Low temperature thin film solid oxide fuel cells with nanoporous ruthenium anodes for direct methane operation. Energy and Environmental Science, 2011, 4, 3473.	30.8	71
7	Nanoscale Compositionally Graded Thinâ€Film Electrolyte Membranes for Lowâ€Temperature Solid Oxide Fuel Cells. Advanced Energy Materials, 2012, 2, 656-661.	19.5	66
8	A robust co-sputtering fabrication procedure for TiNi shape memory alloys for MEMS. Journal of Microelectromechanical Systems, 2001, 10, 69-79.	2.5	65
9	Nanostructured La0.6Sr0.4Co0.8Fe0.2O3/Y0.08Zr0.92O1.96/La0.6Sr0.4Co0.8Fe0.2O3 (LSCF/YSZ/LSCF) symmetric thin film solid oxide fuel cells. Journal of Power Sources, 2011, 196, 1826-1832.	7.8	63
10	Ultra-thin nanocrystalline lanthanum strontium cobalt ferrite (La0.6Sr0.4Co0.8Fe0.2O3â^î) films synthesis by RF-sputtering and temperature-dependent conductivity studies. Journal of Power Sources, 2009, 186, 115-122.	7.8	52
11	Thickness dependency of $180 \hat{A}^\circ$ stripe domains in ferroelectric ultrathin films: A first-principles-based study. Applied Physics Letters, 2007, 91, .	3.3	45
12	Domain evolution of BaTiO3 ultrathin films under an electric field: A first-principles study. Physical Review B, 2007, 75, .	3.2	39
13	Low-temperature electrochemical characterization of dense ultra-thin lanthanum strontium cobalt ferrite (La0.6Sr0.4Co0.8Fe0.2O3) cathodes synthesized by RF-sputtering on nanoporous alumina-supported Y-doped zirconia membranes. Journal of Power Sources, 2009, 193, 589-592.	7.8	38
14	On the role of ultra-thin oxide cathode synthesis on the functionality of micro-solid oxide fuel cells: Structure, stress engineering and in situ observation of fuel cell membranes during operation. Journal of Power Sources, 2010, 195, 5185-5196.	7.8	38
15	Fabrication and electrochemical performance of thin-film solid oxide fuel cells with large area nanostructured membranes. Journal of Power Sources, 2010, 195, 1149-1155.	7.8	30
16	Methane-fueled thin film micro-solid oxide fuel cells with nanoporous palladium anodes. Journal of Power Sources, 2011, 196, 6299-6304.	7.8	29
17	Free standing oxide alloy electrolytes for low temperature thin film solid oxide fuel cells. Journal of Power Sources, 2012, 202, 120-125.	7.8	29
18	Interface-controlled high dielectric constant Al2O3/TiOx nanolaminates with low loss and low leakage current density for new generation nanodevices. Journal of Applied Physics, 2013, 114, .	2.5	25

#	Article	IF	CITATIONS
19	Tailoring dielectric relaxation in ultra-thin high-dielectric constant nanolaminates for nanoelectronics. Applied Physics Letters, 2013, 102, .	3.3	25
20	Microstructure and Microfabrication Considerations for Selfâ€Supported Onâ€Chip Ultraâ€Thin Microâ€Solid Oxide Fuel Cell Membranes. Fuel Cells, 2009, 9, 699-710.	2.4	23
21	Thin film nanocrystalline Ba0.5Sr0.5Co0.8Fe0.2O3: Synthesis, conductivity, and micro-solid oxide fuel cells. Journal of Power Sources, 2011, 196, 6214-6218.	7.8	16
22	Quantitative phase transformation behavior in TiNi shape memory alloy thin films. Journal of Materials Research, 2004, 19, 2822-2833.	2.6	12
23	Photon-assisted synthesis of ultra-thin yttria-doped zirconia membranes: Structure, variable temperature conductivity and micro-fuel cell devices. Journal of Power Sources, 2010, 195, 994-1000.	7.8	11
24	A Comparison of PZT-Based and TiNi Shape Memory Alloy-Based MEMS Microactuators. Ferroelectrics, 2004, 306, 221-226.	0.6	9
25	Dielectric behavior related to TiOx phase change to TiO2 in TiOx/Al2O3 nanolaminate thin films. MRS Communications, 2014, 4, 67-72.	1.8	4
26	Nanoscale Compositionally Graded Thin-Film Electrolyte Membranes for Low-Temperature Solid Oxide Fuel Cells (Adv. Energy Mater. 6/2012). Advanced Energy Materials, 2012, 2, 655-655.	19.5	3
27	Photo-excitation enhanced high temperature conductivity and crystallization kinetics in ultra-thin La0.6Sr0.4Co0.8Fe0.2O3â^î films. Journal of Power Sources, 2010, 195, 3145-3148.	7.8	1
28	Toward wafer-scale fabrication and 3D integration of micro-solid oxide fuel cells for portable energy. , 2010, , .		1
29	First Principles Study of Size Effect in BaTiO3 Ultrathin Films. Materials Research Society Symposia Proceedings, 2005, 881, 1.	0.1	0