Steve Blair

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/375365/publications.pdf

Version: 2024-02-01

74 1,992 25
papers citations h-index

76 76 76 2442 all docs docs citations times ranked citing authors

42

g-index

#	Article	IF	CITATIONS
1	Maximizing transmittance in two-photon 3D printed materials for micro-optics in the visible. Optical Materials Express, 2022, 12, 895.	1.6	2
2	Quantifying Exciton Heterogeneities in Mixed-Phase Organometal Halide Multiple Quantum Wells via Stark Spectroscopy Studies. ACS Applied Materials & Stark Spectroscopy Studies.	4.0	7
3	Sensitivity enhancement of silver-based SPR sensors using ultrathin gold film and graphene overlay. , 2020, , .		4
4	Aluminum-Based Deep-Ultraviolet Surface Plasmon Resonance Sensor. Plasmonics, 2020, 15, 1891-1901.	1.8	7
5	Gray Level Image Encoding in Plasmonic Metasurfaces. Plasmonics, 2020, 15, 1305-1311.	1.8	3
6	Chiroptical Response of Aluminum Nanocrescents at Ultraviolet Wavelengths. Nano Letters, 2020, 20, 3656-3662.	4.5	2
7	The anisotropic quasi-static permittivity of single-crystal $\langle i \rangle \hat{l}^2 \langle i \rangle \langle b \rangle$-Ga2O3 measured by terahertz spectroscopy. Applied Physics Letters, 2020, 117, .	1.5	27
8	Manifestation of Kinetic Inductance in Terahertz Plasmon Resonances in Thin-Film Cd ₃ As ₂ . ACS Nano, 2019, 13, 4091-4100.	7. 3	24
9	Substrate material influence on the deep-ultraviolet surface plasmon resonance sensors using aluminum films. , 2019, , .		1
10	Multisite microLED optrode array for neural interfacing. Neurophotonics, 2019, 6, 1.	1.7	43
11	THz characterization and demonstration of visible-transparent/terahertz-functional electromagnetic structures in ultra-conductive La-doped BaSnO3 Films. Scientific Reports, 2018, 8, 3577.	1.6	20
12	Effect of Ga Implantation and Hole Geometry on Light Transmission through Nanohole Arrays in Al and Mg. Journal of Physical Chemistry C, 2018, 122, 10535-10544.	1.5	12
13	Incident wavelength and polarization dependence of spectral shifts in \hat{I}^2 -Ga2O3 UV photoluminescence. Scientific Reports, 2018, 8, 18075.	1.6	62
14	Magnesium as a Novel UV Plasmonic Material for Fluorescence Decay Rate Engineering in Free Solution. Journal of Physical Chemistry C, 2017, 121, 11650-11657.	1.5	37
15	Utah optrode array customization using stereotactic brain atlases and 3-D CAD modeling for optogenetic neocortical interrogation in small rodents and nonhuman primates. Neurophotonics, 2017, 4, 041502.	1.7	8
16	UV fluorescence modification by aluminum bowtie nanoantennas. , 2017, , .		1
17	Modification of UV surface plasmon resonances in aluminum hole-arrays with graphene. , 2017, , .		0
18	Influence of aluminum content on plasmonic behavior of Mg-Al alloy thin films. Optical Materials Express, 2016, 6, 3180.	1.6	12

#	Article	IF	Citations
19	Maskless wafer-level microfabrication of optical penetrating neural arrays out of soda-lime glass: Utah Optrode Array. Biomedical Microdevices, 2016, 18, 115.	1.4	4
20	Aluminum Nanocrescent Plasmonic Antennas Fabricated by Copper Mask Nanosphere Template Lithography. Journal of Physical Chemistry C, 2016, 120, 20597-20603.	1.5	17
21	Bloch Surface Wave-Coupled Emission at Ultraviolet Wavelengths. Journal of Physical Chemistry C, 2016, 120, 28727-28734.	1.5	41
22	UV fluorescence lifetime modification by aluminum and magnesium nanoapertures. Proceedings of SPIE, $2016, , .$	0.8	0
23	A Methodology for Thermal Characterization Abstraction of Integrated Opto-Electronic Layouts. , 2016, , .		3
24	Thin-film optical notch filter spectacle coatings for the treatment of migraine and photophobia. Journal of Clinical Neuroscience, 2016, 28, 71-76.	0.8	45
25	UV fluorescence enhancement by Al and Mg nanoapertures. Journal Physics D: Applied Physics, 2015, 48, 184007.	1.3	25
26	Nanofocusing of UV light in aluminum V-grooves. Journal Physics D: Applied Physics, 2015, 48, 184008.	1.3	12
27	Mg thin films with Al seed layers for UV plasmonics. Journal Physics D: Applied Physics, 2015, 48, 184009.	1.3	18
28	Mid-Infrared Localized Plasmons through Structural Control of Gold and Silver Nanocrescents. Journal of Physical Chemistry C, 2015, 119, 11826-11832.	1.5	23
29	Scaling the response of nanocrescent antennas into the ultraviolet. , 2014, , .		0
30	Quantum size effect on dielectric function of ultrathin metal film: a first-principles study of Al(1 1 1). Journal of Physics Condensed Matter, 2014, 26, 505302.	0.7	16
31	UV Fluorescence Lifetime Modification by Aluminum Nanoapertures. ACS Photonics, 2014, 1, 1270-1277.	3.2	42
32	Deep-tissue light delivery via optrode arrays. Journal of Biomedical Optics, 2014, 19, 015006.	1.4	21
33	Low-loss magnesium films for plasmonics. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2014, 181, 77-85.	1.7	22
34	Polarization Anisotropy of Multiple Localized Plasmon Resonance Modes in Noble Metal Nanocrescents. Journal of Physical Chemistry C, 2014, 118, 1167-1173.	1.5	37
35	Crossing-Aware Channel Routing for Integrated Optics. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2014, 33, 814-825.	1.9	18
36	Scaling the Response of Nanocrescent Antennas into the Ultraviolet. ACS Photonics, 2014, 1, 496-506.	3.2	21

#	Article	IF	CITATIONS
37	Plasmonic Coupling Effect in Ag Nanocap–Nanohole Pairs for Surface-Enhanced Raman Scattering. Plasmonics, 2013, 8, 225-231.	1.8	25
38	Channel routing for integrated optics. , 2013, , .		5
39	Optical antenna design for fluorescence enhancement in the ultraviolet. Optics Express, 2012, 20, 29909.	1.7	40
40	A methodology for physical design automation for integrated optics. , 2012, , .		3
41	Large Fluorescence Enhancements of Fluorophore Ensembles with Multilayer Plasmonic Substrates: Comparison of Theory and Experimental Results. Journal of Physical Chemistry C, 2012, 116, 21563-21571.	1.5	20
42	Polarization Multiplexed Optical Bullseye Antennas. Plasmonics, 2012, 7, 39-46.	1.8	9
43	Photoactivated capture molecule immobilization in plasmonic nanoapertures in the ultraviolet. Lab on A Chip, 2011, 11, 841.	3.1	10
44	Exact field solution to guided wave propagation in lossy thin films. Optics Express, 2011, 19, 20159.	1.7	11
45	Precise pixel patterning of small molecule organic light-emitting devices by spin casting. Organic Electronics, 2011, 12, 2095-2102.	1.4	7
46	Plasmonic Interaction Between Silver Nano-Cubes and a Silver Ground Plane Studied by Surface-Enhanced Raman Scattering. Plasmonics, 2011, 6, 515-519.	1.8	35
47	The paradox of multiplex DNA melting on a surface. Analytical Biochemistry, 2011, 409, 150-152.	1.1	2
48	Enhanced fluorescence from metal nanoapertures: physical characterizations and biophotonic applications. Proceedings of SPIE, 2010, , .	0.8	8
49	Nanoaperture Fluorescence Enhancement in the Ultraviolet. Plasmonics, 2010, 5, 169-174.	1.8	35
50	Passivation of aluminum with alkyl phosphonic acids for biochip applications. Applied Surface Science, 2010, 256, 7146-7150.	3.1	32
51	Direct DNA Methylation Profiling Using Methyl Binding Domain Proteins. Analytical Chemistry, 2010, 82, 5012-5019.	3.2	58
52	Localization of Near-Field Resonances in Bowtie Antennae: Influence of Adhesion Layers. Plasmonics, 2009, 4, 37-50.	1.8	76
53	Crucial Role of the Adhesion Layer on the Plasmonic Fluorescence Enhancement. ACS Nano, 2009, 3, 2043-2048.	7.3	152
54	Nanoaperture-Enhanced Signal-to-Noise Ratio in Fluorescence Correlation Spectroscopy. Analytical Chemistry, 2009, 81, 834-839.	3.2	44

#	Article	IF	Citations
55	Directing polyallylamine adsorption on microlens array patterned silicon for microarray fabrication. Lab on A Chip, 2009, 9, 1789.	3.1	19
56	Third-harmonic generation from arrays of sub-wavelength metal apertures. Optics Express, 2009, 17, 23582.	1.7	36
57	Real-time DNA microarrays: reality check. Biochemical Society Transactions, 2009, 37, 471-475.	1.6	21
58	Nanoaperture-enhanced fluorescence: Towards higher detection rates with plasmonic metals. Physical Review B, 2008, 77, .	1.1	88
59	Competitive displacement: A sensitive and selective method for the detection of unlabeled molecules. Optics Express, 2007, 15, 4390.	1.7	5
60	One-Dimensional Photonic Crystal Rib Waveguides. Journal of Lightwave Technology, 2007, 25, 2435-2439.	2.7	5
61	Convective flow effects on DNA biosensors. Biosensors and Bioelectronics, 2007, 22, 2192-2198.	5.3	10
62	Modeling Fluorescence Enhancement from Metallic Nanocavities. Plasmonics, 2007, 2, 129-141.	1.8	21
63	Nonlinearity enhancement in finite coupled-resonator slow-light waveguides. Optics Express, 2004, 12, 3353.	1.7	87
64	Introduction. Optics Express, 2004, 12, 3618.	1.7	25
65	Fluorescence transmission through 1-D and 2-D periodic metal films. Optics Express, 2004, 12, 3686.	1.7	30
66	Fluorescence enhancement from an array of subwavelength metal apertures. Optics Letters, 2003, 28, 507.	1.7	128
67	Engineering the nonlinear phase shift. Optics Letters, 2003, 28, 1945.	1.7	9
68	Beyond the absorption-limited nonlinear phase shift with microring resonators. Optics Letters, 2002, 27, 357.	1.7	37
69	Nonlinear sensitivity enhancement with one-dimensional photonic bandgap microcavity arrays. Optics Letters, 2002, 27, 613.	1.7	17
70	Localized multi-dimensional optical pulses in non-resonant quadratic materials. Mathematics and Computers in Simulation, 2001, 56, 511-519.	2.4	13
71	Variational Approach to Orthogonally-polarized Optical Soliton Interaction with Cubic and Quintic Nonlinearities. Physica Scripta, 1999, 59, 365-373.	1.2	4
72	Multi-dimensional pulse propagation in non-resonant χ(2) materials. Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 236, 520-524.	0.9	33

#	Article	IF	CITATIONS
73	(3+1)-dimensional optical soliton dragging logic. Physical Review A, 1995, 52, 3254-3278.	1.0	153
74	Asymmetric spatial soliton dragging. Optics Letters, 1994, 19, 1943.	1.7	39