List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3753336/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deciphering the effect of vitamins and mineral nutrients on kiwiberry micropropagation using computer-based tools. Acta Horticulturae, 2022, , 31-38.	0.1	2
2	Sublingual Boosting with A Novel Mucoadhesive Thermogelling Hydrogel Following Parenteral CAF01 Priming as A Strategy Against Chlamydia Trachomatis. Advanced Healthcare Materials, 2022, , 2102508.	3.9	7
3	Artificial Neural Networks Elucidated the Essential Role of Mineral Nutrients versus Vitamins and Plant Growth Regulators in Achieving Healthy Micropropagated Plants. Plants, 2022, 11, 1284.	1.6	7
4	Design of novel orotransmucosal vaccine-delivery platforms using artificial intelligence. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 159, 36-43.	2.0	11
5	Tailor-made oligonucleotide-loaded lipid-polymer nanosystems designed for bone gene therapy. Drug Delivery and Translational Research, 2021, 11, 598-607.	3.0	9
6	Screening of critical variables in fabricating polycaprolactone nanoparticles using Neuro Fuzzy Logic. International Journal of Pharmaceutics, 2021, 601, 120558.	2.6	5
7	Tailored Hydrogels as Delivery Platforms for Conditioned Medium from Mesenchymal Stem Cells in a Model of Acute Colitis in Mice. Pharmaceutics, 2021, 13, 1127.	2.0	14
8	Targeting joint inflammation for osteoarthritis management through stimulus-sensitive hyaluronic acid based intra-articular hydrogels. Materials Science and Engineering C, 2021, 128, 112254.	3.8	20
9	Computer-Based Tools Unmask Critical Mineral Nutrient Interactions in Hoagland Solution for Healthy Kiwiberry Plant Acclimatization. Frontiers in Plant Science, 2021, 12, 723992.	1.7	4
10	A Traffic Light System to Maximize Carbohydrate Cryoprotectants' Effectivity in Nanostructured Lipid Carriers' Lyophilization. Pharmaceutics, 2021, 13, .	2.0	1
11	The Combination of Untargeted Metabolomics and Machine Learning Predicts the Biosynthesis of Phenolic Compounds in Bryophyllum Medicinal Plants (Genus Kalanchoe). Plants, 2021, 10, 2430.	1.6	10
12	A Traffic Light System to Maximize Carbohydrate Cryoprotectants' Effectivity in Nanostructured Lipid Carriers' Lyophilization. Pharmaceutics, 2021, 13, 1330.	2.0	6
13	New tools to design smart thermosensitive hydrogels for protein rectal delivery in IBD. Materials Science and Engineering C, 2020, 106, 110252.	3.8	26
14	The influence of porosity on tablet subdivision. Particuology, 2020, 53, 192-196.	2.0	4
15	Technologies and Formulation Design of Polysaccharide-Based Hydrogels for Drug Delivery. Molecules, 2020, 25, 3156.	1.7	50
16	Machine Learning Unmasked Nutritional Imbalances on the Medicinal Plant Bryophyllum sp. Cultured in vitro. Frontiers in Plant Science, 2020, 11, 576177.	1.7	15
17	Shoot tip necrosis of in vitro plant cultures: a reappraisal of possible causes and solutions. Planta, 2020, 252, 47.	1.6	25
18	From Ethnomedicine to Plant Biotechnology and Machine Learning: The Valorization of the Medicinal Plant Bryophyllum sp Pharmaceuticals, 2020, 13, 444.	1.7	16

#	Article	IF	CITATIONS
19	Modeling and Optimizing Culture Medium Mineral Composition for in vitro Propagation of Actinidia arguta. Frontiers in Plant Science, 2020, 11, 554905.	1.7	32
20	Modeling of the Production of Lipid Microparticles Using PGSS® Technique. Molecules, 2020, 25, 4927.	1.7	11
21	Rifabutin-Loaded Nanostructured Lipid Carriers as a Tool in Oral Anti-Mycobacterial Treatment of Crohn's Disease. Nanomaterials, 2020, 10, 2138.	1.9	10
22	Machine Learning Technology Reveals the Concealed Interactions of Phytohormones on Medicinal Plant In Vitro Organogenesis. Biomolecules, 2020, 10, 746.	1.8	25
23	Combining Medicinal Plant In Vitro Culture with Machine Learning Technologies for Maximizing the Production of Phenolic Compounds. Antioxidants, 2020, 9, 210.	2.2	39
24	Recent advances in solid lipid nanoparticles formulation and clinical applications. , 2020, , 213-247.		3
25	Artificial Intelligence Tools to Better Understand Seed Dormancy and Germination. , 2020, , .		3
26	Mesenchymal Stem Cells in Homeostasis and Systemic Diseases: Hypothesis, Evidences, and Therapeutic Opportunities. International Journal of Molecular Sciences, 2019, 20, 3738.	1.8	69
27	Computer-based tools provide new insight into the key factors that cause physiological disorders of pistachio rootstocks cultured in vitro. Scientific Reports, 2019, 9, 9740.	1.6	33
28	The subdivision behavior of polymeric tablets. International Journal of Pharmaceutics, 2019, 568, 118554.	2.6	7
29	Current Stage of Marine Ceramic Grafts for 3D Bone Tissue Regeneration. Marine Drugs, 2019, 17, 471.	2.2	21
30	Deciphering the virulence of Mycobacterium avium subsp. paratuberculosis isolates in animal macrophages using mathematical models. Journal of Theoretical Biology, 2019, 468, 82-91.	0.8	4
31	A novel method for the production of core-shell microparticles by inverse gelation optimized with artificial intelligent tools. International Journal of Pharmaceutics, 2018, 538, 97-104.	2.6	28
32	Finding key nanoprecipitation variables for achieving uniform polymeric nanoparticles using neurofuzzy logic technology. Drug Delivery and Translational Research, 2018, 8, 1797-1806.	3.0	19
33	Mineralized alginate hydrogels using marine carbonates for bone tissue engineering applications. Carbohydrate Polymers, 2018, 195, 235-242.	5.1	36
34	Deciphering kiwifruit seed germination using neural network tools. Acta Horticulturae, 2018, , 359-366.	0.1	3
35	Combining DOE With Neurofuzzy Logic for Healthy Mineral Nutrition of Pistachio Rootstocks in vitro Culture. Frontiers in Plant Science, 2018, 9, 1474.	1.7	36
36	Drug-Loaded Biomimetic Ceramics for Tissue Engineering. Pharmaceutics, 2018, 10, 272.	2.0	43

#	Article	IF	CITATIONS
37	Delimiting the knowledge space and the design space of nanostructured lipid carriers through Artificial Intelligence tools. International Journal of Pharmaceutics, 2018, 553, 522-530.	2.6	25
38	Neural networks models as decision-making tool for in vitro proliferation of hardy kiwi. European Journal of Horticultural Science, 2018, 83, 259-265.	0.3	18
39	Predicting optimal in vitro culture medium for Pistacia vera micropropagation using neural networks models. Plant Cell, Tissue and Organ Culture, 2017, 129, 19-33.	1.2	45
40	Fabrication of Zn-Sr–doped laser-spinning glass nanofibers with antibacterial properties. Journal of Biomaterials Applications, 2017, 31, 819-831.	1.2	19
41	Two-component thermosensitive hydrogels: Phase separation affecting rheological behavior. European Polymer Journal, 2017, 92, 13-26.	2.6	23
42	Artificial Intelligence Tools for Scaling Up of High Shear Wet Granulation Process. Journal of Pharmaceutical Sciences, 2017, 106, 273-277.	1.6	23
43	Computer-Assisted Recovery of Threatened Plants: Keys for Breaking Seed Dormancy of Eryngium viviparum. Frontiers in Plant Science, 2017, 8, 2092.	1.7	23
44	Mycobacterium avium subsp. paratuberculosis (Map) Fatty Acids Profile Is Strain-Dependent and Changes Upon Host Macrophages Infection. Frontiers in Cellular and Infection Microbiology, 2017, 7, 89.	1.8	5
45	Biomorphic Ceramics for Drug Delivery in Bone Tissue Regeneration. Current Pharmaceutical Design, 2017, 23, 3507-3514.	0.9	4
46	Intestinal Permeability of β-Lapachone and Its Cyclodextrin Complexes and Physical Mixtures. European Journal of Drug Metabolism and Pharmacokinetics, 2016, 41, 795-806.	0.6	7
47	Controlled release of indomethacin from alginate–poloxamer–silicon carbide composites decrease in-vitro inflammation. International Journal of Pharmaceutics, 2015, 480, 92-100.	2.6	8
48	The synergistic effect of VEGF and biomorphic silicon carbides topography on <i>in vivo</i> angiogenesis and human bone marrow derived mesenchymal stem cell differentiation. Biomedical Materials (Bristol), 2015, 10, 045017.	1.7	12
49	Effective genetic modification and differentiation of hMSCs upon controlled release of rAAV vectors using alginate/poloxamer composite systems. International Journal of Pharmaceutics, 2015, 496, 614-626.	2.6	29
50	Class attendance and academic achievement of pharmacy students in a European University. Currents in Pharmacy Teaching and Learning, 2015, 7, 78-83.	0.4	37
51	Modeling the Effects of Light and Sucrose on In Vitro Propagated Plants: A Multiscale System Analysis Using Artificial Intelligence Technology. PLoS ONE, 2014, 9, e85989.	1.1	59
52	Design of tissue culture media for efficient Prunus rootstock micropropagation using artificial intelligence models. Plant Cell, Tissue and Organ Culture, 2014, 117, 349-359.	1.2	60
53	Key parameters in blood-surface interactions of 3D bioinspired ceramic materials. Materials Science and Engineering C, 2014, 41, 232-239.	3.8	19
54	Antibacterial properties of laser spinning glass nanofibers. International Journal of Pharmaceutics, 2014, 477, 113-121.	2.6	12

#	Article	IF	CITATIONS
55	Computer Modeling Assisted Design of Monodisperse PLGA Microspheres with Controlled Porosity Affords Zero Order Release of an Encapsulated Macromolecule for 3ÂMonths. Pharmaceutical Research, 2014, 31, 2844-2856.	1.7	29
56	Spermidine Cross-Linked Hydrogels as a Controlled Release Biomimetic Approach for Cloxacillin. Molecular Pharmaceutics, 2014, 11, 2358-2371.	2.3	12
57	Effect of Polymer Composition on Rheological and Degradation Properties of Temperature-Responsive Gelling Systems Composed of Acyl-Capped PCLA-PEG-PCLA. Biomacromolecules, 2013, 14, 3172-3182.	2.6	45
58	Using machine learning for improving knowledge on antibacterial effect of bioactive glass. International Journal of Pharmaceutics, 2013, 453, 641-647.	2.6	50
59	Administration of the optimized β-Lapachone–poloxamer–cyclodextrin ternary system induces apoptosis, DNA damage and reduces tumor growth in a human breast adenocarcinoma xenograft mouse model. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 497-504.	2.0	14
60	Suitability of Biomorphic Silicon Carbide Ceramics as Drug Delivery Systems against Bacterial Biofilms. ISRN Pharmaceutics, 2013, 2013, 1-8.	1.0	1
61	Effect of storage conditions on the stability of β-lapachone in solid state and in solution. Journal of Pharmacy and Pharmacology, 2013, 65, 798-806.	1.2	11
62	Artificial neural networks technology to model, understand, and optimize drug formulations. , 2013, , 7-37.		21
63	Fast dissolving β-lapachone particles and tablets: an approach using surface adsorption technique. Drug Development and Industrial Pharmacy, 2012, 38, 866-871.	0.9	2
64	Temperature-Sensitive Gels for Intratumoral Delivery of <i>\hat{l}^2 </i> -Lapachone: Effect of Cyclodextrins and Ethanol. Scientific World Journal, The, 2012, 2012, 1-8.	0.8	22
65	Establishing and analyzing the design space in the development of direct compression formulations by gene expression programming. International Journal of Pharmaceutics, 2012, 434, 35-42.	2.6	9
66	Smart design of intratumoral thermosensitive β-lapachone hydrogels by Artificial Neural Networks. International Journal of Pharmaceutics, 2012, 433, 112-118.	2.6	23
67	Improving knowledge of plant tissue culture and media formulation by neurofuzzy logic: A practical case of data mining using apricot databases. Journal of Plant Physiology, 2011, 168, 1858-1865.	1.6	64
68	Light effect on the stability of β-lapachone in solution: pathways and kinetics of degradation. Journal of Pharmacy and Pharmacology, 2011, 63, 1156-1160.	1.2	15
69	Bio-inspired porous SiC ceramics loaded with vancomycin for preventing MRSA infections. Journal of Materials Science: Materials in Medicine, 2011, 22, 339-347.	1.7	18
70	Strengths of artificial neural networks in modeling complex plant processes. Plant Signaling and Behavior, 2010, 5, 743-745.	1.2	38
71	Artificial neural networks as an alternative to the traditional statistical methodology in plant research. Journal of Plant Physiology, 2010, 167, 23-27.	1.6	96
72	Artificial neural networks modeling the in vitro rhizogenesis and acclimatization of Vitis vinifera L Journal of Plant Physiology, 2010, 167, 1226-1231.	1.6	46

#	Article	IF	CITATIONS
73	A neurofuzzy logic approach for modeling plant processes: A practical case of in vitro direct rooting and acclimatization of Vitis vinifera L. Plant Science, 2010, 179, 241-249.	1.7	41
74	Advantages of neurofuzzy logic against conventional experimental design and statistical analysis in studying and developing direct compression formulations. European Journal of Pharmaceutical Sciences, 2009, 38, 325-331.	1.9	55
75	Konjac glucomannan and konjac glucomannan/xanthan gum mixtures as excipients for controlled drug delivery systems. Diffusion of small drugs. International Journal of Pharmaceutics, 2008, 349, 11-18.	2.6	77
76	Konjac glucomannan/xanthan gum enzyme sensitive binary mixtures for colonic drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69, 573-581.	2.0	55
77	Dissolution rate enhancement of the novel antitumoral β-lapachone by solvent change precipitation of microparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69, 871-877.	2.0	25
78	Compatibility of the antitumoral β-lapachone with different solid dosage forms excipients. Journal of Pharmaceutical and Biomedical Analysis, 2007, 45, 590-598.	1.4	43
79	Characterization of β-lapachone and methylated β-cyclodextrin solid-state systems. AAPS PharmSciTech, 2007, 8, E68-E77.	1.5	42
80	β-Lapachone. Acta Crystallographica Section C: Crystal Structure Communications, 2006, 62, o473-o475.	0.4	13
81	Characterization of diffusion of macromolecules in konjac glucomannan solutions and gels by fluorescence recovery after photobleaching technique. International Journal of Pharmaceutics, 2006, 316, 37-46.	2.6	55
82	A Comparison of Trehalose Dihydrate and Mannitol as Stabilizing Agents for Dicalcium Phosphate Dihydrate Based Tablets. Drug Development and Industrial Pharmacy, 2005, 31, 249-256.	0.9	6
83	Scaleup of a Pharmaceutical Granulation in Planetary Mixers. Pharmaceutical Development and Technology, 1999, 4, 145-150.	1.1	35
84	Scale-up of a pharmaceutical granulation in fixed bowl mixer-granulators. International Journal of Pharmaceutics, 1996, 133, 127-131.	2.6	81
85	The effect of batch size on scale-up of a pharmaceutical granulation in a fixed bowl mixer granulator. International Journal of Pharmaceutics, 1996, 134, 243-246.	2.6	34
86	Characterization of Wet Powder Masses with a Mixer Torque Rheometer. 3. Nonlinear Effects of Shaft Speed and Sample Weight. Journal of Pharmaceutical Sciences, 1995, 84, 557-560.	1.6	29
87	Chemical stability of acetylsalicylic acid in tablets prepared with different particle size fractions of a commercial brand of dicalcium phosphate dihydrate. International Journal of Pharmaceutics, 1995, 123, 143-144.	2.6	15
88	Dicalcium phosphate dihydrate for direct compression: Characterization and intermanufacturer variability. International Journal of Pharmaceutics, 1994, 109, 1-8.	2.6	8
89	Particle size effects on the dehydration of dicalcium phosphate dihydrate powders. International Journal of Pharmaceutics, 1994, 104, 271-275.	2.6	16
90	The effect of country of origin on the properties of dicalcium phosphate dihydrate powder. International Journal of Pharmaceutics, 1994, 103, 9-18.	2.6	17

#	Article	IF	CITATIONS
91	Chemical stability of acetylsalicylic acid in tablets prepared with different commercial brands of dicalcium phosphate dihydrate. International Journal of Pharmaceutics, 1994, 107, 247-249.	2.6	14
92	Structural changes during the dehydration of dicalcium phosphate dihydrate. European Journal of Pharmaceutical Sciences, 1994, 2, 245-252.	1.9	32
93	Effect of country of origin on the properties of microcrystalline cellulose. International Journal of Pharmaceutics, 1993, 91, 123-131.	2.6	62
94	Effect of batch variation and source of pulp on the properties of microcrystalline cellulose. International Journal of Pharmaceutics, 1993, 91, 133-141.	2.6	69
95	Influence of microcrystalline cellulose source and batch variation on the tabletting behaviour and stability of prednisone formulations. International Journal of Pharmaceutics, 1993, 91, 143-149.	2.6	31
96	Comparison of two Varieties of Microcrystalline Cellulose as Filler-Binders II. Hydrochlorothiazide Tablets. Drug Development and Industrial Pharmacy, 1993, 19, 1211-1220.	0.9	13
97	Comparison of two varieties of microcrystalline cellulose as filler-binders I. Perdnisone tablets. Drug Development and Industrial Pharmacy, 1992, 18, 355-368.	0.9	14