Na Ni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3752962/publications.pdf

Version: 2024-02-01

	236612	205818
2,343	25	48
citations	h-index	g-index
50	5 0	2611
59	59	3611
docs citations	times ranked	citing authors
	citations 59	2,343 25 citations h-index 59 59

#	Article	lF	Citations
1	Tailoring high-temperature stability and electrical conductivity of high entropy lanthanum manganite for solid oxide fuel cell cathodes. Journal of Materials Chemistry A, 2022, 10, 2256-2270.	5.2	37
2	Flash cosintering of a lanthanum strontium cobalt ferrite nanofibre/Gd-doped ceria bilayer structure. Journal of the European Ceramic Society, 2022, 42, 2870-2878.	2.8	7
3	Ambient flash sintering of reduced graphene oxide/zirconia composites: Role of reduced graphene oxide. Journal of Materials Science and Technology, 2021, 60, 70-76.	5.6	16
4	Scheelite coatings on SiC fiber: Effect of coating temperature and atmosphere. Ceramics International, 2021, 47, 1693-1703.	2.3	4
5	Improved ablation resistance of 3D-Cf/SiBCN composites with (PyC/SiC)3 multi-layers as interphase. Journal of the European Ceramic Society, 2021, 41, 1114-1120.	2.8	16
6	Ablation resistance of HfC(Si, O)-HfB2(Si, O) composites fabricated by one-step reactive spark plasma sintering. Journal of the European Ceramic Society, 2021, 41, 2226-2238.	2.8	7
7	Y-doped AlCoCrFeNi2.1 eutectic high-entropy alloy with excellent oxidation resistance and structure stability at 1000°C and 1100°C. Corrosion Science, 2021, 180, 109191.	3.0	37
8	Effects of pyrolytic carbon on carburization strengthening and corrosion of 3YSZ hollow fiber membranes. Ceramics International, 2021, 47, 22172-22183.	2.3	1
9	Mechanically isotropic alumina prepared by spark plasma sintering: The role of pyrolytic carbon and multilayer graphene. Journal of the European Ceramic Society, 2021, 41, 4242-4251.	2.8	3
10	Robust ceramic nanofibrous membranes with ultra-high water flux and nanoparticle rejection for self-standing ultrafiltration. Journal of the European Ceramic Society, 2021, 41, 4264-4272.	2.8	10
11	Ti3SiC2 interphase coating in SiCf/SiC composites: Effect of the coating fabrication atmosphere and temperature. Journal of the European Ceramic Society, 2021, 41, 5850-5862.	2.8	8
12	Enabling highly efficient and broadband electromagnetic wave absorption by tuning impedance match in high-entropy transition metal diborides (HE TMB2). Journal of Advanced Ceramics, 2021, 10, 1299-1316.	8.9	46
13	High entropy rare earth hexaborides/tetraborides (HE REB6/HE REB4) composite powders with enhanced electromagnetic wave absorption performance. Journal of Materials Science and Technology, 2021, 87, 155-166.	5.6	36
14	Comparison of hydrothermal corrosion behavior of SiC with Al2O3and Al2O3Â+ÂY2O3sintering additives. Journal of the American Ceramic Society, 2020, 103, 2024-2034.	1.9	4
15	Densification, strengthening and toughening in hafnium carbide with the addition of silicon carbonitride. Journal of the American Ceramic Society, 2020, 103, 3286-3298.	1.9	10
16	Y/Hf-doped AlCoCrFeNi high-entropy alloy with ultra oxidation and spallation resistance. Corrosion Science, 2020, 166, 108426.	3.0	67
17	Continuous alumina fiber-reinforced yttria-stabilized zirconia composites with high density and toughness. Journal of the European Ceramic Society, 2020, 40, 1539-1548.	2.8	24
18	Strength degradation of SiC fibers with a porous ZrB2-SiC coating: Role of the coating porous structure. Journal of the European Ceramic Society, 2020, 40, 961-971.	2.8	12

#	Article	IF	Citations
19	Effects of iron and platinum on the isothermal oxidation of \hat{l}^2 -NiAl overlay coatings fabricated by spark plasma sintering. Surface and Coatings Technology, 2020, 382, 125178.	2.2	6
20	Improved stress measurement of YSZ by Raman spectroscopy: Effect of yttrium segregationâ€dependent tetragonality. International Journal of Applied Ceramic Technology, 2020, 17, 2416-2423.	1.1	6
21	Strong and tough HfC-HfB2 solid-solution composites obtained by reactive sintering with a SiB6 additive. Ceramics International, 2020, 46, 16257-16265.	2.3	8
22	Oxidation/ablation behaviors of hafnium carbide-silicon carbonitride systems at 1500 and 2500ÂC. Ceramics International, 2020, 46, 23840-23853.	2.3	7
23	Strength retention in scheelite coated SiC fibers: Effect of the gas composition and pre-heat treatment. Journal of the European Ceramic Society, 2020, 40, 2801-2810.	2.8	3
24	Flexible and robust YAG-Al2O3 composite nanofibrous membranes enabled by a hybrid nanocrystalline-amorphous structure. Journal of the European Ceramic Society, 2020, 40, 2463-2469.	2.8	21
25	Thermal damage and microstructure evolution mechanisms of Cf/SiBCN composites during plasma ablation. Corrosion Science, 2020, 169, 108621.	3.0	16
26	High fracture toughness of HfC through nanoâ€scale templating and novel sintering aids. Journal of the American Ceramic Society, 2019, 102, 997-1009.	1,9	8
27	Effects of sintering atmosphere on the densification and microstructure of yttrium aluminum garnet fibers prepared by sol-gel process. Journal of the European Ceramic Society, 2019, 39, 5332-5337.	2.8	13
28	Effect of hydrothermal corrosion on the fracture strength of SiC layer in tristructuralâ€isotropic fuel particles. Journal of the American Ceramic Society, 2019, 102, 5555-5564.	1,9	6
29	Synergistic effects of temperature and polarization on Cr poisoning of La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O _{3â^Î} solid oxide fuel cell cathodes. Journal of Materials Chemistry A, 2019, 7, 9253-9262.	5.2	26
30	Effects of reactive element oxides on the isothermal oxidation of \hat{l}^2 -NiAl coatings fabricated by spark plasma sintering. Surface and Coatings Technology, 2019, 357, 322-331.	2.2	20
31	Strong and tough metal/ceramic micro-laminates. Acta Materialia, 2018, 144, 202-215.	3.8	73
32	SiC porous structures obtained with innovative shaping technologies. Journal of the European Ceramic Society, 2018, 38, 823-835.	2.8	34
33	Corrosion of the bonding at FeCrAl/Zr alloy interfaces in steam. Journal of Nuclear Materials, 2018, 508, 411-422.	1.3	31
34	Micromechanical strength of individual Al 2 O 3 platelets. Scripta Materialia, 2017, 131, 55-58.	2.6	35
35	Using graphene networks to build bioinspired self-monitoring ceramics. Nature Communications, 2017, 8, 14425.	5.8	99
36	MoS ₂ /WS ₂ Heterojunction for Photoelectrochemical Water Oxidation. ACS Catalysis, 2017, 7, 4990-4998.	5.5	189

#	Article	IF	CITATIONS
37	Experimental synthesis and density functional theory investigation of radiation tolerance of Zr ₃ (Al _{1â€} <scp>_xSxx)C₂<scp>MAX</scp> phases. Journal of the American Ceramic Society, 2017, 100, 1377-1387.</scp>	1.9	45
38	High-Mobility and High-Optical Quality Atomically Thin WS 2. Scientific Reports, 2017, 7, 14911.	1.6	77
39	Surface Chemistry of La0.99Sr0.01NbO4-d and Its Implication for Proton Conduction. ACS Applied Materials & Conduction and Its Implication for Proton Conduction. ACS Applied Materials & Conduction and Its Implication for Proton Conduction. ACS Applied Materials & Conduction and Its Implication for Proton Conduction. ACS Applied Materials & Conduction and Its Implication for Proton Conduction. ACS Applied Materials & Conduction and Its Implication for Proton Conduction. ACS Applied Materials & Conduction and Its Implication for Proton Conduction for Proton Conduction and Its Implication for Proton Conduction for Proton Conduct	4.0	6
40	Multimaterial 3D Printing of Graphene-Based Electrodes for Electrochemical Energy Storage Using Thermoresponsive Inks. ACS Applied Materials & Samp; Interfaces, 2017, 9, 37136-37145.	4.0	148
41	Oxidation behaviour of SiC/SiC ceramic matrix composites in air. Journal of the European Ceramic Society, 2016, 36, 3293-3302.	2.8	132
42	Degradation of (La _{0.6} Sr _{0.4}) _{0.95} (Co _{0.2} Fe _{0.8})O _{3â^ÎSolid Oxide Fuel Cell Cathodes at the Nanometer Scale and below. ACS Applied Materials & Samp; Interfaces, 2016, 8, 17360-17370.}) 4.0	56
43	Combined Cr and Mo poisoning of (La,Sr)(Co,Fe)O3â^Î solid oxide fuel cell cathodes at the nanoscale. Solid State Ionics, 2016, 288, 28-31.	1.3	7
44	Understanding Mechanical Response of Elastomeric Graphene Networks. Scientific Reports, 2015, 5, 13712.	1.6	64
45	Selfâ€Healing Grapheneâ€Based Composites with Sensing Capabilities. Advanced Materials, 2015, 27, 4788-4794.	11.1	136
46	Identifying suboxide grains at the metal–oxide interface of a corroded Zr–1.0%Nb alloy using (S)TEM, transmission-EBSD and EELS. Micron, 2015, 69, 35-42.	1.1	62
47	The effects of Co and Cr on the electrical conductivity of cerium gadolinium oxide. Solid State Ionics, 2015, 282, 54-62.	1.3	25
48	<scp>ATRâ€FTIR</scp> measurements of albumin and fibrinogen adsorption: Inert versus calcium phosphate ceramics. Journal of Biomedical Materials Research - Part A, 2015, 103, 3493-3502.	2.1	10
49	Crystal Structure of the ZrO Phase at Zirconium/Zirconium Oxide Interfaces. Advanced Engineering Materials, 2015, 17, 211-215.	1.6	66
50	Interfacial energies and mass transport in the Ni(Al)–Al2O3 system: The implication of very low oxygen activities. Acta Materialia, 2014, 64, 282-296.	3.8	11
51	Mesoscale assembly of chemically modified graphene into complex cellular networks. Nature Communications, 2014, 5, 4328.	5.8	250
52	An investigation of the oxidation behaviour of zirconium alloys using isotopic tracers and high resolution SIMS. Journal of Nuclear Materials, 2013, 443, 436-443.	1.3	51
53	A novel approach for the fabrication of carbon nanofibre/ceramic porous structures. Journal of the European Ceramic Society, 2013, 33, 2365-2374.	2.8	15
54	3D Visualisation of Crack Distributions in Oxidised Zirconium Alloys by FIB-Slicing. Materials Research Society Symposia Proceedings, 2012, 1421, 24.	0.1	1

#	Article	IF	CITATIONS
55	Mechanisms of Oxidation of Fuel Cladding Alloys Revealed by High Resolution APT, TEM and SIMS Analysis. Materials Research Society Symposia Proceedings, 2012, 1383, 101.	0.1	4
56	Multi-scale characterisation of oxide on zirconium alloys. Materials at High Temperatures, 2012, 29, 166-170.	0.5	6
57	How the crystallography and nanoscale chemistry of the metal/oxide interface develops during the aqueous oxidation of zirconium cladding alloys. Acta Materialia, 2012, 60, 7132-7149.	3.8	124
58	Quantitative EELS analysis of zirconium alloy metal/oxide interfaces. Ultramicroscopy, 2011, 111, 123-130.	0.8	53
59	Functional Polymer Nanocomposites. Polymers and Polymer Composites, 2008, 16, 471-481.	1.0	48