
Mikinori Kuwata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3752838/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Roles of Relative Humidity and Particle Size on Chemical Aging of Tropical Peatland Burning Particles: Potential Influence of Phase State and Implications for Hygroscopic Property. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	3
2	The Maddenâ€Julian Oscillation Modulates the Air Quality in the Maritime Continent. Earth and Space Science, 2021, 8, e2021EA001708.	2.6	6
3	The Relationship between Molecular Size and Polarity of Atmospheric Organic Aerosol in Singapore and Its Implications for Volatility and Light Absorption Properties. ACS Earth and Space Chemistry, 2021, 5, 3182-3196.	2.7	9
4	Can Online Aerosol Mass Spectrometry Analysis Classify Secondary Organic Aerosol (SOA) and Oxidized Primary Organic Aerosol (OPOA)? A Case Study of Laboratory and Field Studies of Indonesian Biomass Burning. ACS Earth and Space Chemistry, 2021, 5, 3511-3522.	2.7	6
5	An inversion method for polarity distribution of atmospheric water-soluble organic matter. Aerosol Science and Technology, 2020, 54, 1504-1514.	3.1	2
6	Global Importance of Hydroxymethanesulfonate in Ambient Particulate Matter: Implications for Air Quality. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032706.	3.3	28
7	A Significant Portion of Water-Soluble Organic Matter in Fresh Biomass Burning Particles Does Not Contribute to Hygroscopic Growth: An Application of Polarity Segregation by 1-Octanol–Water Partitioning Method. Environmental Science & Technology, 2019, 53, 10034-10042.	10.0	11
8	New estimate of particulate emissions from Indonesian peat fires in 2015. Atmospheric Chemistry and Physics, 2019, 19, 11105-11121.	4.9	63
9	Polarity-Dependent Chemical Characteristics of Water-Soluble Organic Matter from Laboratory-Generated Biomass-Burning Revealed by 1-Octanol–Water Partitioning. Environmental Science & Technology, 2019, 53, 8047-8056.	10.0	18
10	Estimation of Metal Emissions From Tropical Peatland Burning in Indonesia by Controlled Laboratory Experiments. Journal of Geophysical Research D: Atmospheres, 2019, 124, 6583-6599.	3.3	6
11	Dominant contribution of oxygenated organic aerosol to haze particles from real-time observation in Singapore during an Indonesian wildfire event in 2015. Atmospheric Chemistry and Physics, 2018, 18, 16481-16498.	4.9	24
12	Secondary aerosol formation promotes water uptake by organic-rich wildfire haze particles in equatorial Asia. Atmospheric Chemistry and Physics, 2018, 18, 7781-7798.	4.9	15
13	Constraining the Emission of Particulate Matter From Indonesian Peatland Burning Using Continuous Observation Data. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9828-9842.	3.3	10
14	1-octanol-water partitioning as a classifier of water soluble organic matters: Implication for solubility distribution. Aerosol Science and Technology, 2017, 51, 602-613.	3.1	14
15	Temperature and burning history affect emissions of greenhouse gases and aerosol particles from tropical peatland fire. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1281-1292.	3.3	15
16	Light-Absorbing Brown Carbon Aerosol Constituents from Combustion of Indonesian Peat and Biomass. Environmental Science & Technology, 2017, 51, 4415-4423.	10.0	86
17	Water uptake by fresh Indonesian peat burning particles is limited by water-soluble organic matter. Atmospheric Chemistry and Physics, 2017, 17, 11591-11604.	4.9	22
18	Uptake and release of gaseous species accompanying the reactions of isoprene photo-oxidation products with sulfate particles. Physical Chemistry Chemical Physics, 2016, 18, 1595-1600.	2.8	20

MIKINORI KUWATA

#	Article	IF	CITATIONS
19	Submicron particle mass concentrations and sources in the Amazonian wet season (AMAZE-08). Atmospheric Chemistry and Physics, 2015, 15, 3687-3701.	4.9	88
20	Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements. Atmospheric Chemistry and Physics, 2015, 15, 11807-11833.	4.9	185
21	Changing shapes and implied viscosities of suspended submicron particles. Atmospheric Chemistry and Physics, 2015, 15, 7819-7829.	4.9	106
22	Elemental composition of organic aerosol: The gap between ambient and laboratory measurements. Geophysical Research Letters, 2015, 42, 4182-4189.	4.0	84
23	Physical state and acidity of inorganic sulfate can regulate the production of secondary organic material from isoprene photooxidation products. Physical Chemistry Chemical Physics, 2015, 17, 5670-5678.	2.8	30
24	Uptake of Epoxydiol Isomers Accounts for Half of the Particle-Phase Material Produced from Isoprene Photooxidation via the HO ₂ Pathway. Environmental Science & Technology, 2015, 49, 250-258.	10.0	48
25	Particle Classification by the Tandem Differential Mobility Analyzer–Particle Mass Analyzer System. Aerosol Science and Technology, 2015, 49, 508-520.	3.1	16
26	Phase State and Deliquescence Hysteresis of Ammonium-Sulfate-Seeded Secondary Organic Aerosol. Aerosol Science and Technology, 2015, 49, 531-537.	3.1	15
27	An Analytic Equation for the Volume Fraction of Condensationally Grown Mixed Particles and Applications to Secondary Organic Material Produced in Continuously Mixed Flow Reactors. Aerosol Science and Technology, 2014, 48, 803-812.	3.1	5
28	Phase Transitions and Phase Miscibility of Mixed Particles of Ammonium Sulfate, Toluene-Derived Secondary Organic Material, and Water. Journal of Physical Chemistry A, 2013, 117, 8895-8906.	2.5	34
29	Viscosity of <i>α</i> -pinene secondary organic material and implications for particle growth and reactivity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8014-8019.	7.1	388
30	Classifying organic materials by oxygen-to-carbon elemental ratio to predict the activation regime of Cloud Condensation Nuclei (CCN). Atmospheric Chemistry and Physics, 2013, 13, 5309-5324.	4.9	67
31	Particle Size Distributions following Condensational Growth in Continuous Flow Aerosol Reactors as Derived from Residence Time Distributions: Theoretical Development and Application to Secondary Organic Aerosol. Aerosol Science and Technology, 2012, 46, 937-949.	3.1	22
32	Phase of atmospheric secondary organic material affects its reactivity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17354-17359.	7.1	182
33	Particle mass yield from <i>Ĵ²</i> -caryophyllene ozonolysis. Atmospheric Chemistry and Physics, 2012, 12, 3165-3179.	4.9	44
34	Using Elemental Ratios to Predict the Density of Organic Material Composed of Carbon, Hydrogen, and Oxygen. Environmental Science & Technology, 2012, 46, 787-794.	10.0	209
35	Cloud condensation nuclei (CCN) activity and oxygen-to-carbon elemental ratios following thermodenuder treatment of organic particles grown by α-pinene ozonolysis. Physical Chemistry Chemical Physics, 2011, 13, 14571.	2.8	22
36	Cloud condensation nuclei (CCN) from fresh and aged air pollution in the megacity region of Beijing. Atmospheric Chemistry and Physics, 2011, 11, 11023-11039.	4.9	147

Mikinori Kuwata

#	Article	IF	CITATIONS
37	Predicting the relative humidities of liquid-liquid phase separation, efflorescence, and deliquescence of mixed particles of ammonium sulfate, organic material, and water using the organic-to-sulfate mass ratio of the particle and the oxygen-to-carbon elemental ratio of the organic component. Atmospheric Chemistry and Physics, 2011, 11, 10995-11006.	4.9	297
38	Secondary Organic Material Produced by the Dark Ozonolysis of α-Pinene Minimally Affects the Deliquescence and Efflorescence of Ammonium Sulfate. Aerosol Science and Technology, 2011, 45, 244-261.	3.1	69
39	The Dynamic Shape Factor of Sodium Chloride Nanoparticles as Regulated by Drying Rate. Aerosol Science and Technology, 2010, 44, 939-953.	3.1	56
40	Formation and Transport of Aerosols in Tokyo in Relation to Their Physical and Chemical Properties: A Review. Journal of the Meteorological Society of Japan, 2010, 88, 597-624.	1.8	24
41	Stabilization of the Mass Absorption Cross Section of Black Carbon for Filter-Based Absorption Photometry by the use of a Heated Inlet. Aerosol Science and Technology, 2009, 43, 741-756.	3.1	113
42	Critical condensed mass for activation of black carbon as cloud condensation nuclei in Tokyo. Journal of Geophysical Research, 2009, 114, .	3.3	63
43	Measurements of particle masses of inorganic salt particles for calibration of cloud condensation nuclei counters. Atmospheric Chemistry and Physics, 2009, 9, 5921-5932.	4.9	37
44	Intense laser-induced decomposition of mass-selected 2-, 3-, and 4-methylaniline cations. Chemical Physics Letters, 2008, 462, 27-30.	2.6	2
45	Dependence of sizeâ€resolved CCN spectra on the mixing state of nonvolatile cores observed in Tokyo. Journal of Geophysical Research, 2008, 113, .	3.3	41
46	Cloud condensation nuclei activity at Jeju Island, Korea in spring 2005. Atmospheric Chemistry and Physics, 2008, 8, 2933-2948.	4.9	89
47	Relationship between hygroscopicity and cloud condensation nuclei activity for urban aerosols in Tokyo. Journal of Geophysical Research, 2006, 111, .	3.3	59