Caroline L Monteil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3752762/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mass collection of magnetotactic bacteria from the permanently stratified ferruginous Lake Pavin, France. Environmental Microbiology, 2022, 24, 721-736.	1.8	7
2	ldentification of novel aphidâ€killing bacteria to protect plants. Microbial Biotechnology, 2022, 15, 1203-1220.	2.0	6
3	Ice nucleation in a Gram-positive bacterium isolated from precipitation depends on a polyketide synthase and non-ribosomal peptide synthetase. ISME Journal, 2022, 16, 890-897.	4.4	4
4	Exploring Protein Space: From Hydrolase to Ligase by Substitution. Molecular Biology and Evolution, 2021, 38, 761-776.	3.5	5
5	Intracellular amorphous Ca-carbonate and magnetite biomineralization by a magnetotactic bacterium affiliated to the Alphaproteobacteria. ISME Journal, 2021, 15, 1-18.	4.4	52
6	Complete Genome Sequence of Strain SS-5, a Magnetotactic Gammaproteobacterium Isolated from the Salton Sea, a Shallow, Saline, Endorheic Rift Lake Located on the San Andreas Fault in California. Microbiology Resource Announcements, 2021, 10, .	0.3	4
7	The gammaproteobacterium <i>Achromatium</i> forms intracellular amorphous calcium carbonate and not (crystalline) calcite. Geobiology, 2021, 19, 199-213.	1.1	20
8	Biogeochemical Niche of Magnetotactic Cocci Capable of Sequestering Large Polyphosphate Inclusions in the Anoxic Layer of the Lake Pavin Water Column. Frontiers in Microbiology, 2021, 12, 789134.	1.5	3
9	Magnetoreception in Microorganisms. Trends in Microbiology, 2020, 28, 266-275.	3.5	35
10	Magnetospirillum gryphiswaldense. Trends in Microbiology, 2020, 28, 947-948.	3.5	9
11	Complete Genome Sequence of Strain BW-2, a Magnetotactic Gammaproteobacterium in the Family Ectothiorhodospiraceae , Isolated from a Brackish Spring in Death Valley, California. Microbiology Resource Announcements, 2020, 9, .	0.3	4
12	Ironâ€biomineralizing organelle in magnetotactic bacteria: function, synthesis and preservation in ancient rock samples. Environmental Microbiology, 2020, 22, 3611-3632.	1.8	54
13	Repeated horizontal gene transfers triggered parallel evolution of magnetotaxis in two evolutionary divergent lineages of magnetotactic bacteria. ISME Journal, 2020, 14, 1783-1794.	4.4	25
14	From conservation to structure, studies of magnetosome associated cation diffusion facilitators (CDF) proteins in Proteobacteria. PLoS ONE, 2020, 15, e0231839.	1.1	4
15	Ectosymbiotic bacteria at the origin of magnetoreception in a marine protist. Nature Microbiology, 2019, 4, 1088-1095.	5.9	57
16	Accumulation and Dissolution of Magnetite Crystals in a Magnetically Responsive Ciliate. Applied and Environmental Microbiology, 2018, 84, .	1.4	17
17	An AlgU-Regulated Antisense Transcript Encoded within the Pseudomonas syringae <i>fleQ</i> Gene Has a Positive Effect on Motility. Journal of Bacteriology, 2018, 200, .	1.0	11
18	Genomic study of a novel magnetotactic <i>Alphaproteobacteria</i> uncovers the multiple ancestry of magnetotaxis. Environmental Microbiology, 2018, 20, 4415-4430.	1.8	48

CAROLINE L MONTEIL

#	Article	IF	CITATIONS
19	A Proposal for a Genome Similarity-Based Taxonomy for Plant-Pathogenic Bacteria that Is Sufficiently Precise to Reflect Phylogeny, Host Range, and Outbreak Affiliation Applied to <i>Pseudomonas syringae sensu lato</i> as a Proof of Concept. Phytopathology, 2017, 107, 18-28.	1.1	26
20	Microbial ice nucleators scavenged from the atmosphere during simulated rain events. Atmospheric Environment, 2017, 163, 182-189.	1.9	21
21	Ice nucleation active bacteria in precipitation are genetically diverse and nucleate ice by employing different mechanisms. ISME Journal, 2017, 11, 2740-2753.	4.4	87
22	Testing Differences Between Pathogen Compositions with Small Samples and Sparse Data. Phytopathology, 2017, 107, 1199-1208.	1.1	7
23	Desulfamplus magnetovallimortis gen. nov., sp. nov., a magnetotactic bacterium from a brackish desert spring able to biomineralize greigite and magnetite, that represents a novel lineage in the Desulfobacteraceae. Systematic and Applied Microbiology, 2017, 40, 280-289.	1.2	39
24	Population-genomic insights into emergence, crop adaptation and dissemination of Pseudomonas syringae pathogens. Microbial Genomics, 2016, 2, e000089.	1.0	88
25	POPULATION GENOMICS OF PSEUDOMONAS SYRINGAE PV. TOMATO TO UNRAVEL EMERGENCE AND MODES AND ROUTES OF TRANSMISSION. Acta Horticulturae, 2015, , 289-292.	0.1	0
26	A System to Automatically Classify and Name Any Individual Genome-Sequenced Organism Independently of Current Biological Classification and Nomenclature. PLoS ONE, 2014, 9, e89142.	1.1	49
27	Features of air masses associated with the deposition of <i>Pseudomonas syringae</i> and <i>Botrytis cinerea</i> by rain and snowfall. ISME Journal, 2014, 8, 2290-2304.	4.4	80
28	The <scp><i>P</i></scp> <i>seudomonas viridiflava</i> phylogroups in the <scp><i>P</i></scp> <i>. syringae</i> species complex are characterized by genetic variability and phenotypic plasticity of pathogenicityâ€related traits. Environmental Microbiology, 2014, 16, 2301-2315.	1.8	51
29	Soil water flow is a source of the plant pathogen <scp><i>P</i></scp> <i>seudomonas syringae</i> in subalpine headwaters. Environmental Microbiology, 2014, 16, 2038-2052.	1.8	26
30	Harnessing Population Genomics to Understand How Bacterial Pathogens Emerge, Adapt to Crop Hosts, and Disseminate. Annual Review of Phytopathology, 2014, 52, 19-43.	3.5	67
31	A User's Guide to a Data Base of the Diversity of Pseudomonas syringae and Its Application to Classifying Strains in This Phylogenetic Complex. PLoS ONE, 2014, 9, e105547.	1.1	220
32	Pseudomonas syringae Genomics: From Comparative Genomics of Individual Crop Pathogen Strains Toward Population Genomics. , 2014, , 79-98.		4
33	Quantification of Vibrio parahaemolyticus, Vibrio vulnificus and Vibrio cholerae in French Mediterranean coastal lagoons. Research in Microbiology, 2013, 164, 867-874.	1.0	50
34	The Life History of <i>Pseudomonas syringae</i> : Linking Agriculture to Earth System Processes. Annual Review of Phytopathology, 2013, 51, 85-104.	3.5	158
35	Nonagricultural reservoirs contribute toÂemergence and evolution of <i>Pseudomonas syringae</i> crop pathogens. New Phytologist, 2013, 199, 800-811.	3.5	84
36	<i>Pseudomonas syringae</i> naturally lacking the canonical type III secretion system are ubiquitous in nonagricultural habitats, are phylogenetically diverse and can be pathogenic. ISME Journal, 2012, 6, 1325-1335.	4.4	58

#	Article	IF	CITATIONS
37	Emigration of the plant pathogen <i>Pseudomonas syringae</i> from leaf litter contributes to its population dynamics in alpine snowpack. Environmental Microbiology, 2012, 14, 2099-2112.	1.8	32
38	Human-specific fecal bacteria in wastewater treatment plant effluents. Water Research, 2010, 44, 1873-1883.	5.3	45
39	Magnetotactic bacteria as a new model for P sequestration in the ferruginous Lake Pavin. Geochemical Perspectives Letters, 0, , 35-41.	1.0	54