Mi-Kyeong Jang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3752086/publications.pdf

Version: 2024-02-01

50	1,582	19	39
papers	citations	h-index	g-index
52	52	52	2535
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Polyethylenimine grafted-chitosan based Gambogic acid copolymers for targeting cancer cells overexpressing transferrin receptors. Carbohydrate Polymers, 2022, 277, 118755.	10.2	11
2	Fabrication of carbon-coated MnOx-Ni foam electrodes via pyrolysis of $\hat{l}\pm$ -chitosan and their electrochemical performance. Current Applied Physics, 2022, 35, 78-85.	2.4	2
3	Antifungal Mechanism of Vip3Aa, a Vegetative Insecticidal Protein, against Pathogenic Fungal Strains. Antibiotics, 2021, 10, 1558.	3.7	2
4	Imaging and Targeted Antibacterial Therapy Using Chimeric Antimicrobial Peptide Micelles. ACS Applied Materials & Samp; Interfaces, 2020, 12, 54306-54315.	8.0	33
5	Antifungal Effect of A Chimeric Peptide Hn-Mc against Pathogenic Fungal Strains. Antibiotics, 2020, 9, 454.	3.7	7
6	Improved Cell Selectivity of Pseudin-2 via Substitution in the Leucine-Zipper Motif: In Vitro and In Vivo Antifungal Activity. Antibiotics, 2020, 9, 921.	3.7	6
7	Functional Mechanisms Underlying the Antimicrobial Activity of the Oryza sativa Trx-like Protein. International Journal of Molecular Sciences, 2019, 20, 1413.	4.1	8
8	Enhanced Antifungal Activity of Engineered Proteins via Swapping between Thioredoxin H2 and H3. Applied Sciences (Switzerland), 2019, 9, 4766.	2.5	1
9	Functional Characterization of a Rice Thioredoxin Protein OsTrxm and Its Cysteine Mutant Variant with Antifungal Activity. Antioxidants, 2019, 8, 598.	5.1	8
10	Anti-Biofilm Effects of Synthetic Antimicrobial Peptides Against Drug-Resistant Pseudomonas aeruginosa and Staphylococcus aureus Planktonic Cells and Biofilm. Molecules, 2019, 24, 4560.	3.8	29
11	Hydrophilic Linear Peptide with Histidine and Lysine Residues as a Key Factor Affecting Antifungal Activity. International Journal of Molecular Sciences, 2018, 19, 3781.	4.1	12
12	Cell-selectivity of tryptophan and tyrosine in amphiphilic \hat{l}_{\pm} -helical antimicrobial peptides against drug-resistant bacteria. Biochemical and Biophysical Research Communications, 2018, 505, 478-484.	2.1	11
13	One-step synthesis of gene carrier via gamma irradiation and its application in tumor gene therapy. International Journal of Nanomedicine, 2018, Volume 13, 525-536.	6.7	7
14	Molecular mechanism of Arabidopsis thaliana profilins as antifungal proteins. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2545-2554.	2.4	13
15	Molecular and Functional Characterization of a Rice Thioredoxin m Isoform and Its Interaction Proteins. Biotechnology and Bioprocess Engineering, 2018, 23, 319-325.	2.6	1
16	Functional characterization of the Arabidopsis universal stress protein AtUSP with an antifungal activity. Biochemical and Biophysical Research Communications, 2017, 486, 923-929.	2.1	19
17	Targeting and synergistic action of an antifungal peptide in an antibiotic drug-delivery system. Journal of Controlled Release, 2017, 256, 46-55.	9.9	28
18	Functional characterization of thioredoxin h type 5 with antimicrobial activity from Arabidopsis thaliana. Biotechnology and Bioprocess Engineering, 2017, 22, 129-135.	2.6	15

#	Article	IF	Citations
19	Antifungal Effect of <i>Arabidopsis</i> SGT1 Proteins via Mitochondrial Reactive Oxygen Species. Journal of Agricultural and Food Chemistry, 2017, 65, 8340-8347.	5. 2	10
20	Targeted gene delivery of polyethyleneimine-grafted chitosan with RGD dendrimer peptide in $\hat{l}\pm\nu\hat{l}^23$ integrin-overexpressing tumor cells. Carbohydrate Polymers, 2017, 174, 1059-1068.	10.2	44
21	Targeted doxorubicin delivery based on avidin-biotin technology in cervical tumor cells. Macromolecular Research, 2017, 25, 882-889.	2.4	1
22	Deletion of the carboxyl terminal of thioredoxin reductase C of Arabidopsis facilitates oligomerization. Biotechnology and Bioprocess Engineering, 2016, 21, 641-645.	2.6	1
23	Antibacterial effects of amino acids-grafted water-soluble chitosan against drug-resistant bacteria. Biotechnology and Bioprocess Engineering, 2016, 21, 183-189.	2.6	5
24	Algicidal effect of hybrid peptides as potential inhibitors of harmful algal blooms. Biotechnology Letters, 2016, 38, 847-854.	2.2	8
25	Functional characterization of alpha-synuclein protein with antimicrobial activity. Biochemical and Biophysical Research Communications, 2016, 478, 924-928.	2.1	80
26	Enhanced of norfloxacin bioavailability using conjugation of isosorbide via enzymatic catalysis. Biotechnology and Bioprocess Engineering, 2016, 21, 508-514.	2.6	1
27	Polymeric micellar nanoplatforms for Fenton reaction as a new class of antibacterial agents. Journal of Controlled Release, 2016, 221, 37-47.	9.9	61
28	Novel chimeric peptide with enhanced cell specificity and anti-inflammatory activity. Biochemical and Biophysical Research Communications, 2015, 463, 322-328.	2.1	10
29	Antimicrobial Action of Water-Soluble β-Chitosan against Clinical Multi-Drug Resistant Bacteria. International Journal of Molecular Sciences, 2015, 16, 7995-8007.	4.1	43
30	Enhanced gene delivery system using disulfide-linked chitosan immobilized with polyamidoamine. Macromolecular Research, 2014, 22, 370-376.	2.4	7
31	Bile acid conjugated chitosan oligosaccharide nanoparticles for paclitaxel carrier. Macromolecular Research, 2014, 22, 310-317.	2.4	8
32	Evaluation of polyethylene glycol-conjugated novel polymeric anti-tumor drug for cancer therapy. Colloids and Surfaces B: Biointerfaces, 2014, 120, 168-175.	5.0	11
33	Encapsulation of paclitaxel into lauric acid-O-carboxymethyl chitosan-transferrin micelles for hydrophobic drug delivery and site-specific targeted delivery. International Journal of Pharmaceutics, 2013, 457, 124-135.	5.2	77
34	Branched polyethylenimine-grafted-carboxymethyl chitosan copolymer enhances the delivery of pDNA or siRNA in vitro and in vivo. International Journal of Nanomedicine, 2013, 8, 3663.	6.7	31
35	Preparation of pullulan-g-poly(L-lysine) and it's evaluation as a gene carrier. Macromolecular Research, 2012, 20, 667-672.	2.4	23
36	Insulin-incorporated chitosan nanoparticles based on polyelectrolyte complex formation. Macromolecular Research, 2010, 18, 630-635.	2.4	24

#	Article	IF	Citations
37	Surfactant-free nanoparticles of doxorubicin-conjugated poly(DL-lactide-co-glycolide). Macromolecular Research, 2010, 18, 1115-1120.	2.4	5
38	Characterization and preparation of core–shell type nanoparticle for encapsulation of anticancer drug. Colloids and Surfaces B: Biointerfaces, 2010, 81, 530-536.	5.0	31
39	Synthesis and characterization of thermosensitive nanoparticles based on PNIPAAm core and chitosan shell structure. Macromolecular Research, 2009, 17, 265-270.	2.4	22
40	Methotrexate-incorporated polymeric micelles composed of methoxy poly(ethylene glycol)-grafted chitosan. Macromolecular Research, 2009, 17, 538-543.	2.4	29
41	All-trans retinoic acid release from surfactant-free nanoparticles of poly(DL-lactide-co-glycolide). Macromolecular Research, 2008, 16, 717-724.	2.4	11
42	Preparation and characterization of nanoparticles using poly(N-isopropylacrylamide)-poly(μ̂-caprolactone) and poly(ethylene glycol)-poly(μ̂-caprolactone) block copolymers with thermosensitive function. Macromolecular Research, 2007, 15, 623-632.	2.4	16
43	All-trans retinoic acid-associated low molecular weight water-soluble chitosan nanoparticles based on ion complex. Macromolecular Research, 2006, 14, 66-72.	2.4	27
44	DNA delivery using low molecular water-soluble chitosan nanocomplex as a biomedical device. Journal of Applied Polymer Science, 2006, 102, 3545-3551.	2.6	6
45	Deoxycholic acid-conjugated chitosan oligosaccharide nanoparticles for efficient gene carrier. Journal of Controlled Release, 2005, 109, 330-344.	9.9	188
46	Transesterification and compatibilization in the blends of bisphenol-A polycarbonate and poly(trimethylene terephthalate). Macromolecular Research, 2005, 13, 88-95.	2.4	17
47	Preparation of a hydrophobized chitosan oligosaccharide for application as an efficient gene carrier. Macromolecular Research, 2004, 12, 573-580.	2.4	38
48	Physicochemical characterization of ?-chitin, ?-chitin, and ?-chitin separated from natural resources. Journal of Polymer Science Part A, 2004, 42, 3423-3432.	2.3	472
49	Surfactant-free nanoparticles of poly(DL-lactide-co-glycolide) prepared with poly(L-lactide)/poly(ethylene glycol). Journal of Applied Polymer Science, 2003, 89, 1116-1123.	2.6	4
50	Spectroscopic characterization and preparation of low molecular, water-soluble chitosan with free-amine group by novel method. Journal of Polymer Science Part A, 2002, 40, 3796-3803.	2.3	58