Monika Ryba-StanisÅ,awowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/375207/publications.pdf Version: 2024-02-01

Μονικά

#	Article	IF	CITATIONS
1	Different pathways of macrophage activation and polarization. Postepy Higieny I Medycyny Doswiadczalnej, 2015, 69, 496-502.	0.1	120
2	Loss of the balance between CD4+Foxp3+ regulatory T cells and CD4+IL17A+ Th17 cells in patients with type 1 diabetes. Human Immunology, 2013, 74, 701-707.	1.2	59
3	Elevated Levels of Serum IL-12 and IL-18 are Associated with Lower Frequencies of CD4+CD25highFOXP3+ Regulatory T cells in Young Patients with Type 1 Diabetes. Inflammation, 2014, 37, 1513-1520.	1.7	47
4	The Serum IL-6 Profile and Treg/Th17 Peripheral Cell Populations in Patients with Type 1 Diabetes. Mediators of Inflammation, 2013, 2013, 1-7.	1.4	41
5	Anti-TNF rescue CD4+Foxp3+ regulatory T cells in patients with type 1 diabetes from effects mediated by TNF. Cytokine, 2011, 55, 353-361.	1.4	34
6	Th9 and Th22 immune response in young patients with type 1 diabetes. Immunologic Research, 2016, 64, 730-735.	1.3	26
7	Regulatory T cells: the future of autoimmune disease treatment. Expert Review of Clinical Immunology, 2019, 15, 777-789.	1.3	22
8	Lower Frequency of CD62L ^{high} and Higher Frequency of TNFR2 ⁺ Tregs Are Associated with Inflammatory Conditions in Type 1 Diabetic Patients. Mediators of Inflammation, 2011, 2011, 1-7.	1.4	20
9	IL-33 Effect on Quantitative Changes of CD4+CD25highFOXP3+Regulatory T Cells in Children with Type 1 Diabetes. Mediators of Inflammation, 2016, 2016, 1-7.	1.4	17
10	The KL-VS polymorphism of KLOTHO gene is protective against retinopathy incidence in patients with type 1 diabetes. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 758-763.	1.8	16
11	IL-33 improves the suppressive potential of regulatory T cells in patients with type 1 diabetes. Diabetes Research and Clinical Practice, 2017, 128, 67-73.	1.1	13
12	Associations of TP53 codon 72 polymorphism with complications and comorbidities in patients with type 1 diabetes. Journal of Molecular Medicine, 2021, 99, 675-683.	1.7	13
13	Elevated levels of peripheral blood <scp>CD</scp> 14 ^{bright} <scp>CD</scp> 16 ⁺ and <scp>CD</scp> 14 ^{dim} <scp>CD</scp> 16 ⁺ monocytes may contribute to the development of retinopathy in patients with juvenile onset type 1 diabetes. Apmis, 2015, 123, 793-799.	0.9	12
14	IVS1 â^'397T > C Estrogen Receptor <i>α</i> Polymorphism Is Associated with Low-Grade Systemic Inflammatory Response in Type 1 Diabetic Girls. Mediators of Inflammation, 2014, 2014, 1-8.	1.4	11
15	Enhanced Apoptosis of Monocytes from Complication-Free Juvenile-Onset Diabetes Mellitus Type 1 May Be Ameliorated by TNF-αInhibitors. Mediators of Inflammation, 2014, 2014, 1-11.	1.4	11
16	CCR5-Δ32 polymorphism is a genetic risk factor associated with dyslipidemia in patients with type 1 diabetes. Cytokine, 2019, 114, 81-85.	1.4	11
17	Quantitative and functional characteristics of endothelial progenitor cells in newly diagnosed hypertensive patients. Journal of Human Hypertension, 2015, 29, 324-330.	1.0	10
18	CCR5 -Δ32 gene polymorphism is associated with retinopathy in patients with type 1 diabetes. Molecular and Cellular Endocrinology, 2017, 439, 256-260.	1.6	10

Μονικά

DNIKA °

#	Article	IF	CITATIONS
19	Estrogen receptor $\hat{I}\pm$ gene polymorphism and vascular complications in girls with type 1 diabetes mellitus. Molecular and Cellular Biochemistry, 2018, 437, 153-161.	1.4	9
20	Monocytes of newly diagnosed juvenile DM1 patients are prone to differentiate into regulatory IL-10+ M2 macrophages. Immunologic Research, 2019, 67, 58-69.	1.3	9
21	CCR5 -Δ32 gene polymorphism is related to celiac disease and autoimmune thyroiditis coincidence in patients with type 1 diabetes. Journal of Diabetes and Its Complications, 2017, 31, 615-618.	1.2	8
22	The association of the IVS1-397T>C estrogen receptor α polymorphism with the regulatory conditions in longstanding type 1 diabetic girls. Molecular Immunology, 2011, 49, 324-328.	1.0	7
23	Sex-related association of serum uric acid with inflammation, kidney function and blood pressure in type 1 diabetic patients. Pediatric Diabetes, 2018, 19, 1014-1019.	1.2	6
24	Putative loss of CD83 immunosuppressive activity in long-standing complication-free juvenile diabetic patients during disease progression. Immunologic Research, 2019, 67, 70-76.	1.3	4
25	A new potential mode of cardiorenal protection of KLOTHO gene variability in type 1 diabetic adolescents. Journal of Molecular Medicine, 2020, 98, 955-962.	1.7	4
26	Circulating CD34+ and CD34+VEGFR2+ progenitor cells are associated with KLOTHO KL-VS polymorphism. Microvascular Research, 2018, 119, 1-6.	1.1	2
27	Effector and regulatory T cell subsets in diabetes-associated inflammation. Is there a connection with ST2/IL-33 axis? Perspective. Autoimmunity, 2014, 47, 361-371.	1.2	1
28	New mechanisms of CCR5-Δ32 carriers' advantage – Impact on progenitor cells and renal function. International Journal of Biochemistry and Cell Biology, 2019, 108, 92-97.	1.2	1