Zhiping Xu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3752014/zhiping-xu-publications-by-year.pdf

Version: 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

175	9,473 citations	45	94
papers		h-index	g-index
180 ext. papers	10,938 ext. citations	8.7 avg, IF	6.73 L-index

#	Paper	IF	Citations
175	Structure evolution of hBN grown on molten Cu by regulating precursor flux during chemical vapor deposition. <i>2D Materials</i> , 2022 , 9, 015004	5.9	O
174	Two-step heat fusion kinetics and mechanical performance of thermoplastic interfaces <i>Scientific Reports</i> , 2022 , 12, 5701	4.9	0
173	Unraveling the morphological complexity of two-dimensional macromolecules. <i>Patterns</i> , 2022 , 100497	5.1	1
172	Oxygen-Assisted Anisotropic Chemical Etching of MoSe2 for Enhanced Phototransistors. <i>Chemistry of Materials</i> , 2022 , 34, 4212-4223	9.6	2
171	Experimentally measuring weak fracture toughness anisotropy in graphene. <i>Communications Materials</i> , 2022 , 3,	6	1
170	Edge-enhanced ultrafast water evaporation from graphene nanopores. <i>Cell Reports Physical Science</i> , 2022 , 100900	6.1	O
169	Failure life prediction for carbon nanotubes. <i>Journal of the Mechanics and Physics of Solids</i> , 2022 , 164, 104907	5	2
168	growth of large-area and self-aligned graphene nanoribbon arrays on liquid metal <i>National Science Review</i> , 2021 , 8, nwaa298	10.8	3
167	Energy-conversion efficiency and power output of twisted-filament artificial muscles. <i>Extreme Mechanics Letters</i> , 2021 , 50, 101531	3.9	1
166	Enhanced Catalytic Mechanism of Twin-Structured BiVO. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 10610-10615	6.4	1
165	Theoretical prediction of effective stiffness of nonwoven fibrous networks with straight and curved nanofibers. <i>Composites Part A: Applied Science and Manufacturing</i> , 2021 , 143, 106311	8.4	2
164	Understanding macroscopic assemblies of carbon nanostructures with microstructural complexity. <i>Composites Part A: Applied Science and Manufacturing</i> , 2021 , 143, 106318	8.4	7
163	Microscale Schottky superlubric generator with high direct-current density and ultralong life. Nature Communications, 2021, 12, 2268	17.4	22
162	Electronic excitation in graphene under single-particle irradiation. <i>Nanotechnology</i> , 2021 , 32, 165702	3.4	2
161	Experimental nanomechanics of 2D materials for strain engineering. <i>Applied Nanoscience</i> (Switzerland), 2021 , 11, 1075-1091	3.3	8
160	Pattern Development and Control of Strained Solitons in Graphene Bilayers. <i>Nano Letters</i> , 2021 , 21, 17	72 <u>-</u> 137	 76
159	High-strength scalable graphene sheets by freezing stretch-induced alignment. <i>Nature Materials</i> , 2021 , 20, 624-631	27	42

(2019-2021)

158	Biomimetic Mechanically Enhanced Carbon Nanotube Fibers by Silk Fibroin Infiltration. <i>Small</i> , 2021 , 17, e2100066	11	7
157	Strain Characterization in Two-Dimensional Crystals. <i>Materials</i> , 2021 , 14,	3.5	2
156	Elastocapillary cleaning of twisted bilayer graphene interfaces. <i>Nature Communications</i> , 2021 , 12, 5069	17.4	4
155	Large-Size Superlattices Synthesized by Sequential Sulfur Substitution-Induced Transformation of Metastable MoTe2. <i>Chemistry of Materials</i> , 2021 , 33, 9760-9768	9.6	2
154	On the elastic rod models for mechanical tests of one-dimensional nanostructures under transverse loads. <i>Journal of Applied Physics</i> , 2020 , 128, 164303	2.5	2
153	How Universal Is the Wetting Aging in 2D Materials. <i>Nano Letters</i> , 2020 , 20, 5670-5677	11.5	14
152	Field-enhanced selectivity in nanoconfined ionic transport. <i>Nanoscale</i> , 2020 , 12, 6512-6521	7.7	5
151	Hydrogen-dominated metal-free growth of graphitic-nitrogen doped graphene with n-type transport behaviors. <i>Carbon</i> , 2020 , 161, 123-131	10.4	6
150	Elastic straining of free-standing monolayer graphene. <i>Nature Communications</i> , 2020 , 11, 284	17.4	89
149	Ion Permeability and Selectivity in Composite Nanochannels: Engineering through the End Effects. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 4890-4898	3.8	15
148	Deciphering the nature of ion-graphene interaction. Physical Review Research, 2020, 2,	3.9	2
147	Nanoconfinement-Enforced Ion Correlation and Nanofluidic Ion Machinery. <i>Nano Letters</i> , 2020 , 20, 8392	2 1 8398	7
146	Large Elastic Deformation and Defect Tolerance of Hexagonal Boron Nitride Monolayers. <i>Cell Reports Physical Science</i> , 2020 , 1, 100172	6.1	8
145	Conformational Scaling Relations of Two-Dimensional Macromolecular Graphene Oxide in Solution. <i>Macromolecules</i> , 2020 , 53, 10421-10430	5.5	8
144	The effect of material mixing on interfacial stiffness and strength of multi-material additive manufacturing. <i>Additive Manufacturing</i> , 2020 , 36, 101502	6.1	4
143	Conformational Phase Map of Two-Dimensional Macromolecular Graphene Oxide in Solution. <i>Matter</i> , 2020 , 3, 230-245	12.7	16
142	Super-durable ultralong carbon nanotubes. <i>Science</i> , 2020 , 369, 1104-1106	33.3	42
141	Bending of Multilayer van der Waals Materials. <i>Physical Review Letters</i> , 2019 , 123, 116101	7.4	76

140	Molecular dynamics simulations of silicon carbide nanowires under single-ion irradiation. <i>Journal of Applied Physics</i> , 2019 , 126, 125902	2.5	О
139	Interfacial failure boosts mechanical energy dissipation in carbon nanotube films under ballistic impact. <i>Carbon</i> , 2019 , 146, 139-146	10.4	13
138	Selectively tuning gas transport through ionic liquid filled graphene oxide nanoslits using an electric field. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 15062-15067	13	29
137	Chemically modified graphene films with tunable negative Poisson's ratios. <i>Nature Communications</i> , 2019 , 10, 2446	17.4	27
136	Targeted Heating of Enzyme Systems Based on Photothermal Materials. <i>ChemBioChem</i> , 2019 , 20, 2467	-2,4873	3
135	Ultrastrong Graphene Films via Long-Chain EBridging. <i>Matter</i> , 2019 , 1, 389-401	12.7	57
134	Graphene Oxide Promoted Cadmium Uptake by Rice in Soil. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 10283-10292	8.3	17
133	Voltage gated inter-cation selective ion channels from graphene nanopores. <i>Nanoscale</i> , 2019 , 11, 9856-	-9⁄8 / 61	23
132	Edge-Epitaxial Growth of Graphene on Cu with a Hydrogen-Free Approach. <i>Chemistry of Materials</i> , 2019 , 31, 2555-2562	9.6	12
131	Mechanical responses of boron-doped monolayer graphene. <i>Carbon</i> , 2019 , 147, 594-601	10.4	17
130	Microstructural ordering of nanofibers in flow-directed assembly. <i>Science China Technological Sciences</i> , 2019 , 62, 1545-1554	3.5	3
129	Primary Nucleation-Dominated Chemical Vapor Deposition Growth for Uniform Graphene Monolayers on Dielectric Substrate. <i>Journal of the American Chemical Society</i> , 2019 , 141, 11004-11008	16.4	35
128	Pattern evolution characterizes the mechanism and efficiency of CVD graphene growth. <i>Carbon</i> , 2019 , 141, 316-322	10.4	13
127	From Self-Assembly Hierarchical h-BN Patterns to Centimeter-Scale Uniform Monolayer h-BN Film. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1801493	4.6	14
126	Edges facilitate water evaporation through nanoporous graphene. <i>Nanotechnology</i> , 2019 , 30, 165401	3.4	9
125	Hierarchical-structure-dependent high ductility of electrospun polyoxymethylene nanofibers. Journal of Applied Polymer Science, 2019 , 136, 47086	2.9	4
124	Rolling up transition metal dichalcogenide nanoscrolls via one drop of ethanol. <i>Nature Communications</i> , 2018 , 9, 1301	17.4	69
123	Molecular-channel driven actuator with considerations for multiple configurations and color switching. <i>Nature Communications</i> , 2018 , 9, 590	17.4	108

122	Fundamental Properties of Graphene 2018 , 73-102		3
121	Graphene Composites 2018 , 201-214		1
120	Fast water transport in graphene nanofluidic channels. <i>Nature Nanotechnology</i> , 2018 , 13, 238-245	28.7	139
119	Micro- and nano-mechanics in China: A brief review of recent progress and perspectives. <i>Science China: Physics, Mechanics and Astronomy</i> , 2018 , 61, 1	3.6	23
118	Bio-inspired graphene-derived membranes with strain-controlled interlayer spacing. <i>Nanoscale</i> , 2018 , 10, 8585-8590	7.7	7
117	Mechanical exfoliation of two-dimensional materials. <i>Journal of the Mechanics and Physics of Solids</i> , 2018 , 115, 248-262	5	78
116	Transition of Graphene Oxide from Nanomembrane to Nanoscroll Mediated by Organic Solvent in Dispersion. <i>Chemistry of Materials</i> , 2018 , 30, 5951-5960	9.6	14
115	Renormalization of Ionic Solvation Shells in Nanochannels. <i>ACS Applied Materials & Description</i> (2018, 10, 27801-27809)	9.5	21
114	Ionic Liquid Selectively Facilitates CO Transport through Graphene Oxide Membrane. <i>ACS Nano</i> , 2018 , 12, 5385-5393	16.7	99
113	Confined Structures and Selective Mass Transport of Organic Liquids in Graphene Nanochannels. <i>ACS Applied Materials & Discours (Materials & Discours)</i> 10, 37014-37022	9.5	15
112	Microstructure- and concentration-dependence of lithium diffusion in the silicon anode: Kinetic Monte Carlo simulations and complex network analysis. <i>Applied Physics Letters</i> , 2018 , 113, 121904	3.4	10
111	Sunlight-Driven Water Transport via a Reconfigurable Pump. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 15435-15440	16.4	18
110	Sunlight-Driven Water Transport via a Reconfigurable Pump. <i>Angewandte Chemie</i> , 2018 , 130, 15661-156	5666	9
109	Strength loss of carbon nanotube fibers explained in a three-level hierarchical model. <i>Carbon</i> , 2018 , 138, 134-142	10.4	35
108	Geometrical distortion leads to Griffith strength reduction in graphene membranes. <i>Extreme Mechanics Letters</i> , 2017 , 14, 31-37	3.9	16
107	Etching-Controlled Growth of Graphene by Chemical Vapor Deposition. <i>Chemistry of Materials</i> , 2017 , 29, 1022-1027	9.6	42
106	Adhesion Energy of MoS Thin Films on Silicon-Based Substrates Determined via the Attributes of a Single MoS Wrinkle. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 7812-7818	9.5	52
105	Rollerball-Pen-Drawing Technology for Extremely Foldable Paper-Based Electronics. <i>Advanced Electronic Materials</i> , 2017 , 3, 1700098	6.4	26

104	Degradation and recovery of graphene/polymer interfaces under cyclic mechanical loading. <i>Composites Science and Technology</i> , 2017 , 149, 220-227	8.6	25
103	Assessment of Self-Assembled Monolayers as High-Performance Thermal Interface Materials. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1700355	4.6	11
102	Atomistic dynamics of sulfur-deficient high-symmetry grain boundaries in molybdenum disulfide. <i>Nanoscale</i> , 2017 , 9, 10312-10320	7.7	15
101	Facile growth of vertically-aligned graphene nanosheets via thermal CVD: The experimental and theoretical investigations. <i>Carbon</i> , 2017 , 121, 1-9	10.4	43
100	Intrinsic mechanical properties of graphene oxide films: Strain characterization and the gripping effects. <i>Carbon</i> , 2017 , 118, 467-474	10.4	9
99	Lithiation-enhanced charge transfer and sliding strength at the silicon-graphene interface: A first-principles study. <i>Acta Mechanica Solida Sinica</i> , 2017 , 30, 254-262	2	4
98	Energy transfer and motion synchronization between mechanical oscillators through microhydrodynamic coupling. <i>Physics of Fluids</i> , 2017 , 29, 032005	4.4	
97	Non-Continuum Intercalated Water Diffusion Explains Fast Permeation through Graphene Oxide Membranes. <i>ACS Nano</i> , 2017 , 11, 11152-11161	16.7	56
96	Measuring Interlayer Shear Stress in Bilayer Graphene. <i>Physical Review Letters</i> , 2017 , 119, 036101	7.4	111
95	Structures and thermodynamics of water encapsulated by graphene. <i>Scientific Reports</i> , 2017 , 7, 2646	4.9	19
94	Interlayer Coupling Behaviors of Boron Doped Multilayer Graphene. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 26034-26043	3.8	20
93	Optimizing Interfacial Cross-Linking in Graphene-Derived Materials, Which Balances Intralayer and Interlayer Load Transfer. <i>ACS Applied Materials & Description</i> , 19, 24830-24839	9.5	25
92	Large-Area Growth of Five-Lobed and Triangular Graphene Grains on Textured Cu Substrate. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600347	4.6	13
91	Hierarchical Graphene-Based Films with Dynamic Self-Stiffening for Biomimetic Artificial Muscle. <i>Advanced Functional Materials</i> , 2016 , 26, 7003-7010	15.6	44
90	Thermal transport in oxidized polycrystalline graphene. <i>Carbon</i> , 2016 , 108, 318-326	10.4	9
89	Intrinsic high water/ion selectivity of graphene oxide lamellar membranes in concentration gradient-driven diffusion. <i>Chemical Science</i> , 2016 , 7, 6988-6994	9.4	53
88	Intercalated water layers promote thermal dissipation at bio-nano interfaces. <i>Nature Communications</i> , 2016 , 7, 12854	17.4	45
87	Carbonized Silk Fabric for Ultrastretchable, Highly Sensitive, and Wearable Strain Sensors. <i>Advanced Materials</i> , 2016 , 28, 6640-8	24	584

(2015-2016)

86	Geometrical effect atiffens graphene membrane at finite vacancy concentrations. <i>Extreme Mechanics Letters</i> , 2016 , 6, 82-87	3.9	18
85	Water Intercalation for Seamless, Electrically Insulating, and Thermally Transparent Interfaces. <i>ACS Applied Materials & Discrete Applied & Discrete </i>	9.5	23
84	Defects in two-dimensional materials: Topological and geometrical effects. <i>Chinese Science Bulletin</i> , 2016 , 61, 501-510	2.9	6
83	Nanoscale Biological Materials. <i>Journal of Nanomaterials</i> , 2016 , 2016, 1-2	3.2	
82	Confined, Oriented, and Electrically Anisotropic Graphene Wrinkles on Bacteria. <i>ACS Nano</i> , 2016 , 10, 8403-12	16.7	27
81	Interphase Induced Dynamic Self-Stiffening in Graphene-Based Polydimethylsiloxane Nanocomposites. <i>Small</i> , 2016 , 12, 3723-31	11	28
80	Geometrical control of ionic current rectification in a configurable nanofluidic diode. <i>Biomicrofluidics</i> , 2016 , 10, 054102	3.2	7
79	Heat transport in low-dimensional materials: A review and perspective. <i>Theoretical and Applied Mechanics Letters</i> , 2016 , 6, 113-121	1.8	30
78	Van der Waals Force Isolation of Monolayer MoS. Advanced Materials, 2016, 28, 10055-10060	24	27
77	Chemical vapor deposition of bilayer graphene with layer-resolved growth through dynamic pressure control. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 7464-7471	7.1	19
76	Wearable Strain Sensors: Carbonized Silk Fabric for Ultrastretchable, Highly Sensitive, and Wearable Strain Sensors (Adv. Mater. 31/2016). <i>Advanced Materials</i> , 2016 , 28, 6639	24	11
75	Defect-Engineered Heat Transport in Graphene: A Route to High Efficient Thermal Rectification. <i>Scientific Reports</i> , 2015 , 5, 11962	4.9	82
74	Selective gas diffusion in graphene oxides membranes: a molecular dynamics simulations study. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 3, 9052-9	9.5	105
73	Directed self-assembly of end-functionalized nanofibers: from percolated networks to liquid crystal-like phases. <i>Nanotechnology</i> , 2015 , 26, 205602	3.4	5
72	Defect-detriment to graphene strength is concealed by local probe: the topological and geometrical effects. <i>ACS Nano</i> , 2015 , 9, 401-8	16.7	57
71	Graphene Arrays: Direct Top-Down Fabrication of Large-Area Graphene Arrays by an In Situ Etching Method (Adv. Mater. 28/2015). <i>Advanced Materials</i> , 2015 , 27, 4194-4194	24	3
7º	Mechanistic transition of heat conduction in two-dimensional solids: A study of silica bilayers. <i>Physical Review B</i> , 2015 , 92,	3.3	6
69	Direct Top-Down Fabrication of Large-Area Graphene Arrays by an In Situ Etching Method. Advanced Materials, 2015, 27, 4195-9	24	30

68	Multifunctional Pristine Chemically Modified Graphene Films as Strong as Stainless Steel. <i>Advanced Materials</i> , 2015 , 27, 6708-13	24	128
67	Predicting the lifetime of superlubricity. <i>Europhysics Letters</i> , 2015 , 112, 60007	1.6	2
66	Ultimate osmosis engineered by the pore geometry and functionalization of carbon nanostructures. <i>Scientific Reports</i> , 2015 , 5, 10597	4.9	27
65	Graphene Oxides in Filtration and Separation Applications 2015 , 129-147		3
64	Thin-Shell Thickness of Two-Dimensional Materials. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2015 , 82,	2.7	34
63	Peeling Silicene From Model Silver Substrates in Molecular Dynamics Simulations. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2015 , 82,	2.7	6
62	Mechanical responses of the bio-nano interface: A molecular dynamics study of graphene-coated lipid membrane. <i>Theoretical and Applied Mechanics Letters</i> , 2015 , 5, 231-235	1.8	9
61	The mechanism of selective molecular capture in carbon nanotube networks. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 14894-8	3.6	1
60	Near-equilibrium chemical vapor deposition of high-quality single-crystal graphene directly on various dielectric substrates. <i>Advanced Materials</i> , 2014 , 26, 1348-53	24	115
59	Understanding water permeation in graphene oxide membranes. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 5877-83	9.5	339
58	Mechanics of network materials with responsive crosslinks. <i>Comptes Rendus - Mecanique</i> , 2014 , 342, 264	1-272	11
57	Graphene: Near-Equilibrium Chemical Vapor Deposition of High-Quality Single-Crystal Graphene Directly on Various Dielectric Substrates (Adv. Mater. 9/2014). <i>Advanced Materials</i> , 2014 , 26, 1471-1471	24	1
56	Wetting of graphene oxide: a molecular dynamics study. <i>Langmuir</i> , 2014 , 30, 3572-8	4	156
55	Breakdown of fast water transport in graphene oxides. <i>Physical Review E</i> , 2014 , 89, 012113	2.4	145
54	Graphene: Controlled Growth of Single-Crystal Twelve-Pointed Graphene Grains on a Liquid Cu Surface (Adv. Mater. 37/2014). <i>Advanced Materials</i> , 2014 , 26, 6519-6519	24	1
53	Characterizing phonon thermal conduction in polycrystalline graphene. <i>Journal of Materials Research</i> , 2014 , 29, 362-372	2.5	37
52	Controlled growth of single-crystal twelve-pointed graphene grains on a liquid Cu surface. <i>Advanced Materials</i> , 2014 , 26, 6423-9	24	50
51	The critical power to maintain thermally stable molecular junctions. <i>Nature Communications</i> , 2014 , 5, 4297	17.4	23

50	Effect of Acidity on Chitin P rotein Interface: A Molecular Dynamics Study. <i>BioNanoScience</i> , 2014 , 4, 207-	23.54	19
49	Multimodal and self-healable interfaces enable strong and tough graphene-derived materials. <i>Journal of the Mechanics and Physics of Solids</i> , 2014 , 70, 30-41	5	46
48	Structure evolution of graphene oxide during thermally driven phase transformation: is the oxygen content really preserved?. <i>PLoS ONE</i> , 2014 , 9, e111908	3.7	21
47	Topological Defects in Two-Dimensional Crystals: The Stress Buildup and Accumulation. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2014 , 81,	2.7	17
46	Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide membranes based on cation-linteractions. <i>ACS Nano</i> , 2014 , 8, 850-9	16.7	283
45	Mechanical Properties of Chitin B rotein Interfaces: A Molecular Dynamics Study. <i>BioNanoScience</i> , 2013 , 3, 312-320	3.4	26
44	Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes. <i>Nature Communications</i> , 2013 , 4, 2979	17.4	575
43	On the Fracture of Supported Graphene Under Pressure. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2013 , 80,	2.7	15
42	How graphene crumples are stabilized?. RSC Advances, 2013, 3, 2720	3.7	25
41	Enhanced mechanical properties of carbon nanotube networks by mobile and discrete binders. <i>Carbon</i> , 2013 , 64, 237-244	10.4	29
40	Cracks fail to intensify stress in nacreous composites. Composites Science and Technology, 2013, 81, 24-2	2% .6	52
39	Pseudo Hall-Petch strength reduction in polycrystalline graphene. <i>Nano Letters</i> , 2013 , 13, 1829-33	11.5	154
38	Selective ion penetration of graphene oxide membranes. ACS Nano, 2013, 7, 428-37	16.7	520
37	Observation of high-speed microscale superlubricity in graphite. <i>Physical Review Letters</i> , 2013 , 110, 255	550 <u>4</u>	106
36	Self-organized graphene crystal patterns. NPG Asia Materials, 2013, 5, e36-e36	10.3	137
35	Thermal transfer in graphene-interfaced materials: contact resistance and interface engineering. <i>ACS Applied Materials & Discrete ACS ACS ACS ACS ADDRESS & Discrete ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	36
34	Mechanics of metal-catecholate complexes: the roles of coordination state and metal types. <i>Scientific Reports</i> , 2013 , 3, 2914	4.9	144
33	Can carbon nanotube fibers achieve the ultimate conductivity? Coupled-mode analysis for electron transport through the carbon nanotube contact. <i>Journal of Applied Physics</i> , 2013 , 114, 063714	2.5	32

32	Mechanical properties of graphene papers. Journal of the Mechanics and Physics of Solids, 2012, 60, 591	-6905	176
31	Mechanotunable Microstructures of Carbon Nanotube Networks. ACS Macro Letters, 2012, 1, 1176-1179	96.6	29
30	Thermal transport in crystalline Si/Ge nano-composites: Atomistic simulations and microscopic models. <i>Applied Physics Letters</i> , 2012 , 100, 091903	3.4	20
29	Nanotomy-based production of transferable and dispersible graphene nanostructures of controlled shape and size. <i>Nature Communications</i> , 2012 , 3, 844	17.4	137
28	On the applicability of carbon nanotubes as nanomechanical probes and manipulators. <i>Nanotechnology</i> , 2012 , 23, 415502	3.4	1
27	Heat dissipation at a graphene-substrate interface. <i>Journal of Physics Condensed Matter</i> , 2012 , 24, 4753	0<u>5</u>8	39
26	Topology evolution of graphene in chemical vapor deposition, a combined theoretical/experimental approach toward shape control of graphene domains. <i>Nanotechnology</i> , 2012 , 23, 115605	3.4	39
25	Flow-induced dynamics of carbon nanotubes. <i>Nanoscale</i> , 2011 , 3, 4383-8	7.7	11
24	Graphene buffered galvanic synthesis of graphenethetal hybrids. <i>Journal of Materials Chemistry</i> , 2011 , 21, 13241		21
23	Mechanical and thermal transport properties of graphene with defects. <i>Applied Physics Letters</i> , 2011 , 99, 041901	3.4	288
22	Mechanics of carbon nanotube networks: microstructural evolution and optimal design. <i>Soft Matter</i> , 2011 , 7, 10039	3.6	66
21	Nanoscale fluid-structure interaction: flow resistance and energy transfer between water and carbon nanotubes. <i>Physical Review E</i> , 2011 , 84, 046314	2.4	28
20	Mechanics of Microtubules from a Coarse-Grained Model. <i>BioNanoScience</i> , 2011 , 1, 173-182	3.4	7
19	Mechanics of coordinative crosslinks in graphene nanocomposites: a first-principles study. <i>Journal of Materials Chemistry</i> , 2011 , 21, 6707		39
18	The interlayer shear effect on graphene multilayer resonators. <i>Journal of the Mechanics and Physics of Solids</i> , 2011 , 59, 1613-1622	5	83
17	Step driven competitive epitaxial and self-limited growth of graphene on copper surface. <i>AIP Advances</i> , 2011 , 1, 032145	1.5	19
16	Strain engineering water transport in graphene nanochannels. <i>Physical Review E</i> , 2011 , 84, 056329	2.4	86
15	Viscous damping of nanobeam resonators: Humidity, thermal noise, and a paddling effect. <i>Journal of Applied Physics</i> , 2011 , 110, 034320	2.5	18

LIST OF PUBLICATIONS

14	Nanoconfinement controls stiffness, strength and mechanical toughness of beta-sheet crystals in silk. <i>Nature Materials</i> , 2010 , 9, 359-67	27	916
13	Alzheimer's abeta(1-40) amyloid fibrils feature size-dependent mechanical properties. <i>Biophysical Journal</i> , 2010 , 98, 2053-62	2.9	106
12	Engineering graphene by oxidation: a first-principles study. <i>Nanotechnology</i> , 2010 , 21, 045704	3.4	84
11	Strain effects on basal-plane hydrogenation of graphene: A first-principles study. <i>Applied Physics Letters</i> , 2010 , 96, 063103	3.4	43
10	Interface structure and mechanics between graphene and metal substrates: a first-principles study. Journal of Physics Condensed Matter, 2010 , 22, 485301	1.8	169
9	Mechanical energy transfer and dissipation in fibrous beta-sheet-rich proteins. <i>Physical Review E</i> , 2010 , 81, 061910	2.4	25
8	Geometry controls conformation of graphene sheets: membranes, ribbons, and scrolls. <i>ACS Nano</i> , 2010 , 4, 3869-76	16.7	203
7	Hierarchical graphene nanoribbon assemblies feature unique electronic and mechanical properties. <i>Nanotechnology</i> , 2009 , 20, 375704	3.4	23
6	Graphene Nano-Ribbons Under Tension. <i>Journal of Computational and Theoretical Nanoscience</i> , 2009 , 6, 625-628	0.3	80
5	Hierarchical nanostructures are crucial to mitigate ultrasmall thermal point loads. <i>Nano Letters</i> , 2009 , 9, 2065-72	11.5	29
4	Nanoengineering heat transfer performance at carbon nanotube interfaces. ACS Nano, 2009, 3, 2767-7	516.7	181
3	Strain controlled thermomutability of single-walled carbon nanotubes. <i>Nanotechnology</i> , 2009 , 20, 1857	03.4	115
2	Enhanced mechanical properties of prestressed multi-walled carbon nanotubes. <i>Small</i> , 2008 , 4, 733-7	11	24
1	Robustness of structural superlubricity beyond rigid models. <i>Friction</i> ,1	5.6	1