
Peili Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3751840/publications.pdf Version: 2024-02-01

<u> Ρειίι Ζηλνς</u>

#	Article	IF	CITATIONS
1	Effects of concentration, temperature, humidity, and nitrogen inert dilution on the gasoline vapor explosion. Journal of Hazardous Materials, 2017, 323, 593-601.	12.4	59
2	Explosions of gasoline–air mixture in the tunnels containing branch configuration. Journal of Loss Prevention in the Process Industries, 2013, 26, 1279-1284.	3.3	44
3	Large eddy simulation and experimental study on vented gasoline-air mixture explosions in a semi-confined obstructed pipe. Journal of Hazardous Materials, 2017, 339, 131-142.	12.4	40
4	Suppressions of gasoline-air mixture explosion by non-premixed nitrogen in a closed tunnel. Journal of Loss Prevention in the Process Industries, 2014, 31, 113-120.	3.3	28
5	Effects of concentration, temperature, ignition energy and relative humidity on the overpressure transients of fuel-air explosion in a medium-scale fuel tank. Fuel, 2020, 259, 116265.	6.4	25
6	Explosions of gasoline vapor/air mixture in closed vessels with different shapes and sizes. Journal of Loss Prevention in the Process Industries, 2019, 57, 327-334.	3.3	17
7	Flame regime estimations of gasoline explosion in a tube. Journal of Loss Prevention in the Process Industries, 2015, 33, 304-310.	3.3	13
8	Experiments of the secondary ignition of gasoline–air mixture in a confined tunnel. Journal of Thermal Analysis and Calorimetry, 2014, 118, 1773-1780.	3.6	12
9	Experiments of gasoline–air mixture explosion suppression by non-premixed nitrogen in a closed tunnel. Journal of Thermal Analysis and Calorimetry, 2015, 121, 885-893.	3.6	8
10	Experimental analysis of the flame speed, brightness and zone thickness of gasoline-air explosion in a closed tunnel. Journal of Loss Prevention in the Process Industries, 2018, 53, 129-135.	3.3	8
11	Study on Gasoline-Air Mixture Deflagration Flame with Different Equivalence Ratios in a Closed Vessel. Combustion Science and Technology, 2018, 190, 20-31.	2.3	6
12	Equivalent analysis of the explosion overpressure of gasoline vapor–air mixture by using isooctane equivalence ratio. Journal of Thermal Analysis and Calorimetry, 2019, 137, 1775-1781.	3.6	6
13	The secondary explosion phenomenon of gasoline-air mixture in a confined tunnel. IOP Conference Series: Earth and Environmental Science, 2017, 64, 012008.	0.3	4
14	Experimental Study on the Explosion of Gasoline-air Mixture in Reduced-scale Storage Tank. Open Petroleum Engineering Journal, 2016, 9, 150-158.	0.6	1
15	Flame Behavior of Gasoline-Air Explosion Suppression by Non-Premixed Nitrogen in a Closed Tube. Biotechnology, 2015, 14, 92-96.	0.1	1
16	Dynamic analysis of flame propagation velocity at the initial stage of gasoline-air explosion in a tube with an open end. Journal of Physics: Conference Series, 2021, 2012, 012006.	0.4	0