Mohammednoor K Altarawneh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3751626/publications.pdf

Version: 2024-02-01

219 papers

4,401 citations

147786 31 h-index 51 g-index

220 all docs 220 docs citations

times ranked

220

3870 citing authors

#	Article	IF	Citations
1	Molybdenum nitrides from structures to industrial applications. Reviews in Chemical Engineering, 2023, 39, 329-361.	4.4	7
2	Torrefaction of Densified Woody Biomass: The Effect of Pellet Size on Thermochemical and Thermophysical Characteristics. Bioenergy Research, 2022, 15, 544-558.	3.9	7
3	Thermal decomposition of perfluorinated carboxylic acids: Kinetic model and theoretical requirements for PFAS incineration. Chemosphere, 2022, 286, 131685.	8.2	48
4	Temperature-dependent profiles of dioxin-like toxicants from combustion of brominated flame retardants. Journal of Hazardous Materials, 2022, 422, 126879.	12.4	17
5	CO2 capture and ions removal through reaction with potassium hydroxide in desalination reject brine: Statistical optimization. Chemical Engineering and Processing: Process Intensification, 2022, 170, 108722.	3.6	13
6	Removal of Bromine from the non-metallic fraction in printed circuit board via its Co-pyrolysis with alumina. Waste Management, 2022, 137, 283-293.	7.4	31
7	Thermal decomposition of heptafluoropropylene-oxide-dimer acid (GenX). Chemosphere, 2022, 289, 133118.	8.2	8
8	Catalytic upgrading of the polymeric constituents in Covid-19 masks. Journal of Environmental Chemical Engineering, 2022, 10, 106978.	6.7	23
9	On the formation chemistry of brominated polycyclic aromatic hydrocarbons (BrPAHs). Chemosphere, 2022, 290, 133367.	8.2	5
10	Bromination mechanisms of aromatic pollutants: formation of Br2 and bromine transfer from metallic oxybromides. Environmental Science and Pollution Research, 2022, , 1.	5.3	2
11	Ceria-supported niobium oxide catalyst for low-temperature oxidation of 1,3-butadiene. Molecular Catalysis, 2022, 518, 112083.	2.0	1
12	Computational Insights in DNA Methylation: Catalytic and Mechanistic Elucidations for Forming 3-Methyl Cytosine. Journal of Chemistry, 2022, 2022, 1-11.	1.9	1
13	Selective Hydrogenation of 1,3-Butadiene over Ceria Catalyst: A Molecular Insight. Molecular Catalysis, 2022, 524, 112331.	2.0	3
14	Exploring the potential of hematite as a debromination agent for 2,4,6-tribromophenol. Chemical Engineering Journal Advances, 2022, 11, 100334.	5.2	10
15	Thermodynamic stability of niobium-doped ceria surfaces. Journal of Molecular Structure, 2022, 1265, 133416.	3.6	2
16	Probing the chemical reactivity of the B2O3 -I $(1\ 0\ 1)$ Surface: Interaction with H2O and H2S. Applied Surface Science, 2022, 599, 153999.	6.1	0
17	Kinetics of antigorite dehydroxylation for CO2 sequestration. Minerals Engineering, 2022, 184, 107630.	4.3	2
18	Thermal decomposition of ammonium nitrate on rust surface: Risk of low-temperature fire. Fire Safety Journal, 2021, 120, 103063.	3.1	9

2

#	Article	IF	CITATIONS
19	Flammability of sulfur powder - An extremely hazardous chemical. Fire Safety Journal, 2021, 120, 103088.	3.1	O
20	Combustion chemistry of COS and occurrence of intersystem crossing. Fuel, 2021, 283, 119257.	6.4	15
21	Toxicology and environmental chemistry of halogenated organic pollutants. Ecotoxicology and Environmental Safety, 2021, 207, 111573.	6.0	2
22	Review of Chemical Reactivity of Singlet Oxygen with Organic Fuels and Contaminants. Chemical Record, 2021, 21, 315-342.	5.8	59
23	A chemical kinetic model for the decomposition of perfluorinated sulfonic acids. Chemosphere, 2021, 263, 128256.	8.2	24
24	Atmospheric chemistry of oxazole: the mechanism and kinetic studies of the oxidation reaction initiated by OH radicals. New Journal of Chemistry, 2021, 45, 2237-2248.	2.8	15
25	Ceria-Based Catalysts for Selective Hydrogenation Reactions: A Critical Review. Catalysis Surveys From Asia, 2021, 25, 27-47.	2.6	19
26	A kinetic model for halogenation of the zinc content in franklinite. Applied Surface Science, 2021, 562, 150105.	6.1	13
27	Exploring reactions of amines-model compounds with NH2: In relevance to nitrogen conversion chemistry in biomass. Fuel, 2021, 291, 120076.	6.4	12
28	Effects of potassium hydroxide and aluminum oxide on the performance of a modified solvay process for <scp> CO ₂ </scp> capture: A comparative study. International Journal of Energy Research, 2021, 45, 13952-13964.	4.5	22
29	Controlling NOx emission from boilers using waste polyethylene as reburning fuel. Chemical Engineering Journal, 2021, 411, 128427.	12.7	16
30	Updated yields of nitrogenated species in flames of ammonia/benzene via introducing an aniline sub-mechanism. Combustion and Flame, 2021, 228, 433-442.	5.2	7
31	High temperature (up to 1200°C) thermal-mechanical stability of Si and Ni doped CrN framework coatings. Journal of Materials Research and Technology, 2021, 14, 2406-2419.	5.8	5
32	KOH-Based Modified Solvay Process for Removing Na Ions from High Salinity Reject Brine at High Temperatures. Sustainability, 2021, 13, 10200.	3.2	15
33	Mineralisation of atmospheric CO2 in hydromagnesite in ultramafic mine tailings – Insights from Mg isotopes. Geochimica Et Cosmochimica Acta, 2021, 309, 191-208.	3.9	10
34	Low-temperature oxidation of monobromobenzene: Bromine transformation and yields of phenolic species. Chemosphere, 2021, 280, 130621.	8.2	8
35	Very-few-layer graphene obtained from facile two-step shear exfoliation in aqueous solution. Chemical Engineering Science, 2021, 245, 116848.	3.8	10
36	Nanosystem's density functional theory study of the chlorine adsorption on the Fe(100) surface. Nanotechnology Reviews, 2021, 10, 719-727.	5.8	5

#	Article	IF	CITATIONS
37	An Insight into Geometries and Catalytic Applications of CeO2 from a DFT Outlook. Molecules, 2021, 26, 6485.	3.8	14
38	A closer look into the contribution of atmospheric gas-phase pathways in the formation of perfluorocarboxylic acids. Atmospheric Pollution Research, 2021, 12, 101255.	3.8	8
39	Leaching behavior of zinc and lead from electric arc furnace dust – Poly(vinyl) chloride residues after oxidative thermal treatment. Journal of Cleaner Production, 2021, 328, 129622.	9.3	15
40	Investigative properties of CeO ₂ doped with niobium: A combined characterization and DFT studies. Nanotechnology Reviews, 2021, 11, 191-203.	5.8	11
41	Formation of phenoxy-type Environmental Persistent Free Radicals (EPFRs) from dissociative adsorption of phenol on Cu/Fe and their partial oxides. Chemosphere, 2020, 240, 124921.	8.2	17
42	Influence of the variation in the Hubbard parameter ($\langle i \rangle U \langle i \rangle$) on activation energies of CeO $\langle sub \rangle 2 \langle sub \rangle$ -catalysed reactions. Canadian Journal of Physics, 2020, 98, 385-389.	1.1	7
43	Physico-chemical properties of CrMoN coatings - combined experimental and computational studies. Thin Solid Films, 2020, 693, 137671.	1.8	13
44	Burning properties of redox crystals of ammonium nitrate and saccharides. Combustion and Flame, 2020, 213, 132-139.	5.2	13
45	Analytical Procedure for Proximate Analysis of Algal Biomass: Case Study for <i>Spirulina platensis</i> and <i>Chlorella vulgaris</i> Energy & Ener	5.1	19
46	Adsorption and dissociation of the methanethiol (CH3SH) molecule on the Fe(100) surface. Surface and Interface Analysis, 2020, 52, 156-166.	1.8	5
47	Singlet-diradical character in large PAHs triggers spontaneous-ignition of coal. Combustion and Flame, 2020, 212, 279-281.	5.2	10
48	Interfacial and bulk properties of concentrated solutions of ammonium nitrate. Physical Chemistry Chemical Physics, 2020, 22, 27698-27712.	2.8	9
49	A computational study on the kinetics of pyrolysis of isopropyl propionate as a biodiesel model: DFT and ab initio investigation. Fuel, 2020, 281, 118798.	6.4	18
50	A kinetic model for evolution of H2 and CO over Zr-doped ceria. Molecular Catalysis, 2020, 498, 111256.	2.0	3
51	Computational mechanistic study of the unimolecular dissociation of ethyl hydroperoxide and its bimolecular reactions with atmospheric species. Scientific Reports, 2020, 10, 15025.	3.3	2
52	Formation of polybrominated dibenzofurans (PBDFs) and polybrominated diphenyl ethers (PBDEs) from oxidation of brominated flame retardants (BFRs). Journal of Hazardous Materials, 2020, 400, 123166.	12.4	14
53	Co-pyrolysis of polyethylene with products from thermal decomposition of brominated flame retardants. Chemosphere, 2020, 254, 126766.	8.2	8
54	Photodecomposition properties of brominated flame retardants (BFRs). Ecotoxicology and Environmental Safety, 2020, 192, 110272.	6.0	15

#	Article	IF	Citations
55	Computational Study of the Dissociation Reactions of Secondary Ozonide. Atmosphere, 2020, 11, 100.	2.3	4
56	Kinetics of Photo-Oxidation of Oxazole and its Substituents by Singlet Oxygen. Scientific Reports, 2020, 10, 3668.	3.3	7
57	Selective and sensitive visible-light-prompt photoelectrochemical sensor of Cu2+ based on CdS nanorods modified with Au and graphene quantum dots. Journal of Hazardous Materials, 2020, 391, 122248.	12.4	29
58	Products of incomplete combustion from biomass reburning. Fuel, 2020, 274, 117805.	6.4	16
59	Importance of Intersystem Crossing on Flammability Properties of Carbon Disulphide (CS2). , 2020, , 77-88.		0
60	Effect of Fe2O3 nanoparticles on combustion of coal surrogate (Anisole): Enhanced ignition and formation of persistent free radicals. Proceedings of the Combustion Institute, 2019, 37, 3091-3099.	3.9	18
61	Biocompatibility study of multi-layered hydroxyapatite coatings synthesized on Ti-6Al-4V alloys by RF magnetron sputtering for prosthetic-orthopaedic implant applications. Applied Surface Science, 2019, 463, 292-299.	6.1	42
62	Formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) from oxidation of 4,4′-dichlorobiphenyl (4,4′-DCB). Proceedings of the Combustion Institute, 2019, 37, 1075-1082.	3.9	12
63	Probing the Reactivity of Singlet Oxygen with Cyclic Monoterpenes. ACS Omega, 2019, 4, 14040-14048.	3.5	7
64	Mg isotope fractionation during continental weathering and low temperature carbonation of ultramafic rocks. Geochimica Et Cosmochimica Acta, 2019, 262, 60-77.	3.9	24
65	Synthesis and Characterization of \hat{l}^2 -Diketimine Schiff Base Complexes with Ni(II) and Zn(II) lons: Experimental and Theoretical Study. Journal of Chemistry, 2019, 2019, 1-9.	1.9	1
66	Reaction of Hydroperoxy Radicals with Primary C _{1–5} Alcohols: A Profound Effect on Ignition Delay Times. Energy & En	5.1	16
67	Destruction of dioxin and furan pollutants via electrophilic attack of singlet oxygen. Ecotoxicology and Environmental Safety, 2019, 184, 109605.	6.0	15
68	A computational study of the ozonolysis of sabinene. Theoretical Chemistry Accounts, 2019, 138, 1.	1.4	11
69	Reaction of phenol with singlet oxygen. Physical Chemistry Chemical Physics, 2019, 21, 171-183.	2.8	75
70	A first-principles study of the electronic, structural, and optical properties of CrN and Mo:CrN clusters. Ceramics International, 2019, 45, 17094-17102.	4.8	4
71	The mechanism of electrophilic addition of singlet oxygen to pyrrolic ring. Theoretical Chemistry Accounts, 2019, 138, 1.	1.4	8
72	Thermal decomposition of model compound of algal biomass. International Journal of Chemical Kinetics, 2019, 51, 696-710.	1.6	7

#	Article	IF	Citations
73	Hydrostatic bath synthesis of conductive polypyrrole/reduced graphene oxide aerogel as compression sensor. European Polymer Journal, 2019, 117, 227-235.	5.4	18
74	Catalytic de-chlorination of products from PVC degradation by magnetite (Fe3O4). Applied Surface Science, 2019, 480, 792-801.	6.1	15
75	Nanorose-like ZnCo2O4 coatings synthesized via sol–gel route: morphology, grain growth and DFT simulations. Journal of Sol-Gel Science and Technology, 2019, 90, 450-464.	2.4	3
76	Studies of annealing impact on the morphological, opto-dielectric and mechanical behaviors of molybdenum-doped CrN coatings. Thin Solid Films, 2019, 677, 119-129.	1.8	5
77	A Thermochemical Parameters and Theoretical Study of the Chlorinated Compounds of Thiophene. Heteroatom Chemistry, 2019, 2019, 1-6.	0.7	0
78	A holistic analysis of surface, chemical bonding states and mechanical properties of sol-gel synthesized CoZn-oxide coatings complemented by finite element modeling. Ceramics International, 2019, 45, 10882-10898.	4.8	5
79	Unimolecular Decomposition Reactions of Propylamine and Protonated Propylamine. ACS Omega, 2019, 4, 3306-3313.	3.5	15
80	Combustion chemistry of carbon disulphide (CS2). Combustion and Flame, 2019, 210, 413-425.	5.2	16
81	Co-oxidation of methane (CH4) and carbon disulfide (CS2). Proceedings of the Combustion Institute, 2019, 37, 677-685.	3.9	8
82	Thermodynamic Analysis on the Oxidative Pyrolytic Treatment of Electric Arc Furnace Dust–TBBA Blends. Oxidation of Metals, 2019, 91, 561-588.	2.1	7
83	The gasâ€phase ozonolysis reaction of methylbutenol: A mechanistic study. International Journal of Quantum Chemistry, 2019, 119, e25888.	2.0	5
84	Interaction of NH2 radical with alkylbenzenes. Combustion and Flame, 2019, 200, 85-96.	5.2	9
85	Thermal decomposition of brominated flame retardants (BFRs): Products and mechanisms. Progress in Energy and Combustion Science, 2019, 70, 212-259.	31.2	168
86	Hydration and Secondary Ozonide of the Criegee Intermediate of Sabinene. ACS Omega, 2018, 3, 2417-2427.	3.5	10
87	Pyrolysis kinetics of tetrabromobisphenol a (TBBPA) and electric arc furnace dust mixtures. Thermochimica Acta, 2018, 660, 61-69.	2.7	22
88	Thermo-mechanical properties of cubic lanthanide oxides. Thin Solid Films, 2018, 653, 37-48.	1.8	10
89	Understanding the impacts of Al+3-substitutions on the enhancement of magnetic, dielectric and electrical behaviors of ceramic processed nickel-zinc mixed ferrites: FTIR assisted studies. Materials Research Bulletin, 2018, 97, 444-451.	5.2	22
90	Recycling of zincite (ZnO) <i>via</i> uptake of hydrogen halides. Physical Chemistry Chemical Physics, 2018, 20, 1221-1230.	2.8	26

#	Article	IF	Citations
91	The ozonolysis of cyclic monoterpenes: a computational review. Canadian Journal of Chemistry, 2018, 96, 281-292.	1.1	13
92	Thermo-mechanical properties of cubic titanium nitride. Molecular Simulation, 2018, 44, 415-423.	2.0	11
93	Thermal Analysis on the Pyrolysis of Tetrabromobisphenol A and Electric Arc Furnace Dust Mixtures. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 45-60.	2.1	17
94	Thermochemical parameters of chlorinated compounds of pyridine. Computational and Theoretical Chemistry, 2018, 1146, 21-26.	2.5	1
95	Catalytic de-halogenation of alkyl halides by copper surfaces. Journal of Environmental Chemical Engineering, 2018, 6, 7214-7224.	6.7	5
96	Development of Organo-Dispersible Graphene Oxide via Pseudo-Surface Modification for Thermally Conductive Green Polymer Composites. ACS Omega, 2018, 3, 18124-18131.	3.5	8
97	Catalytic Hydrogenation of $\langle i \rangle p \langle i \rangle$ -Chloronitrobenzene to $\langle i \rangle p \langle i \rangle$ -Chloroaniline Mediated by \hat{I}^3 -Mo $\langle sub \rangle 2 \langle sub \rangle N$. ACS Omega, 2018, 3, 14380-14391.	3.5	15
98	Role of Singlet Oxygen in Combustion Initiation of Aromatic Fuels. Energy &	5.1	14
99	Geometries, electronic properties and stability of molybdenum and tungsten nitrides low-index surfaces. Materials Research Express, 2018, 5, 126402.	1.6	8
100	Hydrodesulfurization of Thiophene over Î ³ -Mo2N catalyst. Molecular Catalysis, 2018, 459, 21-30.	2.0	30
101	Modification of Carbon-Based Electroactive Materials for Supercapacitor Applications., 2018,, 393-413.		3
102	Influence of DC magnetron sputtering reaction gas on structural and optical characteristics of Ce-oxide thin films. Ceramics International, 2018, 44, 16450-16458.	4.8	17
103	Structures and thermodynamic stability of cobalt molybdenum oxide (CoMoO4-II). Surface Science, 2018, 677, 52-59.	1.9	9
104	Performance stability of solid-state polypyrrole-reduced graphene oxide-modified carbon bundle fiber for supercapacitor application. Electrochimica Acta, 2018, 285, 9-15.	5.2	25
105	Structural, electronic and thermodynamic properties of bulk and surfaces of terbium dioxide (TbO ₂). Materials Research Express, 2018, 5, 085901.	1.6	9
106	Introducing Quantum Chemistry in Chemical Engineering Curriculum. Journal of Chemical Education, 2018, 95, 1562-1571.	2.3	6
107	Bromine fixing ability of electric arc furnace dust during thermal degradation of tetrabromobisphenol: Experimental and thermodynamic analysis study. Journal of Analytical and Applied Pyrolysis, 2018, 134, 503-509.	5.5	14
108	Structural and optical characteristics of pre- and post-annealed sol-gel derived CoCu-oxide coatings. Journal of Alloys and Compounds, 2017, 701, 222-235.	5.5	12

#	Article	IF	Citations
109	Mechanisms governing selective hydrogenation of acetylene over \hat{l}^3 -Mo ₂ N surfaces. Catalysis Science and Technology, 2017, 7, 943-960.	4.1	25
110	Hydrogen Abstraction from Hydrocarbons by NH ₂ . Journal of Physical Chemistry A, 2017, 121, 2221-2231.	2.5	33
111	Reactions of products from thermal degradation of PVC with nanoclusters of \hat{l}_{\pm} -Fe 2 O 3 (hematite). Chemical Engineering Journal, 2017, 323, 396-405.	12.7	24
112	Reaction of Aniline with Singlet Oxygen (O ₂ ¹ î" _g). Journal of Physical Chemistry A, 2017, 121, 3199-3206.	2.5	38
113	Functionalized graphene oxide-reinforced electrospun carbon nanofibers as ultrathin supercapacitor electrode. Journal of Energy Chemistry, 2017, 26, 790-798.	12.9	33
114	Electrospun graphene nanoplatelets-reinforced carbon nanofibers as potential supercapacitor electrode. Materials Letters, 2017, 199, 200-203.	2.6	16
115	Experimental and predicted mechanical properties of Cr _{1â^'x} Al _x N thin films, at high temperatures, incorporating in situ synchrotron radiation X-ray diffraction and computational modelling. RSC Advances, 2017, 7, 22094-22104.	3.6	16
116	Structure, Stability, and (Non)Reactivity of the Low-Index Surfaces of Crystalline B ₂ O ₃ â€"I. Journal of Physical Chemistry C, 2017, 121, 11346-11354.	3.1	10
117	Understanding the adsorptive interactions of arsenate–iron nanoparticles with curved fullerene-like sheets in activated carbon using a quantum mechanics/molecular mechanics computational approach. Physical Chemistry Chemical Physics, 2017, 19, 14262-14268.	2.8	4
118	Study of structural properties and defects of Ni-doped SnO2nanorods as ethanol gas sensors. Nanotechnology, 2017, 28, 265702.	2.6	23
119	Electrodeposition of Polypyrrole and Reduced Graphene Oxide onto Carbon Bundle Fibre as Electrode for Supercapacitor. Nanoscale Research Letters, 2017, 12, 246.	5 . 7	79
120	Investigation of the post-annealing electromagnetic response of Cu–Co oxide coatings via optical measurement and computational modelling. RSC Advances, 2017, 7, 16826-16835.	3.6	27
121	Electronic properties and stability phase diagrams for cubic BN surfaces. Molecular Simulation, 2017, 43, 267-275.	2.0	4
122	Atmospheric oxidation of carbon disulfide (CS2). Chemical Physics Letters, 2017, 669, 43-48.	2.6	16
123	Formation of PCDDs and PCDFs in the torrefaction of biomass with different chemical composition. Journal of Analytical and Applied Pyrolysis, 2017, 123, 126-133.	5.5	21
124	Green synthesis of mesoporous anatase TiO ₂ nanoparticles and their photocatalytic activities. RSC Advances, 2017, 7, 48083-48094.	3.6	118
125	DFTÂ+ U and ab initio atomistic thermodynamics approache for mixed transitional metallic oxides: A case study of CoCu 2 O 3 surface terminations. Materials Chemistry and Physics, 2017, 201, 241-250.	4.0	13
126	Enhanced ignition of biomass in presence of NOx. Fire Safety Journal, 2017, 91, 235-242.	3.1	4

#	Article	IF	CITATIONS
127	Flammability of CS2 and other reduced sulfur species. Fire Safety Journal, 2017, 91, 226-234.	3.1	13
128	Colorimetric and visual dopamine assay based on the use of gold nanorods. Mikrochimica Acta, 2017, 184, 4125-4132.	5.0	17
129	Atmospheric emission of NO from mining explosives: A critical review. Atmospheric Environment, 2017, 167, 81-96.	4.1	38
130	Decomposition of selected chlorinated volatile organic compounds by ceria (CeO ₂). Catalysis Science and Technology, 2017, 7, 3902-3919.	4.1	64
131	Formation of environmentally-persistent free radicals (EPFR) on α-Al ₂ O ₃ clusters. RSC Advances, 2017, 7, 52672-52683.	3.6	11
132	Thermal Reduction of NO _{<i>x</i>} with Recycled Plastics. Environmental Science & Environment	10.0	15
133	Phenol dissociation on pristine and defective graphene. Surface Science, 2017, 657, 10-14.	1.9	4
134	Understanding the shrinkage of optical absorption edges of nanostructured Cd-Zn sulphide films for photothermal applications. Applied Surface Science, 2017, 392, 854-862.	6.1	33
135	Oxidation of 4-bromo-4'-chlorobiphenyl, model species for forming mixed halogenated aromatic compounds. International Journal of Environment and Pollution, 2017, 61, 243.	0.2	4
136	Chemical bonding states and solar selective characteristics of unbalanced magnetron sputtered Ti _x M _{1â^'xâ^'y} N _y films. RSC Advances, 2016, 6, 36373-36383.	3.6	34
137	Conversion of NO into N ₂ over γ-Mo ₂ N. Journal of Physical Chemistry C, 2016, 120, 22270-22280.	3.1	17
138	Formation of Environmentally Persistent Free Radicals on α-Al ₂ O ₃ . Environmental Science & Environmental	10.0	48
139	Large-eddy simulation of methanol pool fires using an accelerated stochastic fields method. Combustion and Flame, 2016, 173, 89-98.	5.2	18
140	New Mechanistic Insights: Why Do Plants Produce Isoprene?. ACS Omega, 2016, 1, 220-225.	3.5	24
141	Thermal Recycling of Brominated Flame Retardants with Fe ₂ O ₃ . Journal of Physical Chemistry A, 2016, 120, 6039-6047.	2.5	50
142	Structural Thermal Stability of Graphene Oxide-Doped Copper–Cobalt Oxide Coatings as a Solar Selective Surface. Journal of Materials Science and Technology, 2016, 32, 1179-1191.	10.7	24
143	Thermo-elastic and optical properties of molybdenum nitride. Canadian Journal of Physics, 2016, 94, 902-912.	1.1	11
144	Inhibition and Promotion of Pyrolysis by Hydrogen Sulfide (H ₂ S) and Sulfanyl Radical (SH). Journal of Physical Chemistry A, 2016, 120, 8941-8948.	2.5	22

#	Article	IF	CITATIONS
145	NEXAFS N K -edge study of the bonding structure on Al/Si doped sputtered CrN coatings. Journal of Alloys and Compounds, 2016, 661, 268-273.	5.5	13
146	Oxidation of Polyethylene under Corrosive NO _{<i>x</i>} Atmosphere. Journal of Physical Chemistry C, 2016, 120, 3766-3775.	3.1	19
147	Effects of annealing temperatures on the morphological, mechanical, surface chemical bonding, and solar selectivity properties of sputtered TiAlSiN thin films. Journal of Alloys and Compounds, 2016, 671, 254-266.	5.5	36
148	Double-sided F and Cl adsorptions on graphene at various atomic ratios: Geometric, orientation and electronic structure aspects. Applied Surface Science, 2016, 373, 65-72.	6.1	13
149	Photodecomposition of bromophenols. Chemosphere, 2016, 150, 749-758.	8.2	18
150	Decomposition of ethylamine through bimolecular reactions. Combustion and Flame, 2016, 163, 532-539.	5.2	23
151	Predicting high temperature mechanical properties of CrN and CrAlN coatings from in-situ synchrotron radiation X-ray diffraction. Thin Solid Films, 2016, 599, 98-103.	1.8	17
152	Interaction of Oxygen with \hat{l}_{\pm} -Rhombohedral Boron (001) Surface. Journal of Physical Chemistry C, 2016, 120, 5968-5979.	3.1	3
153	Trends of elemental adsorption on graphene. Canadian Journal of Physics, 2016, 94, 437-447.	1.1	10
154	Formation of PCDD/Fs in Oxidation of 2-Chlorophenol on Neat Silica Surface. Environmental Science & En	10.0	39
155	Thermodynamic Parameters Including Acid Dissociation Constants for Bromochlorophenols (BCPs). Journal of Chemical & Description (BCPs) and Journal of Chemical & Description (BCPs).	1.9	2
156	Geometrical and orientational investigations on the electronic structure of graphene with adsorbed aluminium or silicon. Materials and Design, 2016, 89, 27-35.	7.0	6
157	Computational study for the second-stage cracking of the pyrolysis of ethylamine: Decomposition of methanimine, ethenamine, and ethanimine. Computational and Theoretical Chemistry, 2016, 1075, 9-17.	2.5	12
158	Structures, electronic properties and stability phase diagrams for copper(<scp>i</scp> / <scp>ii</scp>) bromide surfaces. Physical Chemistry Chemical Physics, 2015, 17, 9341-9351.	2.8	14
159	Formation and Chlorination of Carbazole, Phenoxazine, and Phenazine. Environmental Science & Emp; Technology, 2015, 49, 2215-2221.	10.0	65
160	Formation of dibenzofuran, dibenzo-p-dioxin and their hydroxylated derivatives from catechol. Physical Chemistry Chemical Physics, 2015, 17, 1822-1830.	2.8	37
161	Oxidation of crystalline polyethylene. Combustion and Flame, 2015, 162, 3681-3690.	5.2	29
162	Towards a better understanding of the geometrical and orientational aspects of the electronic structure of halogens (F–I) adsorption on graphene. Applied Surface Science, 2015, 356, 370-377.	6.1	9

#	Article	IF	CITATIONS
163	<i>S</i> -Nitrosation of Aminothiones. Journal of Organic Chemistry, 2015, 80, 6951-6958.	3.2	1
164	Formation of polybrominated dibenzofurans from polybrominated biphenyls. Chemosphere, 2015, 119, 1048-1053.	8.2	31
165	Formation of chlorobenzenes by oxidative thermal decomposition of 1,3-dichloropropene. Combustion and Flame, 2015, 162, 2414-2421.	5.2	12
166	Decomposition of S-nitroso species. RSC Advances, 2015, 5, 29914-29923.	3.6	5
167	Formation of mixed halogenated dibenzo-p-dioxins and dibenzofurans (PXDD/Fs). Chemosphere, 2015, 137, 149-156.	8.2	5
168	Reactions of HO2 with n-propylbenzene and its phenylpropyl radicals. Combustion and Flame, 2015, 162, 1406-1416.	5.2	13
169	Thermal Decomposition of 1,2-Bis(2,4,6-tribromophenoxy)ethane (BTBPE), a Novel Brominated Flame Retardant. Environmental Science & Environmental Scien	10.0	51
170	Thermodynamic stability and structures of iron chloride surfaces: A first-principles investigation. Journal of Chemical Physics, 2014, 141, 054709.	3.0	9
171	High level ab initio, DFT, and RRKM calculations for the unimolecular decomposition reaction of ethylamine. Journal of Computational Science, 2014, 5, 568-575.	2.9	16
172	The structures and thermodynamic stability of copper(<scp>ii</scp>) chloride surfaces. Physical Chemistry Chemical Physics, 2014, 16, 24209-24215.	2.8	13
173	Theoretical insight into chlorine adsorption on the Fe(100) surface. Physical Chemistry Chemical Physics, 2014, 16, 8575-8581.	2.8	20
174	Dehydrohalogenation of ethyl halides. Tetrahedron Letters, 2014, 55, 4860-4868.	1.4	36
175	Mechanisms for the formation of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) from chlorinated toluenes. Reaction Kinetics, Mechanisms and Catalysis, 2014, 112, 321-333.	1.7	1
176	Mechanism of Thermal Decomposition of Tetrabromobisphenol A (TBBA). Journal of Physical Chemistry A, 2014, 118, 9338-9346.	2.5	61
177	Mechanisms of transformation of polychlorinated diphenyl ethers into polychlorinated dibenzo-p-dioxins and dibenzofurans. Chemosphere, 2014, 114, 129-135.	8.2	17
178	Quantum Chemical Study on Formation of PCDT/TA from 2-Chlorothiophenol Precursor. Environmental Science & Environmental Scienc	10.0	21
179	A Mechanistic and Kinetic Study on the Formation of PBDD/Fs from PBDEs. Environmental Science & Environmental & Environmental & Environmental & Environmental & Environmental	10.0	82
180	Theoretical study on the unimolecular decomposition of proline. Computational and Theoretical Chemistry, 2013, 1018, 45-49.	2.5	9

#	Article	IF	Citations
181	Theoretical investigation into the low-temperature oxidation of ethylbenzene. Proceedings of the Combustion Institute, 2013, 34, 315-323.	3.9	16
182	Formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/F) by precursor pathways in oxidation of pesticide alpha-cypermethrin. Proceedings of the Combustion Institute, 2013, 34, 3499-3507.	3.9	7
183	Theoretical study on thermochemical parameters and pKa values for fluorinated isomers of toluene. Computational and Theoretical Chemistry, 2013, 1011, 21-29.	2.5	6
184	Rate constants for reactions of ethylbenzene with hydroperoxyl radical. Combustion and Flame, 2013, 160, 9-16.	5.2	30
185	Theoretical study on thermochemical parameters and IR spectra of chlorinated isomers of nitrobenzene. Canadian Journal of Chemistry, 2013, 91, 999-1008.	1.1	4
186	Density functional theory periodic slab calculations of adsorption and dissociation of $H \cdot sub \cdot 2 \cdot /sub \cdot O$ on the $Cu \cdot sub \cdot 2 \cdot /sub \cdot O(110)$: CuO surface. Canadian Journal of Physics, 2013, 91, 1101-1106.	1.1	10
187	Thermochemical Parameters and p <i>K</i> _a Values for Chlorinated Congeners of Thiophenol. Journal of Chemical & Engineering Data, 2012, 57, 1834-1842.	1.9	14
188	A Mechanistic and Kinetic Study on the Decomposition of Morpholine. Journal of Physical Chemistry A, 2012, 116, 7703-7711.	2.5	12
189	Theoretical study of thermochemical and structural parameters of chlorinated isomers of aniline. Computational and Theoretical Chemistry, 2012, 985, 30-35.	2.5	15
190	Oxidation of dibenzo-p-dioxin: Formation of initial products, 2-methylbenzofuran and 3-hydro-2-methylenebenzofuran. Combustion and Flame, 2012, 159, 3056-3065.	5.2	7
191	Electronic Structure of the CuCl ₂ (100) Surface: A DFT First-Principle Study. Journal of Nanomaterials, 2012, 2012, 1-7.	2.7	5
192	Theoretical study on the reaction of the phenoxy radical with O ₂ , OH, and NO ₂ . International Journal of Quantum Chemistry, 2012, 112, 848-857.	2.0	6
193	A theoretical study on the bimolecular reactions encountered in the pyrolysis of acetamide. Journal of Physical Organic Chemistry, 2012, 25, 431-436.	1.9	5
194	A theoretical study on the pyrolysis of perfluorobutanoic acid as a model compound for perfluoroalkyl acids. Tetrahedron Letters, 2012, 53, 4070-4073.	1.4	21
195	Theoretical Investigation into Competing Unimolecular Reactions Encountered in the Pyrolysis of Acetamide. Journal of Physical Chemistry A, 2011, 115, 14092-14099.	2.5	10
196	Theoretical derivation for reaction rate constants of H abstraction from thiophenol by the H/O radical pool. Computational and Theoretical Chemistry, 2011 , 970 , $1-5$.	2.5	8
197	Theoretical study on the reaction of hydrogen atoms with aniline. Theoretical Chemistry Accounts, 2011, 129, 823-832.	1.4	7
198	Rate constants for hydrogen abstraction reactions by the hydroperoxyl radical from methanol, ethenol, acetaldehyde, toluene, and phenol. Journal of Computational Chemistry, 2011, 32, 1725-1733.	3.3	43

#	Article	IF	Citations
199	Theoretical study on the unimolecular decomposition of thiophenol. Journal of Computational Chemistry, 2011, 32, 2708-2715.	3.3	7
200	Theoretical study on thermochemical parameters of chlorinated isomers of acetophenone. Computational and Theoretical Chemistry, 2011, 966, 38-43.	2.5	8
201	Formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) in oxidation of captan pesticide. Proceedings of the Combustion Institute, 2011, 33, 701-708.	3.9	24
202	A DFT study on the self-coupling reactions of the three isomeric semiquinone radicals. Computational and Theoretical Chemistry, 2010, 958, 106-115.	1.5	9
203	Adsorption of 2-chlorophenol on Cu2O(111)–CuCUS: A first-principles density functional study. Applied Surface Science, 2010, 256, 4764-4770.	6.1	8
204	Theoretical study of reactions of HO2 in low-temperature oxidation of benzene. Combustion and Flame, 2010, 157, 1325-1330.	5.2	17
205	Theoretical Study of Unimolecular Decomposition of Catechol. Journal of Physical Chemistry A, 2010, 114, 1060-1067.	2.5	44
206	Theoretical Study of the Ammoniaâ^'Hypochlorous Acid Reaction Mechanism. Journal of Physical Chemistry A, 2010, 114, 2597-2606.	2.5	39
207	Theoretical Study on the Thermodynamic Properties and Self-Decomposition of Methylbenzenediol Isomers. Journal of Physical Chemistry A, 2010, 114, 11751-11760.	2.5	4
208	Thermochemical Properties and Decomposition Pathways of Three Isomeric Semiquinone Radicals. Journal of Physical Chemistry A, 2010, 114, 1098-1108.	2.5	36
209	A first-principles density functional study of chlorophenol adsorption on Cu2O(110):CuO. Journal of Chemical Physics, 2009, 130, 184505.	3.0	30
210	Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Progress in Energy and Combustion Science, 2009, 35, 245-274.	31.2	401
211	Pyrolysis of permethrin and formation of precursors of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) under non-oxidative conditions. Chemosphere, 2009, 74, 1435-1443.	8.2	32
212	Adsorption of chlorophenol on the Cu(111) surface: A first-principles density functional theory study. Applied Surface Science, 2008, 254, 4218-4224.	6.1	27
213	2-Chlorophenol adsorption on Cu(100): First-principles density functional study. Surface Science, 2008, 602, 1554-1562.	1.9	14
214	Computational Study of the Oxidation and Decomposition of Dibenzofuran under Atmospheric Conditions. Journal of Physical Chemistry A, 2008, 112, 6960-6967.	2.5	30
215	Quantum Chemical and Kinetic Study of Formation of 2-Chlorophenoxy Radical from 2-Chlorophenol:  Unimolecular Decomposition and Bimolecular Reactions with H, OH, Cl, and O ₂ . Journal of Physical Chemistry A, 2008, 112, 3680-3692.	2.5	34
216	Catalytic Effect of CuO and Other Transition Metal Oxides in Formation of Dioxins:Â Theoretical Investigation of Reaction Between 2,4,5-Trichlorophenol and CuO. Environmental Science & Eamp; Technology, 2007, 41, 5708-5715.	10.0	36

MOHAMMEDNOOR K

#	Article	IF	CITATIONS
217	Quantum Chemical Investigation of Formation of Polychlorodibenzo-p-Dioxins and Dibenzofurans from Oxidation and Pyrolysis of 2-Chlorophenol. Journal of Physical Chemistry A, 2007, 111, 2563-2573.	2.5	73
218	Theoretical Study of Reaction Pathways of Dibenzofuran and Dibenzo- $\langle i \rangle p \langle i \rangle$ -Dioxin under Reducing Conditions. Journal of Physical Chemistry A, 2007, 111, 7133-7140.	2.5	30
219	Quantum Chemical Study of Low Temperature Oxidation Mechanism of Dibenzofuran. Journal of Physical Chemistry A, 2006, 110, 13560-13567.	2.5	29