We Moerner Or William E Moerner

List of Publications by Year in Descending Order

Source:

https://exaly.com/author-pdf/3750605/we-moerner-or-william-e-moerner-publications-by-year.pdf **Version:** 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

161 29,084 360 83 h-index g-index citations papers 8.6 32,838 451 7.4 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
360	A bottom-up perspective on photodynamics and photoprotection in light-harvesting complexes using anti-Brownian trapping <i>Journal of Chemical Physics</i> , 2022 , 156, 070901	3.9	2
359	Multi-color super-resolution imaging to study human coronavirus RNA during cellular infection <i>Cell Reports Methods</i> , 2022 , 100170		2
358	Autobiography of W. E. (William Esco) Moerner <i>Journal of Physical Chemistry B</i> , 2022 , 126, 1159	3.4	
357	ATP-responsive biomolecular condensates tune bacterial kinase signaling <i>Science Advances</i> , 2022 , 8, eabm6570	14.3	3
356	Fast and parallel nanoscale 3D tracking of heterogeneous mammalian chromatin dynamics <i>Molecular Biology of the Cell</i> , 2022 , mbcE21100514	3.5	1
355	Ratiometric Sensing of Redox Environments Inside Individual Carboxysomes Trapped in Solution Journal of Physical Chemistry Letters, 2022 , 4455-4462	6.4	1
354	Cryogenic Super-Resolution Fluorescence and Electron Microscopy Correlated at the Nanoscale. <i>Annual Review of Physical Chemistry</i> , 2021 , 72, 253-278	15.7	10
353	Genome-wide CRISPR screens reveal a specific ligand for the glycan-binding immune checkpoint receptor Siglec-7. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	27
352	A localized adaptor protein performs distinct functions at the cell poles. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	1
351	Cryogenic single-molecule fluorescence annotations for electron tomography reveal in situ organization of key proteins in. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 13937-13944	11.5	37
350	Accurate and rapid background estimation in single-molecule localization microscopy using the deep neural network BGnet. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 60-67	11.5	24
349	Selective sequestration of signalling proteins in a membraneless organelle reinforces the spatial regulation of asymmetry in Caulobacter crescentus. <i>Nature Microbiology</i> , 2020 , 5, 418-429	26.6	37
348	Novel fibrillar structure in the inversin compartment of primary cilia revealed by 3D single-molecule superresolution microscopy. <i>Molecular Biology of the Cell</i> , 2020 , 31, 619-639	3.5	14
347	Cryogenic Correlative Single-Particle Photoluminescence Spectroscopy and Electron Tomography for Investigation of Nanomaterials. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 15642-15648	16.4	5
346	Deep learning in single-molecule microscopy: fundamentals, caveats, and recent developments [Invited]. <i>Biomedical Optics Express</i> , 2020 , 11, 1633-1661	3.5	32
345	Addressing systematic errors in axial distance measurements in single-emitter localization microscopy. <i>Optics Express</i> , 2020 , 28, 18616-18632	3.3	5
344	Metabolic precision labeling enables selective probing of O-linked -acetylgalactosamine glycosylation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117. 25293-25301	11.5	24

(2018-2020)

343	Opposing Effects of Cohesin and Transcription on CTCF Organization Revealed by Super-resolution Imaging. <i>Molecular Cell</i> , 2020 , 80, 699-711.e7	17.6	16
342	Super-resolution Microscopy with Single Molecules in Biology and Beyond-Essentials, Current Trends, and Future Challenges. <i>Journal of the American Chemical Society</i> , 2020 , 142, 17828-17844	16.4	45
341	Cryogenic Correlative Single-Particle Photoluminescence Spectroscopy and Electron Tomography for Investigation of Nanomaterials. <i>Angewandte Chemie</i> , 2020 , 132, 15772-15778	3.6	О
340	T-Plastin reinforces membrane protrusions to bridge matrix gaps during cell migration. <i>Nature Communications</i> , 2020 , 11, 4818	17.4	7
339	Interferometric Scattering Enables Fluorescence-Free Electrokinetic Trapping of Single Nanoparticles in Free Solution. <i>Nano Letters</i> , 2019 , 19, 4112-4117	11.5	13
338	Topologically-guided continuous protein crystallization controls bacterial surface layer self-assembly. <i>Nature Communications</i> , 2019 , 10, 2731	17.4	18
337	Quantitative Super-Resolution Microscopy of the Mammalian Glycocalyx. <i>Developmental Cell</i> , 2019 , 50, 57-72.e6	10.2	45
336	Single-molecule trapping and spectroscopy reveals photophysical heterogeneity of phycobilisomes quenched by Orange Carotenoid Protein. <i>Nature Communications</i> , 2019 , 10, 1172	17.4	28
335	Motional dynamics of single Patched1 molecules in cilia are controlled by Hedgehog and cholesterol. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 5550-5557	11.5	24
334	Asymmetric division yields progeny cells with distinct modes of regulating cell cycle-dependent chromosome methylation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 15661-15670	11.5	10
333	Accurate phase retrieval of complex 3D point spread functions with deep residual neural networks. <i>Applied Physics Letters</i> , 2019 , 115, 251106	3.4	14
332	Revealing Nanoscale Morphology of the Primary Cilium Using Super-Resolution Fluorescence Microscopy. <i>Biophysical Journal</i> , 2019 , 116, 319-329	2.9	13
331	Spatial organization and dynamics of RNase E and ribosomes in. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E3712-E3721	11.5	46
330	Single-molecule diffusometry reveals the nucleotide-dependent oligomerization pathways of Nicotiana tabacum Rubisco activase. <i>Journal of Chemical Physics</i> , 2018 , 148, 123319	3.9	17
329	3D single-molecule super-resolution microscopy with a tilted light sheet. <i>Nature Communications</i> , 2018 , 9, 123	17.4	96
328	Light sheet approaches for improved precision in 3D localization-based super-resolution imaging in mammalian cells [Invited]. <i>Optics Express</i> , 2018 , 26, 13122-13147	3.3	30
327	Resolving Mixtures in Solution by Single-Molecule Rotational Diffusivity. <i>Nano Letters</i> , 2018 , 18, 5279-52	2 8 17.5	8
326	Tilted Light Sheet Microscopy with 3D Point Spread Functions for Single-Molecule Super-Resolution Imaging in Mammalian Cells. <i>Proceedings of SPIE</i> , 2018 , 10500,	1.7	1

325	Identification of PAmKate as a Red Photoactivatable Fluorescent Protein for Cryogenic Super-Resolution Imaging. <i>Journal of the American Chemical Society</i> , 2018 , 140, 12310-12313	16.4	25
324	Three-Dimensional Localization of Single Molecules for Super-Resolution Imaging and Single-Particle Tracking. <i>Chemical Reviews</i> , 2017 , 117, 7244-7275	68.1	254
323	Super-Resolution Microscopy and Single-Protein Tracking in Live Bacteria Using a Genetically Encoded, Photostable Fluoromodule. <i>Current Protocols in Cell Biology</i> , 2017 , 75, 4.32.1-4.32.22	2.3	1
322	Direct single-molecule measurements of phycocyanobilin photophysics in monomeric C-phycocyanin. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 9779-9784	11.5	25
321	Single-Molecule Imaging of Wnt3A Protein Diffusion on Living Cell Membranes. <i>Biophysical Journal</i> , 2017 , 113, 2762-2767	2.9	5
320	Observation of live chromatin dynamics in cells via 3D localization microscopy using Tetrapod point spread functions. <i>Biomedical Optics Express</i> , 2017 , 8, 5735-5748	3.5	24
319	Measurement-based estimation of global pupil functions in 3D localization microscopy. <i>Optics Express</i> , 2017 , 25, 7945-7959	3.3	37
318	Enhanced DNA imaging using super-resolution microscopy and simultaneous single-molecule orientation measurements. <i>Optica</i> , 2016 , 3, 3-6	8.6	75
317	Removing Orientation-Induced Localization Biases in Single-Molecule Microscopy Using a Broadband Metasurface Mask. <i>Nature Photonics</i> , 2016 , 10, 459-462	33.9	81
316	Super-resolution Imaging of Live Bacteria Cells Using a Genetically Directed, Highly Photostable Fluoromodule. <i>Journal of the American Chemical Society</i> , 2016 , 138, 10398-401	16.4	49
315	Delayed emergence of subdiffraction-sized mutant huntingtin fibrils following inclusion body formation. <i>Quarterly Reviews of Biophysics</i> , 2016 , 49, e2	7	29
314	Multicolour localization microscopy by point-spread-function engineering. <i>Nature Photonics</i> , 2016 , 10, 590-594	33.9	86
313	Single-molecule imaging of Hedgehog pathway protein Smoothened in primary cilia reveals binding events regulated by Patched1. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 8320-5	11.5	63
312	Precise Three-Dimensional Scan-Free Multiple-Particle Tracking over Large Axial Ranges with Tetrapod Point Spread Functions. <i>Nano Letters</i> , 2015 , 15, 4194-9	11.5	133
311	Determining the rotational mobility of a single molecule from a single image: a numerical study. <i>Optics Express</i> , 2015 , 23, 4255-76	3.3	25
310	Dissecting pigment architecture of individual photosynthetic antenna complexes in solution. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 13880-5	11.5	26
309	Chromosomal locus tracking with proper accounting of static and dynamic errors. <i>Physical Review E</i> , 2015 , 91, 062716	2.4	46
308	Single-Molecule Spectroscopy, Imaging, and Photocontrol: Foundations for Super-Resolution Microscopy (Nobel Lecture). <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 8067-93	16.4	148

(2014-2015)

307	Correcting field-dependent aberrations with nanoscale accuracy in three-dimensional single-molecule localization microscopy. <i>Optica</i> , 2015 , 2, 985-993	8.6	59
306	Single-molecule spectroscopy and imaging over the decades. <i>Faraday Discussions</i> , 2015 , 184, 9-36	3.6	52
305	Single-Molecule Identification of Quenched and Unquenched States of LHCII. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 860-7	6.4	70
304	The role of molecular dipole orientation in single-molecule fluorescence microscopy and implications for super-resolution imaging. <i>ChemPhysChem</i> , 2014 , 15, 587-99	3.2	79
303	Single-molecule motions enable direct visualization of biomolecular interactions in solution. <i>Nature Methods</i> , 2014 , 11, 555-8	21.6	76
302	Exploring bacterial cell biology with single-molecule tracking and super-resolution imaging. <i>Nature Reviews Microbiology</i> , 2014 , 12, 9-22	22.2	187
301	Single-molecule spectroscopy of photosynthetic proteins in solution: exploration of structurefunction relationships. <i>Chemical Science</i> , 2014 , 5, 2933-2939	9.4	22
300	Super-resolution fluorescence of huntingtin reveals growth of globular species into short fibers and coexistence of distinct aggregates. <i>ACS Chemical Biology</i> , 2014 , 9, 2767-78	4.9	44
299	Cby1 promotes Ahi1 recruitment to a ring-shaped domain at the centriole-cilium interface and facilitates proper cilium formation and function. <i>Molecular Biology of the Cell</i> , 2014 , 25, 2919-33	3.5	46
298	Azimuthal polarization filtering for accurate, precise, and robust single-molecule localization microscopy. <i>Nano Letters</i> , 2014 , 14, 6407-13	11.5	42
297	Robust hypothesis tests for detecting statistical evidence of two-dimensional and three-dimensional interactions in single-molecule measurements. <i>Physical Review E</i> , 2014 , 89, 052705	2.4	7
296	Small-molecule labeling of live cell surfaces for three-dimensional super-resolution microscopy. Journal of the American Chemical Society, 2014 , 136, 14003-6	16.4	91
295	Optimal point spread function design for 3D imaging. <i>Physical Review Letters</i> , 2014 , 113, 133902	7.4	176
294	Extending single-molecule microscopy using optical Fourier processing. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 8313-29	3.4	84
293	Bacterial scaffold directs pole-specific centromere segregation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, E2046-55	11.5	73
292	The regulatory switch of F-ATPase studied by single-molecule FRET in the ABEL Trap. <i>Proceedings of SPIE</i> , 2014 , 8950, 89500H	1.7	18
291	A bisected pupil for studying single-molecule orientational dynamics and its application to three-dimensional super-resolution microscopy. <i>Applied Physics Letters</i> , 2014 , 104, 193701	3.4	40
290	Correlations of three-dimensional motion of chromosomal loci in yeast revealed by the double-helix point spread function microscope. <i>Molecular Biology of the Cell</i> , 2014 , 25, 3619-29	3.5	46

289	Quantitative multicolor subdiffraction imaging of bacterial protein ultrastructures in three dimensions. <i>Nano Letters</i> , 2013 , 13, 987-93	11.5	78
288	Super-resolution fluorescence imaging with single molecules. <i>Current Opinion in Structural Biology</i> , 2013 , 23, 778-87	8.1	104
287	Photo-induced conformational flexibility in single solution-phase peridinin-chlorophyll-proteins. Journal of Physical Chemistry A, 2013 , 117, 8399-406	2.8	14
286	Super-resolution fluorescence imaging of intracellular mutant huntingtin protein reveals a population of fibrillar aggregates co-existing with compact perinuclear inclusion bodies. <i>Molecular Neurodegeneration</i> , 2013 , 8, O18	19	78
285	Rotational mobility of single molecules affects localization accuracy in super-resolution fluorescence microscopy. <i>Nano Letters</i> , 2013 , 13, 3967-72	11.5	82
284	Lifetime and spectrally resolved characterization of the photodynamics of single fluorophores in solution using the anti-Brownian electrokinetic trap. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 4641-8	3.4	41
283	Enzymatic activation of nitro-aryl fluorogens in live bacterial cells for enzymatic turnover-activated localization microscopy[]Chemical Science, 2013 , 42, 220-225	9.4	51
282	Quantifying transient 3D dynamical phenomena of single mRNA particles in live yeast cell measurements. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 15701-13	3.4	15
281	The double-helix point spread function enables precise and accurate measurement of 3D single-molecule localization and orientation. <i>Proceedings of SPIE</i> , 2013 , 8590, 85900	1.7	10
280	Single-molecule orientation measurements with a quadrated pupil. <i>Optics Letters</i> , 2013 , 38, 1521-3	3	39
279	Single-molecule spectroscopy reveals photosynthetic LH2 complexes switch between emissive states. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 1089	9 ^{<u>1</u>9053}	61
278	Easy-DHPSF open-source software for three-dimensional localization of single molecules with precision beyond the optical diffraction limit. <i>Protocol Exchange</i> , 2013 ,		16
277	Microscopy beyond the diffraction limit using actively controlled single molecules. <i>Journal of Microscopy</i> , 2012 , 246, 213-20	1.9	88
276	Probing single biomolecules in solution using the anti-Brownian electrokinetic (ABEL) trap. <i>Accounts of Chemical Research</i> , 2012 , 45, 1955-64	24.3	69
275	Simultaneous, accurate measurement of the 3D position and orientation of single molecules. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 19087-92	11.5	128
274	STED microscopy with optimized labeling density reveals 9-fold arrangement of a centriole protein. <i>Biophysical Journal</i> , 2012 , 102, 2926-35	2.9	81
273	Fluorescent saxitoxins for live cell imaging of single voltage-gated sodium ion channels beyond the optical diffraction limit. <i>Chemistry and Biology</i> , 2012 , 19, 902-12		42
272	Fluorescence correlation spectroscopy at high concentrations using gold bowtie nanoantennas. <i>Chemical Physics</i> , 2012 , 406, 3-8	2.3	40

(2011-2012)

271	Analytical tools to distinguish the effects of localization error, confinement, and medium elasticity on the velocity autocorrelation function. <i>Biophysical Journal</i> , 2012 , 102, 2443-50	2.9	74
270	Extending microscopic resolution with single-molecule imaging and active control. <i>Annual Review of Biophysics</i> , 2012 , 41, 321-42	21.1	90
269	Widespread mRNA association with cytoskeletal motor proteins and identification and dynamics of myosin-associated mRNAs in S. cerevisiae. <i>PLoS ONE</i> , 2012 , 7, e31912	3.7	12
268	A selenium analogue of firefly D-luciferin with red-shifted bioluminescence emission. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 3350-3	16.4	93
267	A Selenium Analogue of Firefly D-Luciferin with Red-Shifted Bioluminescence Emission. <i>Angewandte Chemie</i> , 2012 , 124, 3406-3409	3.6	19
266	Three-dimensional super-resolution imaging of the midplane protein FtsZ in live Caulobacter crescentus cells using astigmatism. <i>ChemPhysChem</i> , 2012 , 13, 1007-12	3.2	83
265	Cellular inclusion bodies of mutant huntingtin exon 1 obscure small fibrillar aggregate species. <i>Scientific Reports</i> , 2012 , 2, 895	4.9	62
264	Single-Molecule Photocontrol and Nanoscopy. <i>Springer Series on Fluorescence</i> , 2012 , 87-110	0.5	
263	The double-helix microscope super-resolves extended biological structures by localizing single blinking molecules in three dimensions with nanoscale precision. <i>Applied Physics Letters</i> , 2012 , 100, 15	37 <mark>04</mark> -1!	537013
262	Anti-Brownian ELectrokinetic (ABEL) trapping of single ₽ -adrenergic receptors in the absence		
	and presence of agonist 2012 ,		3
261	Spectrally resolved anti-Brownian electrokinetic (ABEL) trapping of single peridinin-chlorophyll-proteins in solution 2012,		4
261 260	Spectrally resolved anti-Brownian electrokinetic (ABEL) trapping of single	2.9	
	Spectrally resolved anti-Brownian electrokinetic (ABEL) trapping of single peridinin-chlorophyll-proteins in solution 2012 , Super-resolution imaging of the nucleoid-associated protein HU in Caulobacter crescentus.		4
2 60	Spectrally resolved anti-Brownian electrokinetic (ABEL) trapping of single peridinin-chlorophyll-proteins in solution 2012, Super-resolution imaging of the nucleoid-associated protein HU in Caulobacter crescentus. Biophysical Journal, 2011, 100, L31-3 An Adaptive Anti-Brownian ELectrokinetic trap with real-time information on single-molecule		4 75
260 259	Spectrally resolved anti-Brownian electrokinetic (ABEL) trapping of single peridinin-chlorophyll-proteins in solution 2012, Super-resolution imaging of the nucleoid-associated protein HU in Caulobacter crescentus. Biophysical Journal, 2011, 100, L31-3 An Adaptive Anti-Brownian ELectrokinetic trap with real-time information on single-molecule diffusivity and mobility. ACS Nano, 2011, 5, 5792-9 Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike	16.7	4 75 59
260 259 258	Spectrally resolved anti-Brownian electrokinetic (ABEL) trapping of single peridinin-chlorophyll-proteins in solution 2012, Super-resolution imaging of the nucleoid-associated protein HU in Caulobacter crescentus. <i>Biophysical Journal</i> , 2011, 100, L31-3 An Adaptive Anti-Brownian ELectrokinetic trap with real-time information on single-molecule diffusivity and mobility. <i>ACS Nano</i> , 2011, 5, 5792-9 Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike objects. <i>Optics Letters</i> , 2011, 36, 202-4 Conformational dynamics of single G protein-coupled receptors in solution. <i>Journal of Physical</i>	16.7	4 75 59 81
260 259 258 257	Spectrally resolved anti-Brownian electrokinetic (ABEL) trapping of single peridinin-chlorophyll-proteins in solution 2012, Super-resolution imaging of the nucleoid-associated protein HU in Caulobacter crescentus. Biophysical Journal, 2011, 100, L31-3 An Adaptive Anti-Brownian ELectrokinetic trap with real-time information on single-molecule diffusivity and mobility. ACS Nano, 2011, 5, 5792-9 Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike objects. Optics Letters, 2011, 36, 202-4 Conformational dynamics of single G protein-coupled receptors in solution. Journal of Physical Chemistry B, 2011, 115, 13328-38 Sub-diffraction imaging of huntingtin protein aggregates by fluorescence blink-microscopy and	16.7 3 3-4	4 75 59 81 81

253	STED Super-resolution Microscopy in Tissue and in Mammalian Cells. <i>Proceedings of SPIE</i> , 2011 , 7910,	1.7	6
252	Three-dimensional superresolution colocalization of intracellular protein superstructures and the cell surface in live Caulobacter crescentus. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, E1102-10	11.5	106
251	High-Resolution Single-Molecule Spectroscopy 2011 , 381-417		11
250	Exploring protein superstructures and dynamics in live bacterial cells using single-molecule and superresolution imaging. <i>Methods in Molecular Biology</i> , 2011 , 783, 139-58	1.4	9
249	A spindle-like apparatus guides bacterial chromosome segregation. <i>Nature Cell Biology</i> , 2010 , 12, 791-8	23.4	264
248	Watching conformational- and photo-dynamics of single fluorescent proteins in solution. <i>Nature Chemistry</i> , 2010 , 2, 179-86	17.6	105
247	Three-dimensional localization precision of the double-helix point spread function versus astigmatism and biplane. <i>Applied Physics Letters</i> , 2010 , 97, 161103	3.4	89
246	In vivo Three-Dimensional Superresolution Fluorescence Tracking using a Double-Helix Point Spread Function. <i>Proceedings of SPIE</i> , 2010 , 7571, 75710Z	1.7	14
245	Single-molecule spectroscopy and imaging of biomolecules in living cells. <i>Analytical Chemistry</i> , 2010 , 82, 2192-203	7.8	125
244	Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function. <i>Nano Letters</i> , 2010 , 10, 211-8	11.5	127
243	Single-molecule and superresolution imaging in live bacteria cells. <i>Cold Spring Harbor Perspectives in Biology</i> , 2010 , 2, a000448	10.2	41
242	Azido push-pull fluorogens photoactivate to produce bright fluorescent labels. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 14157-67	3.4	80
241	Action of the chaperonin GroEL/ES on a non-native substrate observed with single-molecule FRET. <i>Journal of Molecular Biology</i> , 2010 , 401, 553-63	6.5	16
240	Superresolution imaging of targeted proteins in fixed and living cells using photoactivatable organic fluorophores. <i>Journal of the American Chemical Society</i> , 2010 , 132, 15099-101	16.4	148
239	Molecules and methods for super-resolution imaging. <i>Methods in Enzymology</i> , 2010 , 475, 27-59	1.7	44
238	Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 17864-71	11.5	123
237	Optimal strategy for trapping single fluorescent molecules in solution using the ABEL trap. <i>Applied Physics B: Lasers and Optics</i> , 2010 , 99, 23-30	1.9	46
236	Single-Molecule Optical Spectroscopy and Imaging: From Early Steps to Recent Advances. <i>Springer Series in Chemical Physics</i> , 2010 , 25-60	0.3	7

235	Superresolution imaging in live Caulobacter crescentus cells using photoswitchable enhanced yellow fluorescent protein 2009 ,		10
234	DCDHF fluorophores for single-molecule imaging in cells. <i>ChemPhysChem</i> , 2009 , 10, 55-65	3.2	84
233	Micrometer-sized DNA-single-fluorophore-DNA supramolecule: synthesis and single-molecule characterization. <i>Small</i> , 2009 , 5, 2418-23	11	12
232	Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. <i>Nature Photonics</i> , 2009 , 3, 654-657	33.9	1550
231	Bright, Red Single-Molecule Emitters: Synthesis and Properties of Environmentally Sensitive Dicyanomethylenedihydrofuran (DCDHF) Fluorophores with Bisaromatic Conjugation. <i>Chemistry of Materials</i> , 2009 , 21, 797	9.6	41
230	Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 2995-9	11.5	700
229	Lithographic positioning of fluorescent molecules on high-Q photonic crystal cavities. <i>Applied Physics Letters</i> , 2009 , 95, 123113	3.4	22
228	Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP. <i>Nature Methods</i> , 2008 , 5, 947-9	21.6	294
227	A photoactivatable push-pull fluorophore for single-molecule imaging in live cells. <i>Journal of the American Chemical Society</i> , 2008 , 130, 9204-5	16.4	166
226	Controlling Brownian motion of single protein molecules and single fluorophores in aqueous buffer. <i>Optics Express</i> , 2008 , 16, 6941-56	3.3	103
225	Single-molecule motions of oligoarginine transporter conjugates on the plasma membrane of Chinese hamster ovary cells. <i>Journal of the American Chemical Society</i> , 2008 , 130, 9364-70	16.4	47
224	A polymeric protein anchors the chromosomal origin/ParB complex at a bacterial cell pole. <i>Cell</i> , 2008 , 134, 945-55	56.2	235
223	Hardware-based anti-Brownian electrokinetic trap (ABEL trap) for single molecules: Control loop simulations and application to ATP binding stoichiometry in multi-subunit enzymes. <i>Proceedings of SPIE</i> , 2008 , 7038, 1-12	1.7	13
222	Cy3-Cy5 covalent heterodimers for single-molecule photoswitching. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 11878-80	3.4	63
221	Visualization of long human telomere mimics by single-molecule fluorescence imaging. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 13184-7	3.4	11
220	Superresolution imaging in live bacterial cells by single-molecule active-control microscopy 2008,		1
219	Nanophotonics and Single Molecules. Springer Series in Biophysics, 2008, 1-23		4
218	Photophysical properties of acene DCDHF fluorophores: long-wavelength single-molecule emitters designed for cellular imaging. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 8934-41	2.8	62

217	The influence of tetrahydroquinoline rings in dicyanomethylenedihydrofuran (DCDHF) single-molecule fluorophores. <i>Tetrahedron</i> , 2007 , 63, 103-114	2.4	42
216	Modifications of DCDHF single molecule fluorophores to impart water solubility. <i>Tetrahedron Letters</i> , 2007 , 48, 3471-3474	2	22
215	Gold bowtie nanoantennas for surface-enhanced Raman scattering under controlled electrochemical potential. <i>Chemical Physics Letters</i> , 2007 , 446, 339-343	2.5	65
214	Interferometry of a single nanoparticle using the Gouy phase of a focused laser beam. <i>Optics Communications</i> , 2007 , 280, 487-491	2	35
213	Single-molecule electron spin resonance. <i>Applied Magnetic Resonance</i> , 2007 , 31, 665-676	0.8	2
212	Internal mechanical response of a polymer in solution. <i>Physical Review Letters</i> , 2007 , 98, 116001	7.4	29
211	Principal-components analysis of shape fluctuations of single DNA molecules. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 12622-7	11.5	66
2 10	New directions in single-molecule imaging and analysis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 12596-602	11.5	376
209	Excitation and Emission Spectroscopy and Quantum Optical Measurements 2007, 31-67		1
208	Polarization and Lifetime Measurements, External Perturbations and Microscopy 2007 , 69-107		1
207	Spectral Jumps of Single Molecules 2007 , 109-142		
206	Near-Field Optical Imaging and Spectroscopy of Single Molecules 2007 , 191-222		
205	Magnetic Resonance of Single Molecular Spins 2007 , 159-189		1
204	Physical Principles and Methods of Single-Molecule Spectroscopy in Solids 2007 , 1-30		2
203	Single-Molecule Detection in Analytical Chemistry 2007 , 223-243		
202	Theoretical Models for the Spectral Dynamics of Individual Molecules in Solids 2007 , 143-157		
201	Bulk and single-molecule characterization of an improved molecular beacon utilizing H-dimer excitonic behavior. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 7929-31	3.4	24
2 00	Single-molecule tracking. <i>Methods in Molecular Biology</i> , 2007 , 398, 193-219	1.4	22

199	OPTICAL FIELD ENHANCEMENT WITH PLASMON RESONANT BOWTIE NANOANTENNAS 2007 , 125-137	•	2
198	Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas. <i>Journal of Chemical Physics</i> , 2006 , 124, 61101	3.9	251
197	Suppressing Brownian motion of individual biomolecules in solution. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 4362-5	11.5	192
196	Single molecules of the bacterial actin MreB undergo directed treadmilling motion in Caulobacter crescentus. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 10929-34	11.5	182
195	Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas. <i>Nano Letters</i> , 2006 , 6, 355-60	11.5	318
194	Long-wavelength analogue of PRODAN: synthesis and properties of Anthradan, a fluorophore with a 2,6-donor-acceptor anthracene structure. <i>Journal of Organic Chemistry</i> , 2006 , 71, 9651-7	4.2	69
193	Cholesterol depletion induces solid-like regions in the plasma membrane. <i>Biophysical Journal</i> , 2006 , 90, 927-38	2.9	96
192	Well-Controlled Living Polymerization of Perylene-Labeled Polyisoprenes and Their Use in Single-Molecule Imaging. <i>Macromolecules</i> , 2006 , 39, 8121-8127	5.5	20
191	Single-molecule nanoprobes explore defects in spin-grown crystals. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 18939-44	3.4	40
190	Diffusion of lipid-like single-molecule fluorophores in the cell membrane. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 8151-7	3.4	49
189	Scanning interferometric microscopy for the detection of ultrasmall phase shifts in condensed matter. <i>Physical Review A</i> , 2006 , 73,	2.6	18
188	Method for trapping and manipulating nanoscale objects in solution. <i>Applied Physics Letters</i> , 2005 , 86, 093109	3.4	143
187	Probing the sequence of conformationally induced polarity changes in the molecular chaperonin GroEL with fluorescence spectroscopy. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 24517-25	3.4	24
186	Enhancement of the fluorescence of the blue fluorescent proteins by high pressure or low temperature. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 12976-81	3.4	36
185	Soliton-induced waveguides in an organic photorefractive glass. <i>Optics Letters</i> , 2005 , 30, 519-21	3	35
184	Cholesterol depletion suppresses the translational diffusion of class II major histocompatibility complex proteins in the plasma membrane. <i>Biophysical Journal</i> , 2005 , 88, 334-47	2.9	105
183	Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles. <i>Physical Review B</i> , 2005 , 72,	3.3	206
182	Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. <i>Physical Review Letters</i> , 2005 , 94, 017402	7.4	802

181	Nonlinear optical chromophores as nanoscale emitters for single-molecule spectroscopy. <i>Accounts of Chemical Research</i> , 2005 , 38, 549-56	24.3	74
180	The anti-Brownian electrophoretic trap (ABEL trap): fabrication and software 2005 , 5699, 296		28
179	Monolithically integrated semiconductor fluorescence sensor for microfluidic applications. <i>Sensors and Actuators B: Chemical</i> , 2005 , 105, 393-399	8.5	53
178	A novel fluorophore for two-photon-excited single-molecule fluorescence. <i>Chemical Physics</i> , 2005 , 318, 7-11	2.3	23
177	Distinct constrictive processes, separated in time and space, divide caulobacter inner and outer membranes. <i>Journal of Bacteriology</i> , 2005 , 187, 6874-82	3.5	47
176	Visualization of the movement of single histidine kinase molecules in live Caulobacter cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 15921-6	11.5	116
175	Single-photon sources based on single molecules in solids. New Journal of Physics, 2004, 6, 88-88	2.9	45
174	Experimental and Theoretical Investigations of Environmentally Sensitive Single-Molecule Fluorophores [] <i>Journal of Physical Chemistry B</i> , 2004 , 108, 10465-10473	3.4	73
173	Organic photorefractives: mechanisms, materials, and applications. <i>Chemical Reviews</i> , 2004 , 104, 3267	-3 6\$.1	387
172	Gap-Dependent Optical Coupling of Single B owtielNanoantennas Resonant in the Visible. <i>Nano Letters</i> , 2004 , 4, 957-961	11.5	503
171	Single-molecule fluorescence spectroscopy and microscopy of biomolecular motors. <i>Annual Review of Physical Chemistry</i> , 2004 , 55, 79-96	15.7	133
170	Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures. <i>Applied Physics Letters</i> , 2004 , 85, 648-650	3.4	83
169	Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing. <i>IEEE Journal of Quantum Electronics</i> , 2004 , 40, 491-498	2	68
168	Laser background characterization in a monolithically integrated bio-fluorescence sensor 2004 , 5318, 59		3
167	Fluorescence bleaching reveals asymmetric compartment formation prior to cell division in Caulobacter. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 8235-40	11.5	75
166	Exploring novel methods of interferometric detection of ultrasmall phase shifts 2003 , 4962, 110		2
165	Novel fluorophores for single-molecule imaging 2003 , 5222, 150		3
164	Role of temperature in controlling performance of photorefractive organic glasses. <i>ChemPhysChem</i> , 2003 , 4, 732-44	3.2	38

(2001-2003)

163	Optical measurements of single molecules in cells. TrAC - Trends in Analytical Chemistry, 2003, 22, 544-5	5 48 4.6	21
162	Synthesis and properties of glassy organic multifunctional photorefractive materials. <i>Optical Materials</i> , 2003 , 21, 353-357	3.3	4
161	Synthesis and Photorefractive Properties of Multifunctional Glasses. <i>Chemistry of Materials</i> , 2003 , 15, 1156-1164	9.6	29
160	Novel fluorophores for single-molecule imaging. <i>Journal of the American Chemical Society</i> , 2003 , 125, 1174-5	16.4	94
159	Self-trapping of light in an organic photorefractive glass. <i>Optics Letters</i> , 2003 , 28, 2509-11	3	38
158	Methods of single-molecule fluorescence spectroscopy and microscopy. <i>Review of Scientific Instruments</i> , 2003 , 74, 3597-3619	1.7	666
157	Photorefractive Properties of Poly(siloxane)-triarylamine-Based Composites for High-Speed Applications. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 4732-4737	3.4	34
156	High-performance photorefractive organic glass with near-infrared sensitivity. <i>Applied Physics Letters</i> , 2003 , 82, 3602-3604	3.4	37
155	Monolithic Photorefractive Organic Glasses with Large Coupling Gain and Strong Beam Fanning. <i>Advanced Materials</i> , 2002 , 14, 313-317	24	37
154	. Advanced Functional Materials, 2002 , 12, 621-629	15.6	57
154	. Advanced Functional Materials, 2002, 12, 621-629 Single-molecule optical spectroscopy of autofluorescent proteins. Journal of Chemical Physics, 2002, 117, 10925-10937	15.6 3.9	57 60
	Single-molecule optical spectroscopy of autofluorescent proteins. <i>Journal of Chemical Physics</i> , 2002		
153	Single-molecule optical spectroscopy of autofluorescent proteins. <i>Journal of Chemical Physics</i> , 2002 , 117, 10925-10937		60
153	Single-molecule optical spectroscopy of autofluorescent proteins. <i>Journal of Chemical Physics</i> , 2002 , 117, 10925-10937 Dicyanomethylenedihydrofuran photorefractive materials 2002 , 4802, 9 Synthesis of Fluorescently Labeled Polymers and Their Use in Single-Molecule Imaging.	3.9	60
153 152 151	Single-molecule optical spectroscopy of autofluorescent proteins. <i>Journal of Chemical Physics</i> , 2002 , 117, 10925-10937 Dicyanomethylenedihydrofuran photorefractive materials 2002 , 4802, 9 Synthesis of Fluorescently Labeled Polymers and Their Use in Single-Molecule Imaging. <i>Macromolecules</i> , 2002 , 35, 8122-8125 Photochromic polymers for the optical homodyne detection of ultrasonic surface displacements.	3·9 5·5	60 9 40
153 152 151 150	Single-molecule optical spectroscopy of autofluorescent proteins. <i>Journal of Chemical Physics</i> , 2002 , 117, 10925-10937 Dicyanomethylenedihydrofuran photorefractive materials 2002 , 4802, 9 Synthesis of Fluorescently Labeled Polymers and Their Use in Single-Molecule Imaging. <i>Macromolecules</i> , 2002 , 35, 8122-8125 Photochromic polymers for the optical homodyne detection of ultrasonic surface displacements. <i>Optics Letters</i> , 2002 , 27, 354-6 A Dozen Years of Single-Molecule Spectroscopy in Physics, Chemistry, and Biophysics. <i>Journal of</i>	3·9 5·5	60 9 40 9
153 152 151 150 149	Single-molecule optical spectroscopy of autofluorescent proteins. <i>Journal of Chemical Physics</i> , 2002 , 117, 10925-10937 Dicyanomethylenedihydrofuran photorefractive materials 2002 , 4802, 9 Synthesis of Fluorescently Labeled Polymers and Their Use in Single-Molecule Imaging. <i>Macromolecules</i> , 2002 , 35, 8122-8125 Photochromic polymers for the optical homodyne detection of ultrasonic surface displacements. <i>Optics Letters</i> , 2002 , 27, 354-6 A Dozen Years of Single-Molecule Spectroscopy in Physics, Chemistry, and Biophysics. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 910-927 Translational diffusion of individual class II MHC membrane proteins in cells. <i>Biophysical Journal</i> ,	3·9 5·5 3	60 9 40 9 370

145	ADP-induced rocking of the kinesin motor domain revealed by single-molecule fluorescence polarization microscopy. <i>Nature Structural Biology</i> , 2001 , 8, 540-4		140
144	Polarized fluorescence microscopy of individual and many kinesin motors bound to axonemal microtubules. <i>Biophysical Journal</i> , 2001 , 81, 2851-63	2.9	56
143	Photophysics of DsRed, a Red Fluorescent Protein, from the Ensemble to the Single-Molecule Level. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 5048-5054	3.4	91
142	Thirteen Years of Single-Molecule Spectroscopy in Physical Chemistry and Biophysics. <i>Springer Series in Chemical Physics</i> , 2001 , 32-61	0.3	2
141	Photorefractive Polymers 2001 , 6961-6968		1
140	Image amplification and novelty filtering with a photorefractive polymer. <i>Applied Physics Letters</i> , 2000 , 76, 3358-3360	3.4	50
139	Photorefractive polymers for laser-based ultrasound detection 2000 , 4104, 110		0
138	Fluorescence Behavior of Single-Molecule pH-Sensors. <i>Single Molecules</i> , 2000 , 1, 17-23		80
137	Single photons on demand from a single molecule at room temperature. <i>Nature</i> , 2000 , 407, 491-3	50.4	609
136	Photon antibunching in single CdSe/ZnS quantum dot fluorescence. <i>Chemical Physics Letters</i> , 2000 , 329, 399-404	2.5	255
135	Fluorescence correlation spectroscopy reveals fast optical excitation-driven intramolecular dynamics of yellow fluorescent proteins. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2000 , 97, 151-6	11.5	267
134	Single-Molecule Fluorescence Resonant Energy Transfer in Calcium Concentration Dependent Cameleon. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 3676-3682	3.4	101
133	Fluorescence Behavior of Single-Molecule pH-Sensors 2000 , 1, 17		5
132	The Fluorescence Dynamics of Single Molecules of Green Fluorescent Protein. <i>Journal of Physical Chemistry A</i> , 1999 , 103, 10553-10560	2.8	127
131	Homodyne detection of ultrasonic surface displacements using two-wave mixing in photorefractive polymers. <i>Optics Communications</i> , 1999 , 162, 79-84	2	44
130	Illuminating single molecules in condensed matter. <i>Science</i> , 1999 , 283, 1670-6	33.3	976
129	Optical methods for exploring dynamics of single copies of green fluorescent protein. <i>Cytometry</i> , 1999 , 36, 232-8		37
128	Photorefractive Properties of Poly(N-vinyl carbazole)-Based Composites for High-Speed Applications. <i>Chemistry of Materials</i> , 1999 , 11, 1784-1791	9.6	118

127	Homodyne detection of ultrasonic surface displacements using two-wave mixing in photorefractive polymers 1999 , 3589, 22		5
126	Design and Optimization of Chromophores for Liquid Crystal and Photorefractive Applications. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 561, 119		Ο
125	Spectroscopic determination of trap density in C60-sensitized photorefractive polymers. <i>Chemical Physics Letters</i> , 1998 , 291, 553-561	2.5	86
124	Gain enhancement by moving gratings in a photorefractive polymer. <i>Optics Communications</i> , 1998 , 145, 145-149	2	8
123	Synthesis of Bifunctional Photorefractive Polymers with Net Gain: Design Strategy Amenable to Combinatorial Optimization. <i>Journal of the American Chemical Society</i> , 1998 , 120, 9680-9681	16.4	36
122	Amplified scattering in a high-gain photorefractive polymer. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1998 , 15, 901	1.7	39
121	Systematics of two-wave mixing in a photorefractive polymer. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1998 , 15, 905	1.7	64
120	Single-Molecule Spectroscopy and Quantum Optics in Solids. <i>Advances in Atomic, Molecular and Optical Physics</i> , 1998 , 38, 193-236	1.7	20
119	Recent advances in high-gain photorefractive polymers 1998,		1
118	High-speed photorefractive polymer composites. <i>Applied Physics Letters</i> , 1998 , 73, 1490-1492	3.4	147
117	Simultaneous Imaging of Individual Molecules Aligned Both Parallel and Perpendicular to the Optic Axis. <i>Physical Review Letters</i> , 1998 , 81, 5322-5325	7.4	160
116	Probing single molecules in polyacrylamide gels 1998 , 3273, 165		2
115	High performance photorefractive polymer with improved stability. <i>Applied Physics Letters</i> , 1997 , 70, 1515-1517	3.4	108
114	Optical Limiting in a Photorefractive Polymer. <i>Materials Research Society Symposia Proceedings</i> , 1997 , 479, 199		5
113	Recent advances in photorefractive polymer materials 1997 , 3147, 84		3
112	On/off blinking and switching behaviour of single molecules of green fluorescent protein. <i>Nature</i> , 1997 , 388, 355-8	50.4	1144
111	Excitation of a single molecule on the surface of a spherical microcavity. <i>Applied Physics Letters</i> , 1997 , 71, 297-299	3.4	43
110	PHOTOREFRACTIVE POLYMERS. <i>Annual Review of Materials Research</i> , 1997 , 27, 585-623		256

109	Spontaneous Oscillation and Self-Pumped Phase Conjugation in a Photorefractive Polymer Optical Amplifier. <i>Science</i> , 1997 , 277, 549-552	33.3	84
108	Those Blinking Single Molecules. <i>Science</i> , 1997 , 277, 1059-1060	33.3	78
107	Measurement of the spatial phase shift in high-gain photorefractive materials. <i>Optics Letters</i> , 1997 , 22, 874-6	3	22
106	Single-molecule nanophotonics in solids. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 1997 , 48, 169-174	3.1	6
105	Structure and Dynamics in Solids As Probed by Optical Spectroscopy. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 13251-13262		110
104	Single Molecules Solvated in Pores of Polyacrylamide Gels. <i>Molecular Crystals and Liquid Crystals</i> , 1996 , 291, 31-39		7
103	Single Molecules and Atoms. Accounts of Chemical Research, 1996, 29, 561-562	24.3	15
102	Holographic digital data storage in a photorefractive polymer. <i>Optics Letters</i> , 1996 , 21, 890-2	3	50
101	Three-dimensional imaging of single molecules solvated in pores of poly(acrylamide) gels. <i>Science</i> , 1996 , 274, 966-9	33.3	339
100	High-Resolution Optical Spectroscopy of Single Molecules in Solids. <i>Accounts of Chemical Research</i> , 1996 , 29, 563-571	24.3	89
99	Mechanisms of photorefractivity in polymer composites 1996,		3
98	Probing nanoenvironments in solids and quantum optics using individual impurity molecules. <i>Progress in Crystal Growth and Characterization of Materials</i> , 1996 , 33, 11-18	3.5	
97	Single molecule spectroscopy: maximum emission rate and saturation intensity. <i>Optics Communications</i> , 1995 , 114, 83-88	2	81
96	Photorefractive Polymers Based on Dual-Function Dopants. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 4096-4105		44
95	Advances in Photorefractive Polymers: plastics for Holography and Optical Processing. <i>Optics and Photonics News</i> , 1995 , 6, 24	1.9	4
94	Photorefractivity in new organic polymeric materials 1995 , 2526, 82		12
93	Photorefractive polymers - A status report. Pure and Applied Chemistry, 1995, 67, 33-38	2.1	10
92	Photorefractive Polymers 1995 , 265-309		2

91	Electric field-dependent nonphotorefractive gratings in a nonlinear photoconducting polymer. <i>Applied Physics Letters</i> , 1994 , 64, 712-714	3.4	11
90	Quasinondestructive readout in a photorefractive polymer. <i>Physical Review Letters</i> , 1994 , 73, 2047-205	07.4	24
89	Fundamentals of single-molecule spectroscopy in solids. <i>Journal of Luminescence</i> , 1994 , 60-61, 997-100	2 3.8	14
88	Vivronic spectroscopy of single molecules: Exploring electronic-vibrational frequency correlations within an inhomogeneous distribution. <i>Journal of Luminescence</i> , 1994 , 58, 161-167	3.8	20
87	Optical Probing of Single Molecules of Terrylene in a Shpol'kii Matrix: A Two-State Single-Molecule Switch. <i>The Journal of Physical Chemistry</i> , 1994 , 98, 7382-7389		150
86	Examining nanoenvironments in solids on the scale of a single, isolated impurity molecule. <i>Science</i> , 1994 , 265, 46-53	33.3	198
85	Second-order cascading as the origin of large third-order effects in organic single-crystal-core fibers. <i>Optics Letters</i> , 1994 , 19, 868-70	3	38
84	Electric-field-switchable stratified volume holograms in photorefractive polymers. <i>Optics Letters</i> , 1994 , 19, 1480-2	3	25
83	Optical trap activation in a photorefractive polymer. <i>Optics Letters</i> , 1994 , 19, 1822	3	28
82	Orientationally enhanced photorefractive effect in polymers. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1994 , 11, 320	1.7	333
81	Optical properties of poly(N-vinylcarbazole)-based guest-host photorefractive polymer systems. <i>Applied Optics</i> , 1994 , 33, 2218-22	1.7	29
80	Cascading of second-order processes in quadratic molecular media at the origin of very large cubic effects. <i>Synthetic Metals</i> , 1994 , 67, 303-307	3.6	
79	Near-field optical spectroscopy of individual molecules in solids. <i>Physical Review Letters</i> , 1994 , 73, 2764	- 2 7467	103
78	Vibronic Spectroscopy of Individual Molecules in Solids. <i>The Journal of Physical Chemistry</i> , 1994 , 98, 103	77-103	3 905
77	Polymeric photorefractive materials. <i>Chemical Reviews</i> , 1994 , 94, 127-155	68.1	634
76	Recent progress in photorefractive polymers: materials and structures 1994 , 2285, 204		3
75	Photoconduction and photorefraction in molecularly doped polymers. <i>Synthetic Metals</i> , 1993 , 54, 9-19	3.6	8
74	Dispersed fluorescence spectra of single molecules of pentacene in p-terphenyl. <i>The Journal of Physical Chemistry</i> , 1993 , 97, 2491-2493		51

73	Vibrational analysis of the dispersed fluorescence from single molecules of terrylene in polyethylene. <i>Chemical Physics Letters</i> , 1993 , 213, 325-332	2.5	62
72	Optical Spectroscopy of Single Impurity Molecules in Solids. <i>Angewandte Chemie International Edition in English</i> , 1993 , 32, 457-476		177
71	Optische Spektroskopie von einzelnen Dotierungsmoleklen in Festklipern. <i>Angewandte Chemie</i> , 1993 , 105, 537-557	3.6	64
70	Magnetic resonance of a single molecular spin. <i>Nature</i> , 1993 , 363, 242-244	50.4	218
69	Optical studies of single terrylene molecules in polyethylene. Journal of Luminescence, 1993, 56, 1-14	3.8	62
68	Two-beam coupling measurements of grating phase in a photorefractive polymer: erratum. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1993 , 10, 753	1.7	4
67	Poly(silane)-based high-mobility photorefractive polymers. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1993 , 10, 2306	1.7	56
66	Net two-beam-coupling gain in a polymeric photorefractive material. <i>Optics Letters</i> , 1993 , 18, 1044	3	106
65	Optical Detection of Magnetic Resonance of a Single Molecular Spin. <i>Optics and Photonics News</i> , 1993 , 4, 35	1.9	
64	Photorefractive Polymers Achieve Net Gain, High Diffraction Efficiency and Speed. <i>Optics and Photonics News</i> , 1993 , 4, 42_1	1.9	
63	C60 sensitization of a photorefractive polymer. <i>Applied Physics Letters</i> , 1992 , 61, 2967-2969	3.4	80
62	Photoconductivity of Photorefractive Polymers. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 277, 135		2
61	Nonlinear Optical Properties of Organic Photorefractive Polymers. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 277, 121		
60	Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. <i>Physical Review Letters</i> , 1992 , 69, 1516-1519	7.4	442
59	Optical spectra and kinetics of single impurity molecules in a polymer: spectral diffusion and persistent spectral hole burning. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1992 , 9, 829	1.7	92
58	Two-beam coupling measurements of grating phase in a photorefractive polymer. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1992 , 9, 1642	1.7	76
57	Photoconductivity studies of photorefractive polymers. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1992 , 9, 2059	1.7	58
56	Subsecond grating growth in a photorefractive polymer. <i>Optics Letters</i> , 1992 , 17, 1107-9	3	39

55	Quantum Optics of a Single Molecule in a Solid. Optics and Photonics News, 1992, 3, 21	1.9	6
54	Optical modification of a single impurity molecule in a solid. <i>Nature</i> , 1992 , 355, 335-337	50.4	135
53	Single molecule spectral diffusion in a solid detected via fluorescence spectroscopy. <i>Journal of Luminescence</i> , 1992 , 53, 62-67	3.8	3
52	Photorefractivity in doped nonlinear organic polymers 1991,		11
51	Fluorescence spectroscopy and spectral diffusion of single impurity molecules in a crystal. <i>Nature</i> , 1991 , 349, 225-227	50.4	298
50	Applications of Organic Second-Order Nonlinear Optical Materials. ACS Symposium Series, 1991, 216-22	250.4	2
49	Detection and spectroscopy of single pentacene molecules in a p-terphenyl crystal by means of fluorescence excitation. <i>Journal of Chemical Physics</i> , 1991 , 95, 7150-7163	3.9	316
48	Observation of the photorefractive effect in a polymer. <i>Physical Review Letters</i> , 1991 , 66, 1846-1849	7.4	489
47	Ducharme et al. reply. <i>Physical Review Letters</i> , 1991 , 67, 2590	7.4	1
46	Comment on "Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal". <i>Physical Review Letters</i> , 1991 , 66, 1376	7.4	46
45	Phase-sensitive optical detection of ballistic phonon heat pulses using frequency-modulation spectroscopy and persistent spectral holes. <i>Physical Review B</i> , 1991 , 43, 1743-1755	3.3	2
44	Poled Epoxy Polymers for Optoelectronics 1991 , 433-445		2
43	Temperature dependence of photon-gated persistent spectral hole-burning for the meso-tetra-p-tolyl-Zn-tetrabenzoporphyrin/chloroform system in poly(methylmethacrylate). <i>Chemical Physics</i> , 1990 , 144, 71-79	2.3	23
42	Optical detection and probing of single dopant molecules of pentacene in a p-terphenyl host crystal by means of absorption spectroscopy. <i>The Journal of Physical Chemistry</i> , 1990 , 94, 1237-1248		76
41	Ultrasensitive Laser Spectroscopy in Solids: Single-Molecule Detection. <i>Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics</i> , 1990 , 183, 47-57		
40	Intracavity frequency doubling of a Nd:YAG laser with an organic nonlinear optical crystal. <i>Applied Physics Letters</i> , 1990 , 57, 537-539	3.4	21
39	FINDING A SINGLE MOLECULE IN A HAYSTACK. <i>Analytical Chemistry</i> , 1989 , 61, 1217A-1223A	7.8	3
38	Optical detection and spectroscopy of single molecules in a solid. <i>Physical Review Letters</i> , 1989 , 62, 253	35 7 2453	8 865

37	Finding a single molecule in a haystack. Optical detection and spectroscopy of single absorbers in solids. <i>Analytical Chemistry</i> , 1989 , 61, 1217A-1223A	7.8	11
36	Photon-Gated Persistent Spectral Hole-Burning. <i>Japanese Journal of Applied Physics</i> , 1989 , 28, 221	1.4	19
35	Pseudo-Stark effect and FM/Stark double-modulation spectroscopy for the detection of statistical fine structure in alexandrite. <i>Chemical Physics Letters</i> , 1988 , 151, 102-108	2.5	14
34	Statistical fine structure in the inhomogeneously broadened electronic origin of pentacene in p-terphenyl. <i>Journal of Chemical Physics</i> , 1988 , 89, 1768-1779	3.9	29
33	Frequency Domain Optical Storage and Other Applications of Persistent Spectral Hole-Burning. <i>Topics in Current Physics</i> , 1988 , 251-307		11
32	Persistent Infrared Spectral Hole-Burning for Impurity Vibrational Modes in Solids. <i>Topics in Current Physics</i> , 1988 , 203-250		
31	Dynamical Hole-Burning Requirements for Frequency Domain Optical Storage 1988 , 41-51		
30	Fast burning of persistent spectral holes in small laser spots using photon-gated materials. <i>Applied Physics Letters</i> , 1987 , 50, 430-432	3.4	21
29	Mechanism of photon-gated persistent spectral hole burning in metal-tetrabenzoporphyrin/halomethane systems: donor-acceptor electron transfer. <i>The Journal of Physical Chemistry</i> , 1987 , 91, 3998-4004		78
28	Statistical fine structure of inhomogeneously broadened absorption lines. <i>Physical Review Letters</i> , 1987 , 59, 2705-2708	7.4	57
27	Photon-gated spectral hole burning by donor-acceptor electron transfer. <i>Optics Letters</i> , 1987 , 12, 370-2	2 3	21
26	Gated spectral hole-burning for frequency domain optical recording. <i>Optics Communications</i> , 1986 , 58, 249-254	2	36
25	Phase sensitive detection of persistent spectral holes using synchronous ultrasonic modulation. <i>Applied Physics Letters</i> , 1986 , 48, 1181-1183	3.4	11
24	Persistent spectral hole burning for R' color centers in LiF crystals: Statics, dynamics, and external-field effects. <i>Physical Review B</i> , 1986 , 33, 5702-5716	3.3	18
23	Photochemical hole-burning in a protonated phthalocyanine with GaAlAs diode lasers. <i>Chemical Physics Letters</i> , 1985 , 114, 491-496	2.5	27
22	Two-color, photon-gated spectral hole-burning in an organic material. <i>Chemical Physics Letters</i> , 1985 , 118, 611-616	2.5	48
21	High-efficiency photochemical hole burning for an infrared color center. <i>Physical Review B</i> , 1985 , 32, 1270-1277	3.3	17
20	Can single-photon processes provide useful materials for frequency-domain optical storage?. Journal of the Optical Society of America B: Optical Physics, 1985, 2, 915	1.7	51

19	Anharmonic vibrational relaxation dynamics for a molecular impurity mode in alkali halide crystals. <i>Physical Review B</i> , 1984 , 29, 6694-6708	3.3	22
18	Beyond the bottleneck: submicrosecond hole burning in phthalocyanine. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1984 , 1, 341	1.7	40
17	Detection of persistent spectral holes using ultrasonic modulation. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1984 , 1, 349	1.7	16
16	Measurement of quantum efficiencies for persistent spectral hole burning. <i>The Journal of Physical Chemistry</i> , 1984 , 88, 6459-6460		57
15	FM spectroscopy detection of stimulated Raman gain. Optics Letters, 1983, 8, 108-10	3	36
14	Reading and writing of photochemical holes using GaAlAs-diode lasers. <i>Optics Letters</i> , 1983 , 8, 280-2	3	18
13	Persistent nonphotochemical spectral hole dynamics for an infrared vibrational mode in alkali halide crystals. <i>Physical Review B</i> , 1983 , 28, 7244-7259	3.3	40
12	Persistent Holes in the Spectra of Localized Vibrational Modes in Crystalline Solids. <i>Physical Review Letters</i> , 1982 , 49, 398-401	7.4	18
11	High-resolution spectroscopy of matrix-isolated ReO4-molecules. <i>Optics Letters</i> , 1981 , 6, 254-6	3	9
10	Infrared hole-burning spectroscopy of matrix-isolated ReO(4)(-)molecules. <i>Optics Letters</i> , 1981 , 6, 431-3	3 3	13
9	Anharmonic Relaxation Times of Molecular Vibrational Modes in Alkali Halide Crystals. <i>Physical Review Letters</i> , 1981 , 47, 1082-1085	7.4	14
8	Improved transducer correction for standing-wave ultrasonic velocity measurements. <i>Journal of Applied Physics</i> , 1974 , 45, 549-552	2.5	9
7	Gold bowtie nanoantennas: improving the mismatch between light and nanoscale objects		3
6	Continuous, Topologically Guided Protein Crystallization Controls Bacterial Surface Layer Self-Assembl	y	1
5			
4	Single-molecule diffusometry reveals the nucleotide-dependent oligomerization pathways of Nicotiana tabacum Rubisco activase		1
3	Metabolic precision labeling enables selective probing of O-linkedN-acetylgalactosamine glycosylation		2
2	ATP-responsive biomolecular condensates tune bacterial kinase signaling		1

Phospho-signal flow from a pole-localized microdomain spatially patterns transcription factor activity

8