Elvira Agron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3750224/publications.pdf

Version: 2024-02-01

57	1,959	23 h-index	43
papers	citations		g-index
57	57	57	2200
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Quantitative analysis of optical coherence tomography imaging in patients with different severities of hydroxychloroquine toxicity. British Journal of Ophthalmology, 2023, 107, 849-855.	3.9	o
2	Visual acuity outcomes after cataract surgery in type 2 diabetes: the Action to Control Cardiovascular Risk in Diabetes (ACCORD) study. British Journal of Ophthalmology, 2022, 106, 1496-1502.	3.9	2
3	Associations between Age-Related Eye Diseases and Charles Bonnet Syndrome in Participants of the Age-Related Eye Disease Study 2: Report Number 26. Ophthalmology, 2022, 129, 233-235.	5.2	5
4	Assessing bidirectional associations between cognitive impairment and late ageâ€related macular degeneration in the Ageâ€Related Eye Disease Study 2. Alzheimer's and Dementia, 2022, 18, 1296-1305.	0.8	5
5	Cataract Surgery and the Risk of Developing Late Age-Related Macular Degeneration. Ophthalmology, 2022, 129, 414-420.	5.2	5
6	DeepLensNet: Deep Learning Automated Diagnosis and Quantitative Classification of Cataract Type and Severity. Ophthalmology, 2022, 129, 571-584.	5.2	23
7	Predicting myocardial infarction through retinal scans and minimal personal information. Nature Machine Intelligence, 2022, 4, 55-61.	16.0	30
8	Progression of Age-Related Macular Degeneration Among Individuals Homozygous for Risk Alleles on Chromosome 1 (<i>CFH-CFHR5</i>) or Chromosome 10 (<i>ARMS2/HTRA1</i>) or Both. JAMA Ophthalmology, 2022, 140, 252.	2.5	13
9	Reply. Ophthalmology Retina, 2022, 6, 334-335.	2.4	0
10	Adherence to a Mediterranean Diet and Geographic Atrophy Enlargement Rate. Ophthalmology Retina, 2022, 6, 762-770.	2.4	11
11	Reticular Pseudodrusen: The Third Macular Risk Feature for Progression to Late Age-Related Macular Degeneration. Ophthalmology, 2022, 129, 1107-1119.	5.2	26
12	Long-term Outcomes of Adding Lutein/Zeaxanthin and ω-3 Fatty Acids to the AREDS Supplements on Age-Related Macular Degeneration Progression. JAMA Ophthalmology, 2022, 140, 692.	2.5	40
13	Retinal Specialist versus Artificial Intelligence Detection of Retinal Fluid from OCT. Ophthalmology, 2021, 128, 100-109.	5.2	53
14	Dietary Nutrient Intake and Progression to Late Age-Related Macular Degeneration in the Age-Related Eye Disease Studies 1 and 2. Ophthalmology, 2021, 128, 425-442.	5.2	66
15	Progression of Geographic Atrophy with Subsequent Exudative Neovascular Disease in Age-Related Macular Degeneration. Ophthalmology Retina, 2021, 5, 108-117.	2.4	9
16	Multimodal, multitask, multiattention (M3) deep learning detection of reticular pseudodrusen: Toward automated and accessible classification of age-related macular degeneration. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 1135-1148.	4.4	11
17	Cluster Analysis and Genotype–Phenotype Assessment of Geographic Atrophy in Age-Related Macular Degeneration. Ophthalmology Retina, 2021, 5, 1061-1073.	2.4	6
18	Principal Cause of Poor Visual Acuity after Neovascular Age-Related Macular Degeneration. Ophthalmology Retina, 2021, 5, 23-31.	2.4	8

#	Article	IF	CITATIONS
19	Incidence of Macular Atrophy after Untreated Neovascular Age-Related Macular Degeneration. Ophthalmology, 2020, 127, 784-792.	5.2	16
20	Visual Acuity Outcomes after Anti–Vascular Endothelial Growth Factor Treatment for Neovascular Age-Related Macular Degeneration. Ophthalmology Retina, 2020, 4, 3-12.	2.4	15
21	CHOROIDAL THICKNESS AND VASCULARITY VARY WITH DISEASE SEVERITY AND SUBRETINAL DRUSENOID DEPOSIT PRESENCE IN NONADVANCED AGE-RELATED MACULAR DEGENERATION. Retina, 2020, 40, 632-642.	1.7	41
22	Adherence to the Mediterranean Diet and Progression to Late Age-Related Macular Degeneration in the Age-Related Eye Disease Studies 1 and 2. Ophthalmology, 2020, 127, 1515-1528.	5.2	34
23	Reply. Ophthalmology, 2020, 127, e19-e20.	5.2	0
24	Association of 2-Year Progression Along the AREDS AMD Scale and Development of Late Age-Related Macular Degeneration or Loss of Visual Acuity. JAMA Ophthalmology, 2020, 138, 610.	2.5	10
25	Adherence to a Mediterranean diet and cognitive function in the Ageâ€Related Eye Disease Studies 1 & 2. Alzheimer's and Dementia, 2020, 16, 831-842.	0.8	28
26	Deep Learning Automated Detection of Reticular Pseudodrusen from Fundus Autofluorescence Images or Color Fundus Photographs in AREDS2. Ophthalmology, 2020, 127, 1674-1687.	5. 2	19
27	The Association of Aspirin Use with Age-Related Macular Degeneration Progression in the Age-Related Eye Disease Studies. Ophthalmology, 2019, 126, 1647-1656.	5.2	13
28	No CFH or ARMS2 Interaction with Omega-3 Fatty Acids, Low versus High Zinc, or β-Carotene versus Lutein and Zeaxanthin onÂProgression of Age-Related Macular Degeneration in the Age-Related Eye DiseaseÂStudy 2. Ophthalmology, 2019, 126, 1541-1548.	5.2	15
29	A Deep Learning Approach for Automated Detection of Geographic Atrophy from Color Fundus Photographs. Ophthalmology, 2019, 126, 1533-1540.	5 . 2	55
30	Prevalence, Risk, and Genetic Association of Reticular Pseudodrusen in Age-related Macular Degeneration. Ophthalmology, 2019, 126, 1659-1666.	5.2	69
31	Reply. Ophthalmology, 2019, 126, e40-e41.	5. 2	1
32	Association of Dietary and Supplementary Calcium Intake With Age-Related Macular Degeneration. JAMA Ophthalmology, 2019, 137, 543.	2.5	16
33	Natural History of Drusenoid Pigment Epithelial Detachment Associated with Age-Related Macular Degeneration. Ophthalmology, 2019, 126, 261-273.	5.2	38
34	Cost-effectiveness of age-related macular degeneration study supplements in the UK: combined trial and real-world outcomes data. British Journal of Ophthalmology, 2018, 102, 465-472.	3.9	10
35	A Deep Phenotype Association Study Reveals Specific Phenotype Associations with Genetic Variants in Age-related Macular Degeneration. Ophthalmology, 2018, 125, 559-568.	5 . 2	30
36	Association of Mortality with Ocular Diseases and Visual Impairment in the Age-Related Eye Disease Study 2. Ophthalmology, 2018, 125, 512-521.	5.2	23

#	Article	IF	CITATIONS
37	Progression of Geographic Atrophy in Age-related Macular Degeneration. Ophthalmology, 2018, 125, 1913-1928.	5. 2	127
38	Evolution of Geographic Atrophy in Participants Treated with Ranibizumab for Neovascular Age-Related Macular Degeneration. Ophthalmology Retina, 2017, 1, 34-41.	2.4	19
39	No Sex Differences in the Frequencies of Common Single Nucleotide Polymorphisms Associated with Age-Related Macular Degeneration. Current Eye Research, 2017, 42, 470-475.	1.5	2
40	Elevated CD1c ⁺ Myeloid Dendritic Cell Proportions Associate With Clinical Activity and Predict Disease Reactivation in Noninfectious Uveitis., 2016, 57, 1765.		15
41	Evaluating the Validity of the Age-Related Eye Disease Study Grading Scale for Age-Related Macular Degeneration. JAMA Ophthalmology, 2016, 134, 1041.	2.5	24
42	The Association of Statin Use with Cataract Progression and Cataract Surgery: The AREDS2 Report Number 8. Ophthalmology, 2016, 123, 916-917.	5. 2	17
43	Reply. Ophthalmology, 2015, 122, e63.	5. 2	0
44	Reply. Ophthalmology, 2015, 122, e58-e59.	5. 2	0
45	Genetic Testing in Persons with Age-Related Macular Degeneration and the Use of the AREDS Supplements: To Test or Not to Test?. Ophthalmology, 2015, 122, 212-215.	5 . 2	58
46	Author reply. Ophthalmology, 2015, 122, e46-e47.	5. 2	1
47	Changes in Lens Opacities on the Age-Related Eye Disease Study Grading Scale Predict Progression to Cataract Surgery and Vision Loss. Ophthalmology, 2015, 122, 888-896.	5. 2	11
48	The Association of Statin Use with Age-Related Macular Degeneration Progression. Ophthalmology, 2015, 122, 2490-2496.	5. 2	25
49	Effect of Omega-3 Fatty Acids, Lutein/Zeaxanthin, or Other Nutrient Supplementation on Cognitive Function. JAMA - Journal of the American Medical Association, 2015, 314, 791.	7.4	155
50	Reply. Ophthalmology, 2015, 122, e61-e62.	5. 2	0
51	Ten-Year Follow-up of Age-Related Macular Degeneration in the Age-Related Eye Disease Study. JAMA Ophthalmology, 2014, 132, 272.	2.5	181
52	No Clinically Significant Association between CFH and ARMS2 Genotypes and Response to Nutritional Supplements. Ophthalmology, 2014, 121, 2173-2180.	5. 2	86
53	Visual Acuity after Cataract Surgery in Patients with Age-Related Macular Degeneration. Ophthalmology, 2014, 121, 1229-1236.	5. 2	41
54	Long-Term Effects of Vitamins C and E, β-Carotene, and Zinc on Age-related MacularÂDegeneration. Ophthalmology, 2013, 120, 1604-1611.e4.	5.2	233

#	Article	IF	CITATIONS
55	Effects of Docosahexaenoic Acid in Preventing Experimental Choroidal Neovascularization in Rodents. Journal of Clinical & Experimental Ophthalmology, 2011, 02, .	0.1	7
56	ω–3 Long-chain polyunsaturated fatty acid intake and 12-y incidence of neovascular age-related macular degeneration and central geographic atrophy: AREDS report 30, a prospective cohort study from the Age-Related Eye Disease Study. American Journal of Clinical Nutrition, 2009, 90, 1601-1607.	4.7	153
57	ï‰-3 Long-Chain Polyunsaturated Fatty Acid Intake Inversely Associated With 12-Year Progression to Advanced Age-Related Macular Degeneration. JAMA Ophthalmology, 2009, 127, 109.	2.4	58