Kang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3749944/publications.pdf Version: 2024-02-01

KANC ZHANC

#	Article	IF	CITATIONS
1	Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nature Communications, 2017, 8, 14460.	5.8	382
2	Engineering chiral porous metal-organic frameworks for enantioselective adsorption and separation. Nature Communications, 2014, 5, 4406.	5.8	221
3	Ultrathin two-dimensional porous organic nanosheets with molecular rotors for chemical sensing. Nature Communications, 2017, 8, 1142.	5.8	152
4	Chiral NH-Controlled Supramolecular Metallacycles. Journal of the American Chemical Society, 2017, 139, 1554-1564.	6.6	122
5	Confinement of Aggregation-Induced Emission Molecular Rotors in Ultrathin Two-Dimensional Porous Organic Nanosheets for Enhanced Molecular Recognition. Journal of the American Chemical Society, 2018, 140, 4035-4046.	6.6	119
6	In silico screening of 4764 computation-ready, experimental metal–organic frameworks for CO ₂ separation. Journal of Materials Chemistry A, 2016, 4, 2105-2114.	5.2	109
7	Water Desalination through Zeolitic Imidazolate Framework Membranes: Significant Role of Functional Groups. Langmuir, 2015, 31, 13230-13237.	1.6	108
8	Submicrometerâ€6ized ZIFâ€71 Filled Organophilic Membranes for Improved Bioethanol Recovery: Mechanistic Insights by Monte Carlo Simulation and FTIR Spectroscopy. Advanced Functional Materials, 2015, 25, 516-525.	7.8	94
9	A Combinatorial Approach towards Water‣table Metal–Organic Frameworks for Highly Efficient Carbon Dioxide Separation. ChemSusChem, 2014, 7, 2791-2795.	3.6	82
10	Seawater Pervaporation through Zeolitic Imidazolate Framework Membranes: Atomistic Simulation Study. ACS Applied Materials & amp; Interfaces, 2016, 8, 13392-13399.	4.0	72
11	Adsorption of C ₁ –C ₄ Alcohols in Zeolitic Imidazolate Framework-8: Effects of Force Fields, Atomic Charges, and Framework Flexibility. Journal of Physical Chemistry C, 2013, 117, 25628-25635.	1.5	70
12	Computational design of 2D functional covalent–organic framework membranes for water desalination. Environmental Science: Water Research and Technology, 2017, 3, 735-743.	1.2	69
13	1D-2D-3D Transformation Synthesis of Hierarchical Metal–Organic Framework Adsorbent for Multicomponent Alkane Separation. Journal of the American Chemical Society, 2017, 139, 819-828.	6.6	62
14	Ag nanoprisms with Ag2S attachment. Scientific Reports, 2013, 3, 2177.	1.6	61
15	"Click―extended nitrogen-rich metal–organic frameworks and their high performance in CO2-selective capture. Chemical Communications, 2014, 50, 4683.	2.2	61
16	Biofuel purification in zeolitic imidazolate frameworks: the significant role of functional groups. Physical Chemistry Chemical Physics, 2014, 16, 9643-9655.	1.3	57
17	Water desalination and biofuel dehydration through a thin membrane of polymer of intrinsic microporosity: Atomistic simulation study. Journal of Membrane Science, 2018, 545, 49-56.	4.1	55
18	Functionalized metal–organic framework MIL-101 for CO2 capture: multi-scale modeling from ab initio calculation and molecular simulation to breakthrough prediction. CrystEngComm, 2013, 15, 10358.	1.3	36

KANG ZHANG

#	Article	IF	CITATIONS
19	Molecular Design of Zirconium Tetrazolate Metal–Organic Frameworks for CO ₂ Capture. Crystal Growth and Design, 2017, 17, 543-549.	1.4	36
20	Formation of CH ₄ Hydrate in a Mesoporous Metal–Organic Framework MIL-101: Mechanistic Insights from Microsecond Molecular Dynamics Simulations. Journal of Physical Chemistry Letters, 2019, 10, 7002-7008.	2.1	35
21	Efficient Removal of Pb ²⁺ from Aqueous Solution by an Ionic Covalent–Organic Framework: Molecular Simulation Study. Industrial & Engineering Chemistry Research, 2018, 57, 6477-6482.	1.8	33
22	Molecular Dynamics Phenomena of Water in the Metalorganic Framework MIL-100(Al), as Revealed by Pulsed Field Gradient NMR and Atomistic Simulation. Journal of Physical Chemistry C, 2017, 121, 18065-18074.	1.5	25
23	Biofuel purification in GME zeolitic–imidazolate frameworks: From <i>ab initio</i> calculations to molecular simulations. AICHE Journal, 2015, 61, 2763-2775.	1.8	22
24	CO ₂ capture in rht metal–organic frameworks: multiscale modeling from molecular simulation to breakthrough prediction. Journal of Materials Chemistry A, 2015, 3, 16327-16336.	5.2	20
25	Crucial role of blocking inaccessible cages in the simulation of gas adsorption in a paddle-wheel metal–organic framework. RSC Advances, 2013, 3, 16152.	1.7	15
26	Functional UiO-66 for the removal of sulfur-containing compounds in gas and liquid mixtures: A molecular simulation study. Chemical Engineering Journal, 2019, 356, 737-745.	6.6	15
27	Diameter Effect on the Sidewall Functionalization of Singleâ€Walled Carbon Nanotubes by Addition of Dichlorocarbene. Advanced Functional Materials, 2012, 22, 5216-5223.	7.8	13
28	Glucose recovery from aqueous solutions by adsorption in metal–organic framework MIL-101: a molecular simulation study. Scientific Reports, 2015, 5, 12821.	1.6	11
29	Molecular Simulation and Analysis of Sorption Process toward Theoretical Prediction for Liquid Permeation through Membranes. Journal of Physical Chemistry B, 2018, 122, 12211-12218.	1.2	7
30	Hydrogen Adsorption in Metal–Organic Framework MIL-101(Cr)—Adsorbate Densities and Enthalpies from Sorption, Neutron Scattering, In Situ X-ray Diffraction, Calorimetry, and Molecular Simulations. ACS Applied Energy Materials, 2021, 4, 7839-7847.	2.5	2
31	Porous Materials: Submicrometer-Sized ZIF-71 Filled Organophilic Membranes for Improved Bioethanol Recovery: Mechanistic Insights by Monte Carlo Simulation and FTIR Spectroscopy (Adv. Funct. Mater.) Tj ETQo	q1 1 0 7.38 433	14 ngBT /Over