
Ramesh A Shivdasani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3749631/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SATB2 preserves colon stem cell identity and mediates ileum-colon conversion via enhancer remodeling. Cell Stem Cell, 2022, 29, 101-115.e10.	11.1	31
2	Stem cell responses to stretch and strain. Trends in Cell Biology, 2022, 32, 4-7.	7.9	5
3	Transcription factor-mediated intestinal metaplasia and the role of a shadow enhancer. Genes and Development, 2022, 36, 38-52.	5.9	11
4	Cell and chromatin transitions in intestinal stem cell regeneration. Genes and Development, 2022, 36, 684-698.	5.9	9
5	Epigenetic Signatures and Plasticity of Intestinal and Other Stem Cells. Annual Review of Physiology, 2021, 83, 405-427.	13.1	6
6	Tissue regeneration: Reserve or reverse?. Science, 2021, 371, 784-786.	12.6	46
7	Progastrin production transitions from Bmi1+/Prox1+ to Lgr5high cells during early intestinal tumorigenesis. Translational Oncology, 2021, 14, 101001.	3.7	1
8	Creb5 establishes the competence for Prg4 expression in articular cartilage. Communications Biology, 2021, 4, 332.	4.4	30
9	Adaptation of pancreatic cancer cells to nutrient deprivation is reversible and requires glutamine synthetase stabilization by mTORC1. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	26
10	Race to the bottom: Darwinian competition in early intestinal tumorigenesis. Cell Stem Cell, 2021, 28, 1340-1342.	11.1	2
11	Hybrid Stomach-Intestinal Chromatin States Underlie Human Barrett's Metaplasia. Gastroenterology, 2021, 161, 924-939.e11.	1.3	18
12	The hens guarding epithelial cancer fox-houses. Cell Research, 2021, , .	12.0	0
13	Krüppel-like Factor 5 Regulates Stemness, Lineage Specification, and Regeneration of Intestinal Epithelial Stem Cells. Cellular and Molecular Gastroenterology and Hepatology, 2020, 9, 587-609.	4.5	26
14	Cellular and molecular architecture of the intestinal stem cell niche. Nature Cell Biology, 2020, 22, 1033-1041.	10.3	126
15	Hedgehog-Activated Fat4 and PCP Pathways Mediate Mesenchymal Cell Clustering and Villus Formation in Gut Development. Developmental Cell, 2020, 52, 647-658.e6.	7.0	39
16	Epigenetic regulation of intestinal stem cell differentiation. American Journal of Physiology - Renal Physiology, 2020, 319, G189-G196.	3.4	11
17	Ascl2-Dependent Cell Dedifferentiation Drives Regeneration of Ablated Intestinal Stem Cells. Cell Stem Cell, 2020, 26, 377-390.e6.	11.1	152
18	Distinct Mesenchymal Cell Populations Generate the Essential Intestinal BMP Signaling Gradient. Cell Stem Cell, 2020, 26, 391-402.e5.	11,1	211

RAMESH A SHIVDASANI

#	Article	IF	CITATIONS
19	Replicational Dilution of H3K27me3 in Mammalian Cells and the Role of Poised Promoters. Molecular Cell, 2020, 78, 141-151.e5.	9.7	52
20	Enhancer signatures stratify and predict outcomes of non-functional pancreatic neuroendocrine tumors. Nature Medicine, 2019, 25, 1260-1265.	30.7	120
21	Extensive Recovery of Embryonic Enhancer and Gene Memory Stored in Hypomethylated Enhancer DNA. Molecular Cell, 2019, 74, 542-554.e5.	9.7	65
22	Dissecting Cell Lineages: From Microscope to Kaleidoscope. Cell, 2019, 176, 949-951.	28.9	4
23	The lineage-specific transcription factor CDX2 navigates dynamic chromatin to control distinct stages of intestine development. Development (Cambridge), 2019, 146, .	2.5	50
24	RORα-expressing T regulatory cells restrain allergic skin inflammation. Science Immunology, 2018, 3, .	11.9	97
25	Enhancer, transcriptional, and cell fate plasticity precedes intestinal determination during endoderm development. Genes and Development, 2018, 32, 1430-1442.	5.9	34
26	TRPS1 Is a Lineage-Specific Transcriptional Dependency in Breast Cancer. Cell Reports, 2018, 25, 1255-1267.e5.	6.4	46
27	Limited gut cell repertoire for multiple hormones. Nature Cell Biology, 2018, 20, 865-867.	10.3	5
28	Transcriptional Regulator CNOT3 Defines an Aggressive Colorectal Cancer Subtype. Cancer Research, 2017, 77, 766-779.	0.9	21
29	Dynamic Reorganization of Chromatin Accessibility Signatures during Dedifferentiation of Secretory Precursors into Lgr5+ Intestinal Stem Cells. Cell Stem Cell, 2017, 21, 65-77.e5.	11.1	190
30	ARID1A loss impairs enhancer-mediated gene regulation and drives colon cancer in mice. Nature Genetics, 2017, 49, 296-302.	21.4	260
31	Challenges and emerging directions in single-cell analysis. Genome Biology, 2017, 18, 84.	8.8	258
32	Transcription factor-dependent â€~anti-repressive' mammalian enhancers exclude H3K27me3 from extended genomic domains. Genes and Development, 2017, 31, 2391-2404.	5.9	34
33	Somatic copy number alterations in gastric adenocarcinomas among Asian and Western patients. PLoS ONE, 2017, 12, e0176045.	2.5	28
34	The Alimentary Canal. , 2016, , 77-84.		0
35	Acquired Tissue-Specific Promoter Bivalency Is a Basis for PRC2 Necessity in Adult Cells. Cell, 2016, 165, 1389-1400.	28.9	101
36	Chromatin immunoprecipitation from fixed clinical tissues reveals tumor-specific enhancer profiles. Nature Medicine, 2016, 22, 685-691.	30.7	64

Ramesh A Shivdasani

#	Article	IF	CITATIONS
37	Natural Selection, Crypt Fitness, and Pol III Dependency in theÂIntestine. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 714-715.	4.5	0
38	Sox2 Suppresses Gastric Tumorigenesis in Mice. Cell Reports, 2016, 16, 1929-1941.	6.4	61
39	Single-Cell Transcript Profiles Reveal Multilineage Priming in Early Progenitors Derived from Lgr5 + Intestinal Stem Cells. Cell Reports, 2016, 16, 2053-2060.	6.4	69
40	Co-culture of Gastric Organoids and Immortalized Stomach Mesenchymal Cells. Methods in Molecular Biology, 2016, 1422, 23-31.	0.9	7
41	Stomach development, stem cells and disease. Development (Cambridge), 2016, 143, 554-565.	2.5	116
42	Reprogrammed Stomach Tissue as a Renewable Source of Functional \hat{I}^2 Cells for Blood Glucose Regulation. Cell Stem Cell, 2016, 18, 410-421.	11.1	119
43	Distinct Processes and Transcriptional Targets Underlie CDX2 Requirements in Intestinal Stem Cells and Differentiated Villus Cells. Stem Cell Reports, 2015, 5, 673-681.	4.8	35
44	The use of murineâ€derived fundic organoids in studies of gastric physiology. Journal of Physiology, 2015, 593, 1809-1827.	2.9	98
45	SOX15 Governs Transcription in Human Stratified Epithelia and a Subset of Esophageal Adenocarcinomas. Cellular and Molecular Gastroenterology and Hepatology, 2015, 1, 598-609.e6.	4.5	14
46	Transcription Factors GATA4 and HNF4A Control Distinct Aspects of Intestinal Homeostasis in Conjunction with Transcription Factor CDX2. Journal of Biological Chemistry, 2015, 290, 1850-1860.	3.4	64
47	Control of stomach smooth muscle development and intestinal rotation by transcription factor BARX1. Developmental Biology, 2015, 405, 21-32.	2.0	36
48	Erratum for Verzi et al., Intestinal Master Transcription Factor CDX2 Controls Chromatin Access for Partner Transcription Factor Binding. Molecular and Cellular Biology, 2015, 35, 496-496.	2.3	0
49	The androgen receptor cistrome is extensively reprogrammed in human prostate tumorigenesis. Nature Genetics, 2015, 47, 1346-1351.	21.4	363
50	Broadly permissive intestinal chromatin underlies lateral inhibition and cell plasticity. Nature, 2014, 506, 511-515.	27.8	207
51	Active enhancers are delineated de novo during hematopoiesis, with limited lineage fidelity among specified primary blood cells. Genes and Development, 2014, 28, 1827-1839.	5.9	38
52	Radiation Redux: Reserve Intestinal Stem Cells Miss the Call to Duty. Cell Stem Cell, 2014, 14, 135-136.	11.1	4
53	Wnt Secretion from Epithelial Cells and Subepithelial Myofibroblasts Is Not Required in the Mouse Intestinal Stem Cell Niche InÂVivo. Stem Cell Reports, 2014, 2, 127-134.	4.8	99
54	Indian Hedgehog Mediates Gastrin-Induced Proliferation in Stomach of Adult Mice. Gastroenterology, 2014, 147, 655-666.e9.	1.3	39

RAMESH A SHIVDASANI

#	Article	IF	CITATIONS
55	Somatic mutation of CDKN1B in small intestine neuroendocrine tumors. Nature Genetics, 2013, 45, 1483-1486.	21.4	275
56	Intestinal Master Transcription Factor CDX2 Controls Chromatin Access for Partner Transcription Factor Binding. Molecular and Cellular Biology, 2013, 33, 281-292.	2.3	76
57	Intact function of Lgr5 receptor-expressing intestinal stem cells in the absence of Paneth cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3932-3937.	7.1	207
58	Gastrointestinal Adenocarcinomas of the Esophagus, Stomach, and Colon Exhibit Distinct Patterns of Genome Instability and Oncogenesis. Cancer Research, 2012, 72, 4383-4393.	0.9	242
59	GEFs on the RhoAd to a Colossal Nucleus. Developmental Cell, 2012, 22, 471-472.	7.0	1
60	Boundaries, junctions and transitions in the gastrointestinal tract. Experimental Cell Research, 2011, 317, 2711-2718.	2.6	52
61	Notch signaling in stomach epithelial stem cell homeostasis. Journal of Experimental Medicine, 2011, 208, 677-688.	8.5	92
62	Regulation of mouse stomach development and Barx1 expression by specific microRNAs. Development (Cambridge), 2011, 138, 1081-1086.	2.5	21
63	Essential and Redundant Functions of Caudal Family Proteins in Activating Adult Intestinal Genes. Molecular and Cellular Biology, 2011, 31, 2026-2039.	2.3	94
64	Endodermal Hedgehog signals modulate Notch pathway activity in the developing digestive tract mesenchyme. Development (Cambridge), 2011, 138, 3225-3233.	2.5	31
65	Barx1-Mediated Inhibition of Wnt Signaling in the Mouse Thoracic Foregut Controls Tracheo-Esophageal Septation and Epithelial Differentiation. PLoS ONE, 2011, 6, e22493.	2.5	72
66	The intestinal–crypt casino. Nature, 2010, 467, 1055-1056.	27.8	4
67	Hedgehog signaling controls mesenchymal growth in the developing mammalian digestive tract. Development (Cambridge), 2010, 137, 1721-1729.	2.5	149
68	TCF4 and CDX2, major transcription factors for intestinal function, converge on the same <i>cis</i> -regulatory regions. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15157-15162.	7.1	73
69	Requirement of the Epithelium-specific Ets Transcription Factor Spdef for Mucous Gland Cell Function in the Gastric Antrum. Journal of Biological Chemistry, 2010, 285, 35047-35055.	3.4	42
70	Differentiation-Specific Histone Modifications Reveal Dynamic Chromatin Interactions and Partners for the Intestinal Transcription Factor CDX2. Developmental Cell, 2010, 19, 713-726.	7.0	192
71	Role of the Homeodomain Transcription Factor Bapx1 in Mouse Distal Stomach Development. Gastroenterology, 2009, 136, 1701-1710.	1.3	71
72	Highâ€resolution analysis of genetic alterations in small bowel carcinoid tumors reveals areas of recurrent amplification and loss. Genes Chromosomes and Cancer, 2008, 47, 591-603.	2.8	101

RAMESH A SHIVDASANI

#	Article	IF	CITATIONS
73	Transcription Factor Foxq1 Controls Mucin Gene Expression and Granule Content in Mouse Stomach Surface Mucous Cells. Gastroenterology, 2008, 135, 591-600.	1.3	49
74	Requirement of the Tissue-Restricted Homeodomain Transcription Factor Nkx6.3 in Differentiation of Gastrin-Producing G Cells in the Stomach Antrum. Molecular and Cellular Biology, 2008, 28, 3208-3218.	2.3	31
75	Independent functions and mechanisms for homeobox gene <i>Barx1</i> in patterning mouse stomach and spleen. Development (Cambridge), 2007, 134, 3603-3613.	2.5	57
76	Phases of Canonical Wnt Signaling During the Development of Mouse Intestinal Epithelium. Gastroenterology, 2007, 133, 529-538.	1.3	101
77	A dynamic expression survey identifies transcription factors relevant in mouse digestive tract development. Development (Cambridge), 2006, 133, 4119-4129.	2.5	73
78	MicroRNAs: regulators of gene expression and cell differentiation. Blood, 2006, 108, 3646-3653.	1.4	450
79	Loss of Non-Muscle Myosin Heavy Chain IIA Function Does Not Restrict Megakaryocyte Maturation or Spontaneous Platelet Release and Likely Affects Non-Cell-Autonomous Aspects of Thrombopoiesis Blood, 2006, 108, 701-701.	1.4	0
80	A Fli in the ointment. Blood, 2005, 105, 9-10.	1.4	0
81	Overlapping Gene Expression in Fetal Mouse Intestine Development and Human Colorectal Cancer. Cancer Research, 2005, 65, 8715-8722.	0.9	34
82	Culture, Expansion, and Differentiation of Murine Megakaryocytes. Current Protocols in Immunology, 2005, 67, Unit 22F.6.	3.6	32
83	The Stomach Mesenchymal Transcription Factor Barx1 Specifies Gastric Epithelial Identity through Inhibition of Transient Wnt Signaling. Developmental Cell, 2005, 8, 611-622.	7.0	178
84	Phosphatidyl Inositol (4,5)P2 Marks Megakaryocyte Internal Membranes and Is Associated with Megakaryocyte Maturation and Platelet Release Blood, 2005, 106, 732-732.	1.4	0
85	Lonely in Paris: when one gene copy isn't enough. Journal of Clinical Investigation, 2004, 114, 17-19.	8.2	3
86	An animal model for myelofibrosis. Blood, 2002, 100, 1109-1110.	1.4	7
87	Downregulation of Hedgehog Signaling Is Required for Organogenesis of the Small Intestine in Xenopus. Developmental Biology, 2001, 229, 188-202.	2.0	45
88	Molecular and Transcriptional Regulation of Megakaryocyte Differentiation. Stem Cells, 2001, 19, 397-407.	3.2	159
89	A lineage-restricted and divergent β-tubulin isoform is essential for the biogenesis, structure and function of blood platelets. Current Biology, 2001, 11, 579-586.	3.9	230
90	Structure and expression of a novel frizzled gene isolated from the developing mouse gut. Biochemical Journal, 2000, 349, 829-834.	3.7	13

Ramesh A Shivdasani

#	ARTICLE	IF	CITATIONS
91	Hematopoietic-specific β1 tubulin participates in a pathway of platelet biogenesis dependent on the transcription factor NF-E2. Blood, 2000, 96, 1366-1373.	1.4	163
92	Pathophysiology of Thrombocytopenia and Anemia in Mice Lacking Transcription Factor NF-E2. Blood, 1999, 94, 3037-3047.	1.4	95
93	Consequences of GATA-1 Deficiency in Megakaryocytes and Platelets. Blood, 1999, 93, 2867-2875.	1.4	291
94	Blood Platelets Are Assembled Principally at the Ends of Proplatelet Processes Produced by Differentiated Megakaryocytes. Journal of Cell Biology, 1999, 147, 1299-1312.	5.2	464
95	Characterization of the Hematopoietic Transcription Factor NF-E2 in Primary Murine Megakaryocytes. Journal of Biological Chemistry, 1998, 273, 7572-7578.	3.4	62
96	Erythroid Maturation and Globin Gene Expression in Mice With Combined Deficiency of NF-E2 and Nrf-2. Blood, 1998, 91, 3459-3466.	1.4	61
97	Mice Lacking Transcription Factor NF-E2 Provide In Vivo Validation of the Proplatelet Model of Thrombocytopoiesis and Show a Platelet Production Defect That Is Intrinsic to Megakaryocytes. Blood, 1998, 92, 1608-1616.	1.4	160
98	Regulation of the Serum Concentration of Thrombopoietin in Thrombocytopenic NF-E2 Knockout Mice. Blood, 1997, 90, 1821-1827.	1.4	68
99	A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. EMBO Journal, 1997, 16, 3965-3973.	7.8	637
100	The transcriptional control of hematopoiesis [see comments]. Blood, 1996, 87, 4025-4039.	1.4	590
101	The Role of Transcription Factor NF‐E2 in Megakaryocyte Maturation and Platelet Production. Stem Cells, 1996, 14, 112-115.	3.2	17
102	Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature, 1995, 373, 432-434.	27.8	880
103	Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoeitin/MGDF in megakaryocyte development. Cell, 1995, 81, 695-704.	28.9	690