
Klaus Strebel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3749496/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	A Novel Human WD Protein, h-βTrCP, that Interacts with HIV-1 Vpu Connects CD4 to the ER Degradation Pathway through an F-Box Motif. Molecular Cell, 1998, 1, 565-574.	9.7	630
2	The HIV A (sor) gene product is essential for virus infectivity. Nature, 1987, 328, 728-730.	27.8	505
3	HIV-1 Vif, APOBEC, and Intrinsic Immunity. Retrovirology, 2008, 5, 51.	2.0	290
4	The Human Immunodeficiency Virus Type 1 Vif Protein Reduces Intracellular Expression and Inhibits Packaging of APOBEC3G (CEM15), a Cellular Inhibitor of Virus Infectivity. Journal of Virology, 2003, 77, 11398-11407.	3.4	289
5	Identification of an ion channel activity of the Vpu transmembrane domain and its involvement in the regulation of virus release from HIV-1-infected cells. FEBS Letters, 1996, 398, 12-18.	2.8	266
6	Vpu enhances HIV-1 virus release in the absence of Bst-2 cell surface down-modulation and intracellular depletion. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2868-2873.	7.1	204
7	Viral RNA Is Required for the Association of APOBEC3G with Human Immunodeficiency Virus Type 1 Nucleoprotein Complexes. Journal of Virology, 2005, 79, 5870-5874.	3.4	170
8	The Human Immunodeficiency Virus Type 1 Encoded Vpu Protein is Phosphorylated by Casein Kinase-2 (CK-2) at Positions Ser52 and Ser56 within a Predicted α-Helix-Turn-α-Helix-Motif. Journal of Molecular Biology, 1994, 236, 16-25.	4.2	164
9	The Human Immunodeficiency Virus Type 1 Vpu Protein Inhibits NF-κB Activation by Interfering with βTrCP-mediated Degradation of IκB. Journal of Biological Chemistry, 2001, 276, 15920-15928.	3.4	164
10	Viral protein U counteracts a human host cell restriction that inhibits HIV-1 particle production. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15154-15159.	7.1	153
11	Chicoric Acid Analogues as HIV-1 Integrase Inhibitors. Journal of Medicinal Chemistry, 1999, 42, 1401-1414.	6.4	149
12	Codon optimization of the HIV-1 vpu and vif genes stabilizes their mRNA and allows for highly efficient Rev-independent expression. Virology, 2004, 319, 163-175.	2.4	149
13	Multilayered Mechanism of CD4 Downregulation by HIV-1 Vpu Involving Distinct ER Retention and ERAD Targeting Steps. PLoS Pathogens, 2010, 6, e1000869.	4.7	145
14	The Human Immunodeficiency Virus Type 1 Accessory Protein Vpu Induces Apoptosis by Suppressing the Nuclear Factor κB–dependent Expression of Antiapoptotic Factors. Journal of Experimental Medicine, 2001, 194, 1299-1312.	8.5	139
15	The formation of cysteine-linked dimers of BST-2/tetherin is important for inhibition of HIV-1 virus release but not for sensitivity to Vpu. Retrovirology, 2009, 6, 80.	2.0	139
16	Restriction of Virus Infection but Not Catalytic dNTPase Activity Is Regulated by Phosphorylation of SAMHD1. Journal of Virology, 2013, 87, 11516-11524.	3.4	139
17	Enzymatically Active APOBEC3G Is Required for Efficient Inhibition of Human Immunodeficiency Virus Type 1. Journal of Virology, 2007, 81, 13346-13353.	3.4	137
18	Human cellular restriction factors that target HIV-1 replication. BMC Medicine, 2009, 7, 48.	5.5	120

KLAUS STREBEL

#	Article	IF	CITATIONS
19	HIV accessory proteins versus host restriction factors. Current Opinion in Virology, 2013, 3, 692-699.	5.4	111
20	The HIV-1 Vpu protein: a multifunctional enhancer of viral particle release. Microbes and Infection, 2003, 5, 1029-1039.	1.9	104
21	CD317/Tetherin Is Enriched in the HIV-1 Envelope and Downregulated from the Plasma Membrane upon Virus Infection. Journal of Virology, 2010, 84, 4646-4658.	3.4	94
22	Production of infectious human immunodeficiency virus type 1 does not require depletion of APOBEC3G from virus-producing cells. Retrovirology, 2004, 1, 27.	2.0	89
23	Human Immunodeficiency Virus Type 1 Vif Inhibits Packaging and Antiviral Activity of a Degradation-Resistant APOBEC3G Variant. Journal of Virology, 2007, 81, 8236-8246.	3.4	83
24	Monomeric APOBEC3G Is Catalytically Active and Has Antiviral Activity. Journal of Virology, 2006, 80, 4673-4682.	3.4	76
25	Regulation of Virus Release by the Macrophage-Tropic Human Immunodeficiency Virus Type 1 AD8 Isolate Is Redundant and Can Be Controlled by either Vpu or Env. Journal of Virology, 1999, 73, 887-896.	3.4	73
26	Identification of Amino Acids in the Human Tetherin Transmembrane Domain Responsible for HIV-1 Vpu Interaction and Susceptibility. Journal of Virology, 2011, 85, 932-945.	3.4	72
27	Analysis of the contribution of cellular and viral RNA to the packaging of APOBEC3G into HIV-1 virions. Retrovirology, 2007, 4, 48.	2.0	70
28	Activation of HIV-1 from Latent Infection via Synergy of RUNX1 Inhibitor Ro5-3335 and SAHA. PLoS Pathogens, 2014, 10, e1003997.	4.7	57
29	Low dNTP levels are necessary but may not be sufficient for lentiviral restriction by SAMHD1. Virology, 2016, 488, 271-277.	2.4	55
30	Virus–host interactions. Aids, 2003, 17, S25-S34.	2.2	50
31	APOBEC3G encapsidation into HIV-1 virions: which RNA is it?. Retrovirology, 2008, 5, 55.	2.0	46
32	Differential Effects of Human Immunodeficiency Virus Type 1 Vpu on the Stability of BST-2/Tetherin. Journal of Virology, 2011, 85, 2611-2619.	3.4	46
33	Stably Expressed APOBEC3F Has Negligible Antiviral Activity. Journal of Virology, 2010, 84, 11067-11075.	3.4	45
34	HIV-1 Vpu — an ion channel in search of a job. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1074-1081.	2.6	40
35	Naturally occurring amino acid substitutions in the HIV-2 ROD envelope glycoprotein regulate its ability to augment viral particle release. Virology, 2003, 309, 85-98.	2.4	39
36	HIV-1 Vpu targets cell surface markers CD4 and BST-2 through distinct mechanisms. Molecular Aspects of Medicine, 2010, 31, 407-417.	6.4	38

KLAUS STREBEL

#	Article	IF	CITATIONS
37	C-terminal Hydrophobic Region in Human Bone Marrow Stromal Cell Antigen 2 (BST-2)/Tetherin Protein Functions as Second Transmembrane Motif. Journal of Biological Chemistry, 2011, 286, 39967-39981.	3.4	34
38	APOBEC3G & HTLV-1: inhibition without deamination. Retrovirology, 2005, 2, 37.	2.0	32
39	The Interferon-Inducible Host Factor Bone Marrow Stromal Antigen 2/Tetherin Restricts Virion Release, but Is It Actually a Viral Restriction Factor?. Journal of Interferon and Cytokine Research, 2011, 31, 137-144.	1.2	31
40	Identification and characterization of naturally occurring splice variants of SAMHD1. Retrovirology, 2012, 9, 86.	2.0	31
41	Vpr and Its Cellular Interaction Partners: R We There Yet?. Cells, 2019, 8, 1310.	4.1	31
42	ldentification of Dominant Negative Human Immunodeficiency Virus Type 1 Vif Mutants That Interfere with the Functional Inactivation of APOBEC3G by Virus-Encoded Vif. Journal of Virology, 2010, 84, 5201-5211.	3.4	30
43	Mannose Receptor 1 Restricts HIV Particle Release from Infected Macrophages. Cell Reports, 2018, 22, 786-795.	6.4	25
44	Some Human Immunodeficiency Virus Type 1 Vpu Proteins Are Able To Antagonize Macaque BST-2 In Vitro and In Vivo: Vpu-Negative Simian-Human Immunodeficiency Viruses Are Attenuated In Vivo. Journal of Virology, 2011, 85, 9708-9715.	3.4	23
45	CBFβ Enhances <i>De Novo</i> Protein Biosynthesis of Its Binding Partners HIV-1 Vif and RUNX1 and Potentiates the Vif-Induced Degradation of APOBEC3G. Journal of Virology, 2014, 88, 4839-4852.	3.4	23
46	HIV Accessory Genes Vif and Vpu. Advances in Pharmacology, 2007, 55, 199-232.	2.0	21
47	The Expression of Functional Vpx during Pathogenic SIVmac Infections of Rhesus Macaques Suppresses SAMHD1 in CD4+ Memory T Cells. PLoS Pathogens, 2015, 11, e1004928.	4.7	21
48	The Size and Conservation of a Coiled-coil Structure in the Ectodomain of Human BST-2/Tetherin Is Dispensable for Inhibition of HIV-1 Virion Release. Journal of Biological Chemistry, 2012, 287, 44278-44288.	3.4	19
49	Apolipoprotein E is an HIV-1-inducible inhibitor of viral production and infectivity in macrophages. PLoS Pathogens, 2018, 14, e1007372.	4.7	19
50	Differential Sensitivity of "Old―versus "New―APOBEC3G to Human Immunodeficiency Virus Type 1 Vif. Journal of Virology, 2009, 83, 1156-1160.	3.4	15
51	Identification of Residues in the BST-2 TM Domain Important for Antagonism by HIV-1 Vpu Using a Gain-of-Function Approach. Frontiers in Microbiology, 2011, 2, 35.	3.5	15
52	HIV-1 Vpu. Molecular Cell, 2004, 14, 150-152.	9.7	14
53	Fibrocytes Differ from Macrophages but Can Be Infected with HIV-1. Journal of Immunology, 2015, 195, 4341-4350.	0.8	12
54	Antagonism of BST-2/Tetherin Is a Conserved Function of the Env Glycoprotein of Primary HIV-2 Isolates. Journal of Virology, 2016, 90, 11062-11074.	3.4	12

KLAUS STREBEL

#	Article	IF	CITATIONS
55	APOBEC3G-independent reduction in virion infectivity during long-term HIV-1 replication in terminally differentiated macrophages. Virology, 2008, 379, 266-274.	2.4	11
56	Positioning of Cysteine Residues within the N-terminal Portion of the BST-2/Tetherin Ectodomain Is Important for Functional Dimerization of BST-2. Journal of Biological Chemistry, 2015, 290, 3740-3751.	3.4	9
57	Antibody-Mediated Enhancement of HIV-1 and HIV-2 Production from BST-2/Tetherin-Positive Cells. Journal of Virology, 2011, 85, 11981-11994.	3.4	8
58	Long-term passage of Vif-null HIV-1 in CD4 + T cells expressing sub-lethal levels of APOBEC proteins fails to develop APOBEC resistance. Virology, 2017, 504, 1-11.	2.4	7
59	Pyviko: an automated Python tool to design gene knockouts in complex viruses with overlapping genes. BMC Microbiology, 2017, 17, 12.	3.3	7
60	Inhibition of Vif-Mediated Degradation of APOBEC3G through Competitive Binding of Core-Binding Factor Beta. Journal of Virology, 2020, 94, .	3.4	5
61	Antiviral Activity and Adaptive Evolution of Avian Tetherins. Journal of Virology, 2020, 94, .	3.4	4
62	The Myeloid-Specific Transcription Factor PU.1 Upregulates Mannose Receptor Expression but Represses Basal Activity of the HIV-LTR Promoter. Journal of Virology, 2022, 96, .	3.4	4
63	Cytokine Effects on the Entry of Filovirus Envelope Pseudotyped Virus-Like Particles into Primary Human Macrophages. Viruses, 2019, 11, 889.	3.3	3
64	Vpu of a Simian Immunodeficiency Virus Isolated from Greater Spot-Nosed Monkey Antagonizes Human BST-2 via Two AxxxxxxW Motifs. Journal of Virology, 2020, 94, .	3.4	3
65	APOBEC3B Potently Restricts HIV-2 but Not HIV-1 in a Vif-Dependent Manner. Journal of Virology, 2021, 95, e0117021.	3.4	3
66	Simian Immunodeficiency Virus SIVgsn-99CM71 Vpu Employs Different Amino Acids To Antagonize Human and Greater Spot-Nosed Monkey BST-2. Journal of Virology, 2022, 96, JVI0152721.	3.4	1