Michael C Petty

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/374912/michael-c-petty-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 326
 8,341
 45
 73

 papers
 citations
 h-index
 g-index

 340
 8,751
 4.2
 5.71

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
326	Towards Intelligently Designed Evolvable Processors <i>Evolutionary Computation</i> , 2022 , 1-23	4.3	1
325	Electrical behaviour and evolutionary computation in thin films of bovine brain microtubules. <i>Scientific Reports</i> , 2021 , 11, 10776	4.9	1
324	Enhanced lifetime of organic photovoltaic diodes achieved by blending with PMMA: Impact of morphology and Donor:Acceptor combination. <i>Solar Energy Materials and Solar Cells</i> , 2021 , 219, 110765	6.4	4
323	Organic electronic memory devices 2019 , 843-874		
322	Light-Emitting Transistors Based on Solution-Processed Heterostructures of Self-Organized Multiple-Quantum-Well Perovskite and Metal-Oxide Semiconductors. <i>Advanced Electronic Materials</i> , 2019 , 5, 1800985	6.4	14
321	Efficient and Stable Solution-Processed Organic Light-Emitting Transistors Using a High-k Dielectric. <i>ACS Photonics</i> , 2019 , 6, 3159-3165	6.3	9
320	Short Channel Effect of Solution-Processed ZnO Thin Film Transistors: Optimization for Photolithographic Process. <i>Nanoscience and Nanotechnology Letters</i> , 2018 , 10, 754-760	0.8	
319	Low-Voltage Solution-Processed Hybrid Light-Emitting Transistors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 18445-18449	9.5	18
318	Model for large-area monolayer coverage of polystyrene nanospheres by spin coating. <i>Scientific Reports</i> , 2017 , 7, 40888	4.9	22
317	Molecular Electronics. Springer Handbooks, 2017, 1-1	1.3	1
316	Enhanced lifetime of organic photovoltaic diodes utilizing a ternary blend including an insulating polymer. <i>Solar Energy Materials and Solar Cells</i> , 2017 , 160, 101-106	6.4	21
315	Computing Based on Material Training: Application to Binary Classification Problems 2017,		2
314	Evolution-in-materio: solving computational problems using carbon nanotube p olymer composites. <i>Soft Computing</i> , 2016 , 20, 3007-3022	3.5	12
313	Optimization of a Solution-Processed SiO2 Gate Insulator by Plasma Treatment for Zinc Oxide Thin Film Transistors. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> 1. Since Theorem 1. Since Theorem 2.	9.5	25
312	Data Classification Using Carbon-Nanotubes and Evolutionary Algorithms. <i>Lecture Notes in Computer Science</i> , 2016 , 644-654	0.9	5
311	Training a Carbon-Nanotube/Liquid Crystal Data Classifier Using Evolutionary Algorithms. <i>Lecture Notes in Computer Science</i> , 2016 , 130-141	0.9	3
310	Evolution of Electronic Circuits using Carbon Nanotube Composites. <i>Scientific Reports</i> , 2016 , 6, 32197	4.9	14

(2012-2015)

309	Alignment of liquid crystal/carbon nanotube dispersions for application in unconventional computing 2015 ,		2	
308	Exploring the alignment of carbon nanotubes dispersed in a liquid crystal matrix using coplanar electrodes. <i>Journal of Applied Physics</i> , 2015 , 117, 125303	2.5	20	
307	Solution-processed SiO2 gate insulator formed at low temperature for zinc oxide thin-film transistors. <i>RSC Advances</i> , 2015 , 5, 36083-36087	3.7	12	
306	Nanoscale resolution scanning thermal microscopy using carbon nanotube tipped thermal probes. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 1174-81	3.6	17	
305	Effects of hydrogen plasma treatment on the electrical behavior of solution-processed ZnO transistors. <i>Journal of Applied Physics</i> , 2014 , 116, 074509	2.5	9	
304	UV-Assisted Low Temperature Oxide Dielectric Films for TFT Applications. <i>Advanced Materials Interfaces</i> , 2014 , 1, 1400206	4.6	38	
303	Evolution-in-materio: A frequency classifier using materials 2014,		8	
302	Evolution-in-materio: Solving bin packing problems using materials 2014 ,		9	
301	Zinc Oxide Thin-Film Transistors Fabricated at Low Temperature by Chemical Spray Pyrolysis. Journal of Electronic Materials, 2014 , 43, 4241-4245	1.9	11	
300	Switching and memory characteristics of thin films of an ambipolar organic compound: effects of device processing and electrode materials. <i>Journal Physics D: Applied Physics</i> , 2014 , 47, 485103	3	7	
299	Evolution-In-Materio: Solving Machine Learning Classification Problems Using Materials. <i>Lecture Notes in Computer Science</i> , 2014 , 721-730	0.9	13	
298	Synthesis of platinum complexes of fluorenyl-substituted porphyrins used as phosphorescent dyes for solution-processed organic light-emitting devices. <i>Tetrahedron</i> , 2013 , 69, 9625-9632	2.4	12	
297	Focused ion beam and field-emission microscopy of metallic filaments in memory devices based on thin films of an ambipolar organic compound consisting of oxadiazole, carbazole, and fluorene units. <i>Applied Physics Letters</i> , 2013 , 102, 213301	3.4	20	
296	Environmental effects on the electrical behavior of pentacene thin-film transistors with a poly(methyl methacrylate) gate insulator. <i>Organic Electronics</i> , 2013 , 14, 2101-2107	3.5	20	
295	Organic electronic memory devices 2013 , 618-653		2	
294	Photo-assisted molecular engineering in solution-processed organic thin-film transistors with a blended semiconductor for high mobility anisotropy. <i>Applied Physics Letters</i> , 2013 , 102, 013306	3.4	10	
293	Control of droplet morphology for inkjet-printed TIPS-pentacene transistors. <i>Microelectronic Engineering</i> , 2012 , 95, 1-4	2.5	45	
292	Improved memory behaviour of single-walled carbon nanotubes charge storage nodes. <i>Journal Physics D: Applied Physics</i> , 2012 , 45, 295401	3	17	

291	Electroless deposition of multi-functional zinc oxide surfaces displaying photoconductive, superhydrophobic, photowetting, and antibacterial properties. <i>Journal of Materials Chemistry</i> , 2012 , 22, 3859		31
290	Colour tuning of blue electroluminescence using bipolar carbazole@xadiazole molecules in single-active-layer organic light emitting devices (OLEDs). <i>Journal of Materials Chemistry</i> , 2012 , 22, 118	316	75
289	Electrical behavior of Langmuir-Blodgett networks of sorted metallic and semiconducting single-walled carbon nanotubes. <i>Langmuir</i> , 2012 , 28, 15385-91	4	11
288	Direct nanoscale imaging of ballistic and diffusive thermal transport in graphene nanostructures. <i>Nano Letters</i> , 2012 , 12, 2906-11	11.5	70
287	. IEEE Sensors Journal, 2012 , 12, 1181-1186	4	9
286	Organic bistable devices utilizing carbon nanotubes embedded in poly(methyl methacrylate). <i>Journal of Applied Physics</i> , 2012 , 112, 024509	2.5	36
285	Subthreshold characteristics of pentacene field-effect transistors influenced by grain boundaries. Journal of Applied Physics, 2012, 111, 104512	2.5	9
284	A versatile nanopatterning technique based on controlled undercutting and liftoff. <i>Advanced Materials</i> , 2011 , 23, 5039-44	24	11
283	Efficient Deep-Blue Electroluminescence from an Ambipolar Fluorescent Emitter in a Single-Active-Layer Device. <i>Chemistry of Materials</i> , 2011 , 23, 1640-1642	9.6	107
282	The electrical and optical properties of oriented Langmuir-Blodgett films of single-walled carbon nanotubes. <i>Carbon</i> , 2011 , 49, 2424-2430	10.4	17
281	Enhanced sensitivity of an organic field-effect transistor pH sensor using a fatty acid Langmuir B lodgett film. <i>Organic Electronics</i> , 2010 , 11, 1792-1795	3.5	12
2 80	The morphology and electrical conductivity of single-wall carbon nanotube thin films prepared by the Langmuir B lodgett technique. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2010 , 354, 113-117	5.1	21
279	Stable white light emission from an externally modified organic light-emitting device. <i>Displays</i> , 2010 , 31, 181-185	3.4	1
278	Pentacene thin film transistors with a poly(methyl methacrylate) gate dielectric: Optimization of device performance. <i>Journal of Applied Physics</i> , 2009 , 105, 034508	2.5	78
277	A pentacene-based organic thin film memory transistor. <i>Applied Physics Letters</i> , 2009 , 94, 173302	3.4	61
276	Effect of dye concentrations in blended-layer white organic light-emitting devices based on phosphorescent dyes. <i>Journal of Applied Physics</i> , 2009 , 106, 064516	2.5	5
275	Bootstrapped inverter using a pentacene thin-film transistor with a poly(methyl methacrylate) gate dielectric. <i>IET Circuits, Devices and Systems</i> , 2009 , 3, 182-186	1.1	7
274	Memory effects in MIS structures based on silicon and polymethylmethacrylate with nanoparticle charge-storage elements. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2009 , 159-160, 14-17	3.1	13

(2007-2009)

273	A cross-linked poly(methyl methacrylate) gate dielectric by ion-beam irradiation for organic thin-film transistors. <i>Organic Electronics</i> , 2009 , 10, 1596-1600	3.5	12
272	Electrical conductivity of single-wall carbon nanotube film deposited by electrostatic layer-by-layer assembly with the aid of polyelectrolytes. <i>Carbon</i> , 2009 , 47, 475-481	10.4	11
271	The morphology, electrical conductivity and vapour sensing ability of inkjet-printed thin films of single-wall carbon nanotubes. <i>Carbon</i> , 2009 , 47, 752-757	10.4	39
270	Charge Storage in Pentacene/Polymethylmethacrylate Memory Devices. <i>IEEE Electron Device Letters</i> , 2009 , 30, 632-634	4.4	19
269	PooleBrenkel conduction in single wall carbon nanotube composite films built up by electrostatic layer-by-layer deposition. <i>Journal of Applied Physics</i> , 2008 , 104, 094503	2.5	30
268	Performance enhancement of white-electrophosphorescent devices incorporating a mixed-transition layer. <i>Applied Physics Letters</i> , 2008 , 92, 123504	3.4	10
267	Fabrication and Characterisation of MIS Organic Memory Devices. <i>Advances in Science and Technology</i> , 2008 , 54, 474-479	0.1	1
266	Nanoparticles for Charge Storage Using Hybrid Organic Inorganic Devices. <i>Advances in Science and Technology</i> , 2008 , 54, 451-457	0.1	
265	White electrophosphorescent devices based on tricolour emissive layers. <i>Journal Physics D: Applied Physics</i> , 2008 , 41, 025104	3	7
264	Electrical behavior of memory devices based on fluorene-containing organic thin films. <i>Journal of Applied Physics</i> , 2008 , 104, 044510	2.5	29
263	Memory effects in hybrid silicon-metallic nanoparticle-organic thin film structures. <i>Organic Electronics</i> , 2008 , 9, 816-820	3.5	34
262	White organic light-emitting devices incorporating nanoparticles of IIIVI semiconductors. <i>Nanotechnology</i> , 2007 , 18, 335202	3.4	28
261	2007,		56
260	Effect of the thickness of Zn(BTZ)2 emitting layer on the electroluminescent spectra of white organic light-emitting diodes. <i>Journal of Luminescence</i> , 2007 , 122-123, 717-719	3.8	11
259	Free-standing polymer cantilevers and bridges reinforced with carbon nanotubes. <i>Micro and Nano Letters</i> , 2007 , 2, 54	0.9	2
258	Effect of Sodium Bromide Salt on the Buildup of Consecutive MWCNTs Film by Electrostatic Self-Assembly. <i>Journal of the Electrochemical Society</i> , 2007 , 154, K68	3.9	4
257	Passband filters for terahertz radiation based on dual metallic photonic structures. <i>Applied Physics Letters</i> , 2007 , 91, 161115	3.4	33
256	Artificial plasmonic materials for THz applications 2007 ,		1

255	Blue organic light emitting devices with improved colour purity and efficiency through blending of poly(9,9-dioctyl-2,7-fluorene) with an electron transporting material. <i>Journal of Materials Chemistry</i> , 2007 , 17, 2996		41
254	Electronic memory device based on a single-layer fluorene-containing organic thin film. <i>Applied Physics Letters</i> , 2007 , 91, 123506	3.4	39
253	Metal nano-floating gate memory devices fabricated at low temperature. <i>Microelectronic Engineering</i> , 2006 , 83, 1563-1566	2.5	18
252	Single emitting layer white organic light-emitting device with high color stability to applied voltage. <i>Displays</i> , 2006 , 27, 187-190	3.4	7
251	Quality control of dairy products using single frequency admittance measurements. <i>Measurement Science and Technology</i> , 2006 , 17, 275-280	2	16
250	Electrical investigations of layer-by-layer films of carbon nanotubes. <i>Journal Physics D: Applied Physics</i> , 2006 , 39, 3077-3085	3	32
249	Pure RGB Emissions Based on a White OLED Combined with Optical Colour Filters. <i>Chinese Physics Letters</i> , 2006 , 23, 1012-1014	1.8	5
248	Inkjet-Printed Polymer Films for the Detection of Organic Vapors. <i>IEEE Sensors Journal</i> , 2006 , 6, 1435-1	444	45
247	New electroluminescent bipolar compounds for balanced charge-transport and tuneable colour in organic light emitting diodes: triphenylamine@xadiazole@luorene triad molecules. <i>Journal of Materials Chemistry</i> , 2006 , 16, 3823-3835		119
246	Solubilization of polyelectrolytic hairy-rod polyfluorene in aqueous solutions of nonionic surfactant. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 10248-57	3.4	56
245	Molecular rectifier consisting of cytochrome c/GFP heterolayer by using metal coated optical fiber tip. <i>Current Applied Physics</i> , 2006 , 6, 839-843	2.6	8
244	Inkjet-printed polypyrrole thin films for vapour sensing. <i>Sensors and Actuators B: Chemical</i> , 2006 , 115, 547-551	8.5	102
243	Molecular Electronics 2006 , 1219-1239		2
242	Surface plasmon resonance detection of metal ions: layer-by-layer assembly of polyelectrolyte sensing layers on a multichannel chip. <i>IEEE Sensors Journal</i> , 2005 , 5, 1159-1164	4	7
241	Enhanced electron injection and efficiency in blended-layer organic light emitting diodes with aluminium cathodes: new 2,5-diaryl-1,3,4-oxadiazolefluorene hybrids incorporating pyridine units. <i>Journal of Materials Chemistry</i> , 2005 , 15, 5164		25
240	New 2,5-diaryl-1,3,4-oxadiazolefluorene hybrids as electron transporting materials for blended-layer organic light emitting diodes. <i>Journal of Materials Chemistry</i> , 2005 , 15, 194-203		68
239	Thermal annealing of blended-layer organic light-emitting diodes. <i>Journal of Applied Physics</i> , 2005 , 98, 054508	2.5	26
238	An inkjet-printed chemical fuse. <i>Journal of Physics: Conference Series</i> , 2005 , 15, 39-44	0.3	4

(2003-2005)

237	The structure and properties of hybrid fluorous-hydrocarbon fatty acids. <i>Journal of Fluorine Chemistry</i> , 2005 , 126, 671-680	2.1	5
236	Nanoscale patterning of gold nanoparticles using an atomic force microscope. <i>Materials Science and Engineering C</i> , 2005 , 25, 33-38	8.3	14
235	Influence of Molecular Weight on the Surface Morphology of Aligned, Branched Side-Chain Polyfluorene. <i>Advanced Functional Materials</i> , 2005 , 15, 1517-1522	15.6	34
234	Atomic force microscope characterization of poly(ethyleneimine)/poly(ethylene-co-maleic acid) and poly(ethyleneimine)/poly(styrene sulfonate) multilayers. <i>Thin Solid Films</i> , 2005 , 483, 114-121	2.2	17
233	Layer-by-Layer Thin Films of Carbon Nanotubes. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 901, 1		
232	An inkjet-printed chemical fuse. <i>Applied Physics Letters</i> , 2005 , 86, 013507	3.4	41
231	Field effect devices with metal nanoparticles integrated by Langmuir B lodgett technique for non-volatile memory applications. <i>Journal of Physics: Conference Series</i> , 2005 , 10, 57-60	0.3	5
230	Organic light-emitting diodes based on a blend of poly[2-(2-ethylhexyloxy)-5-methoxy-1,4-phenylenevinylene] and an electron transporting material. <i>Applied Physics Letters</i> , 2004 , 85, 1283-1285	3.4	38
229	Polyaniline films deposited by anodic polymerization: Properties and applications to chemical sensing. <i>Journal of Materials Science: Materials in Electronics</i> , 2003 , 14, 389-392	2.1	10
228	Arborol-Functionalised Tetrathiafulvalene Derivatives: Synthesis and Thin-Film Formation. <i>European Journal of Organic Chemistry</i> , 2003 , 2003, 3562-3568	3.2	25
227	A covalent tetrathiafulvalene-tetracyanoquinodimethane diad: extremely low HOMO-LUMO gap, thermoexcited electron transfer, and high-quality langmuir-blodgett films. <i>Angewandte Chemie - International Edition</i> , 2003 , 42, 4636-9	16.4	91
226	Effect of composition on the electrical conductance of milk. <i>Journal of Food Engineering</i> , 2003 , 60, 321-	3 Ø 5	72
225	A single chip multi-channel surface plasmon resonance imaging system. <i>Sensors and Actuators B: Chemical</i> , 2003 , 90, 264-270	8.5	22
224	A novel technique for the detection of added water to full fat milk using single frequency admittance measurements. <i>Sensors and Actuators B: Chemical</i> , 2003 , 96, 215-218	8.5	54
223	Surface plasmon resonance sensing of liquids using polyelectrolyte thin films. <i>Sensors and Actuators B: Chemical</i> , 2003 , 91, 291-297	8.5	11
222	Langmuir B lodgett Film Deposition of Metallic Nanoparticles and Their Application to Electronic Memory Structures. <i>Nano Letters</i> , 2003 , 3, 533-536	11.5	247
221	Deposition of Functionalised Gold Nanoparticles by the Layer-by-Layer Electrostatic Technique. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 789, 359		
220	Hybrid siliconBrganic nanoparticle memory device. <i>Journal of Applied Physics</i> , 2003 , 94, 5234	2.5	91

219	A blended layer MEH-PPV electroluminiscent device incorporating a new electron transport material. <i>Materials Science and Engineering C</i> , 2002 , 22, 87-89	8.3	8
218	Single layer polymer electroluminescent devices incorporating new electron transport materials. <i>Thin Solid Films</i> , 2002 , 408, 275-281	2.2	12
217	Application of electrical admittance measurements to the quality control of milk. <i>Sensors and Actuators B: Chemical</i> , 2002 , 84, 136-141	8.5	33
216	The fluorine gauche effect. Langmuir isotherms report the relative conformational stability of (+/-)-erythro- and (+/-)-threo-9,10-difluorostearic acids. <i>Chemical Communications</i> , 2002 , 1226-7	5.8	51
215	New electron-transporting materials for light emitting diodes: 1,3,4-oxadiazolepyridine and 1,3,4-oxadiazolepyrimidine hybrids. <i>Journal of Materials Chemistry</i> , 2002 , 12, 173-180		108
214	The Use of LB Insulating Layers to Improve the Efficiency of Light Emitting Diodes Based on Evaporated Molecular Films. <i>Studies in Interface Science</i> , 2001 , 11, 175-183		1
213	Electroluminescent devices incorporating a new oxadiazole derivative 2001 , 4105, 307		
212	Lifetime studies of light-emitting diode structures incorporating polymeric Langmuir B lodgett films. <i>Materials Science and Engineering C</i> , 2001 , 14, 1-10	8.3	13
211	Electrochemical recognition properties of 13- and 16-membered azo- and azoxycrowns in solution. Journal of Electroanalytical Chemistry, 2001 , 509, 42-47	4.1	6
21 0	A Conductimetric pH Sensor based on a Polypyrrole Lb Film. <i>Studies in Interface Science</i> , 2001 , 11, 371-3	81	
209	Metal ion sensing using ultrathin organic films prepared by the layer-by-layer adsorption technique. <i>Journal Physics D: Applied Physics</i> , 2001 , 34, 285-291	3	17
208	An Efficient Pyridine- and Oxadiazole-Containing Hole-Blocking Material for Organic Light-Emitting Diodes: Synthesis, Crystal Structure, and Device Performance. <i>Chemistry of Materials</i> , 2001 , 13, 1167-17	1736	139
207	Synthesis and properties of self organising semiconducting and luminescent polymers and model compounds. <i>Macromolecular Symposia</i> , 2001 , 175, 151-158	0.8	6
206	Application of impedance spectroscopy to the study of organic multilayer devices. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2000 , 171, 159-166	5.1	16
205	The effect of insulating spacer layers on the electrical properties of polymeric Langmuir-Blodgett film light emitting devices. <i>Journal Physics D: Applied Physics</i> , 2000 , 33, 1029-1035	3	20
204	New crown annelated tetrathiafulvalenes: synthesis, electrochemistry, self-assembly of thiol derivatives, and metal cation recognition. <i>Journal of Organic Chemistry</i> , 2000 , 65, 8269-76	4.2	49
203	Dual-layer light emitting devices based on polymeric Langmuir B lodgett films. <i>Journal of Materials</i>		
	Chemistry, 2000 , 10, 163-167		15

201	Sensitivity of the electrical admittance of a polysiloxane film to organic vapours. <i>Sensors and Actuators B: Chemical</i> , 1999 , 56, 37-44	8.5	27
200	Organic vapour sensing using thin films of a co-ordination polymer: comparison of electrical and optical techniques. <i>Sensors and Actuators B: Chemical</i> , 1999 , 57, 28-34	8.5	38
199	4-Ethoxycarbonyl-4?,5,5?-trimethyltetrathiafulvalene and its radical cation: Langmuir B lodgett film studies, EPR spectra and the X-ray crystal structure of (Me3TTF-CO2Et)2TCNQ complex. <i>Journal of Materials Chemistry</i> , 1999 , 9, 2973-2978		8
198	Chemosensor devices: voltammetric molecular recognition at solid interfaces. <i>Journal of Materials Chemistry</i> , 1999 , 9, 1957-1974		118
197	Light emission from electroluminescent Langmuir B lodgett films of a polyester derived from oligothiophene. <i>Thin Solid Films</i> , 1998 , 327-329, 715-717	2.2	6
196	Optical sensing of aromatic hydrocarbons using Langmuir B lodgett films of a Schiff base co-ordination polymer. <i>Thin Solid Films</i> , 1998 , 327-329, 726-729	2.2	16
195	Cation Recognition by Self-Assembled Layers of Novel Crown-Annelated Tetrathiafulvalenes. <i>Advanced Materials</i> , 1998 , 10, 395-398	24	66
194	Structural and optical properties of Langmuir B lodgett films of a Schiff base coordination polymer: A material for hydrocarbon vapor sensing. <i>Acta Polymerica</i> , 1998 , 49, 294-300		10
193	Electrochemical properties of Langmuir B lodgett films of polyesters derived from oligothiophenes. <i>Journal of Electroanalytical Chemistry</i> , 1998 , 443, 266-272	4.1	3
192	Electrochemical molecular recognition by thin films of ether-substituted polythiophenes. <i>Journal of Electroanalytical Chemistry</i> , 1998 , 447, 1-3	4.1	12
191	Synthesis and langmuir isotherms of difluorostearic acids. <i>Journal of Fluorine Chemistry</i> , 1998 , 90, 133-1	I 3 28₁	6
190	Deposition and characterisation of Langmuir B lodgett films of an azo-modified polypeptide:azobenzene-containing poly-l-lysine. <i>Thin Solid Films</i> , 1998 , 335, 197-202	2.2	6
189	Evaporated thin films of tetrathiafulvalene derivatives and their charge-transfer complexes. <i>Thin Solid Films</i> , 1998 , 335, 209-213	2.2	9
188	Langmuir-blodgett films of amphiphilic cyanovinyl ferrocene derivatives and their electrochemical behaviour. <i>Materials Science and Engineering C</i> , 1998 , 5, 281-284	8.3	4
187	Photo- and electroluminescence of poly(2-methoxy,5-(2?-ethylhexyloxy)-p-phenylene vinylene) Langmuir-Blodgett films. <i>Synthetic Metals</i> , 1998 , 94, 285-289	3.6	42
186	The preparation and characterisation of Langmuir B lodgett films of the metal dithiolate charge-transfer complex N-octadecylpyridinium B d(dmit)2. <i>Journal of Materials Chemistry</i> , 1998 , 8, 387-	396	6
185	Photoinduced Electron Transfer between 16-(9-Anthroyloxy)palmitic Acid and Fullerene C60 in Langmuir B lodgett Films. <i>Langmuir</i> , 1998 , 14, 3343-3346	4	21
184	Electro- and Photochemistry of 13-Membered Azocrowns in Solution and as Langmuir B lodgett Films. <i>Langmuir</i> , 1998 , 14, 1236-1241	4	29

The electrical behaviour of multilayer polypyrrole films. *Journal Physics D: Applied Physics*, **1998**, 31, 1504;1510 5

182	The effect of organic vapours on the permittivity of a co-ordination polymer Langmuir-Blodgett film. <i>Journal Physics D: Applied Physics</i> , 1998 , 31, 3146-3153	3	9
181	An electrical impedance study of Langmuir - Blodgett films containing a tetrabutylammonium Ni(dmit) complex. <i>Journal Physics D: Applied Physics</i> , 1997 , 30, 2928-2931	3	4
180	Langmuir B lodgett films of a tetrathiafulvalene derivative substituted with an azobenzene group. Journal of Materials Chemistry, 1997 , 7, 2033-2037		7
179	Semiconducting Langmuir B lodgett films ofethylenedithiotetrathiafulvalene (EDT I TF) derivatives bearingcharged and uncharged aromatic substituents. <i>Journal of Materials Chemistry</i> , 1997 , 7, 901-907		27
178	Synthesis, Characterization, and Processing of New Electroactive and Photoactive Polyesters Derived from Oligothiophenes. <i>Chemistry of Materials</i> , 1997 , 9, 2815-2821	9.6	59
177	Percolation conductivity in Langmuir-Blodgett multilayer films containing a long-chain TTF derivative. <i>Supramolecular Science</i> , 1997 , 4, 443-447		2
176	A polyaniline/sllicon hybrid field effect transistor humidity sensor. <i>Synthetic Metals</i> , 1997 , 85, 1365-136	6 3.6	22
175	Structural and electrical studies on nickel(dmit)2 complexes. Synthetic Metals, 1997, 86, 1839-1840	3.6	2
174	An optical gas sensor based on polyaniline Langmuir-Blodgett films. <i>Sensors and Actuators B: Chemical</i> , 1997 , 41, 137-141	8.5	82
173	Electrical characteristics of a polyaniline/silicon hybrid field-effect transistor gas sensor. <i>IET Circuits, Devices and Systems</i> , 1997 , 144, 111		8
172	Skeletonization of mixed arachidic acid/cadmium arachidate LB films: A study using atomic force microscopy. <i>Advanced Materials</i> , 1997 , 9, 58-61	24	5
171	Processing-induced chromism in thin films of polythiophene derivatives. <i>Macromolecular Rapid Communications</i> , 1997 , 18, 733-737	4.8	6
170	Quenching of pyrene fluorescence by fullerene C60 in Langmuir B lodgett films. <i>Chemical Physics Letters</i> , 1997 , 280, 315-320	2.5	23
169	Admittance spectroscopy of Langmuir - Blodgett films on metal electrodes in aqueous solutions. Journal Physics D: Applied Physics, 1996 , 29, 179-184	3	4
168	Molecular electronics: prospects for instrumentation and measurement science. <i>Measurement Science and Technology</i> , 1996 , 7, 725-735	2	9
167	Structural Properties of Oligomeric Langmuir B lodgett Films for Second-Order Nonlinear Optics. <i>Langmuir</i> , 1996 , 12, 2292-2297	4	4
166	Optical and Electrochemical Properties of Metallophthalocyanine Derivative Langmuir B lodgett Films. <i>Langmuir</i> , 1996 , 12, 472-476	4	44

165	Preparation and characterisation of conductive Langmuir B lodgett films of a tetrabutylammonium N i(dmit)2 complex. <i>Journal of Materials Chemistry</i> , 1996 , 6, 699-704		11
164	Crown-annelated tetrathiafulvalenes: synthesis of new functionalised derivatives and spectroscopic and electrochemical studies of metal complexation. <i>Journal of the Chemical Society Perkin Transactions II</i> , 1996 , 1587-1593		24
163	Surface plasmon resonance of self-assembled phthalocyanine monolayers: possibilities for optical gas sensing. <i>Analyst, The</i> , 1996 , 121, 1501	5	36
162	Variation in Intermolecular Spacing with Dipping Pressure for Arachidic Acid LB Films. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 11672-11674		20
161	Monolayer materials 1996 , 65-93		3
160	A hybrid phthalocyanine/silicon field-effect transistor sensor for NO2. <i>Thin Solid Films</i> , 1996 , 284-285, 94-97	2.2	27
159	Toluene vapour sensing using copper and nickel phthalocyanine Langmuir-Blodgett films. <i>Thin Solid Films</i> , 1996 , 284-285, 98-101	2.2	38
158	Application of electrochemical techniques to the study of Langmuir-Blodgett films of N-octadecylpyridinium-Ni(dmit)2. <i>Thin Solid Films</i> , 1996 , 284-285, 512-515	2.2	3
157	A comparison of tetrathiafulvalene thin films prepared by thermal evaporation and the Langmuir-Blodgett technique. <i>Thin Solid Films</i> , 1996 , 284-285, 516-519	2.2	3
156	Pyrene excimer formation in Langmuir-Blodgett films. <i>Thin Solid Films</i> , 1996 , 284-285, 622-626	2.2	19
155	Ion-sensitive Langmuir-Blodgett films of a chromoionophore. <i>Thin Solid Films</i> , 1996 , 284-285, 683-686	2.2	8
154	Langmuir monolayers and Langmuir B lodgett multilayers containing macrocyclic ionophores. <i>Advanced Materials</i> , 1996 , 8, 615-630	24	60
153	Langmuir-Blodgett deposition and second-order non-linear optics of several azobenzene dye polymers. <i>Advanced Materials for Optics and Electronics</i> , 1996 , 6, 33-38		13
152	A new approach to one-way electron transfer using multiredox centres organised in Langmuir-Blodgett films. <i>Journal of Electroanalytical Chemistry</i> , 1996 , 408, 173-179	4.1	5
151	Langmuir-Blodgett Films: An Introduction 1996 ,		598
150	Gas sensing using a charge-flow transistor. Sensors and Actuators B: Chemical, 1995, 25, 451-453	8.5	20
149	Electrically conductive Langmuir B lodgett films of charge-transfer materials. <i>Nature</i> , 1995 , 374, 771-776	50.4	122
148	Anomalous distance dependence of fluorescence lifetime quenched by a semiconductor. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1995 , 200, 61-64	2.3	18

147	Polyaniline thin films for gas sensing. Sensors and Actuators B: Chemical, 1995, 28, 173-179	8.5	227
146	Ion permeation through Langmuir-Blodgett layers investigated by total external reflection and fluorescence study. <i>Materials Science and Engineering C</i> , 1995 , 3, 211-214	8.3	5
145	An electro-optic Fabry-PEot through-plane-modulator based on a Langmuir-Blodgett film. <i>Optics Communications</i> , 1995 , 115, 271-275	2	8
144	Ion-selective langmuir blodgett films of a chromoionophore. <i>Advanced Materials for Optics and Electronics</i> , 1995 , 5, 137-143		10
143	Complex Formation of an Amphiphilic Benzothiazolium Styryl Chromoionophore with Metal Cations in a Monolayer at the Air-Water Interface. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 4176-4180		19
142	Monolayer and Multilayer Films of Cyclodextrins Substituted with Two and Three Alkyl Chains. <i>Langmuir</i> , 1995 , 11, 3997-4000	4	36
141	Electrical properties of evaporated TTF thin films. Synthetic Metals, 1995, 70, 1247-1248	3.6	4
140	Observation of electro-optic and electroabsorption modulation in a Langmuir-Blodgett film Fabry-PerotEalon. <i>Optics Letters</i> , 1995 , 20, 1533-5	3	2
139	Preparation and characterisation of conductive Langmuir B lodgett films of amphiphilic pyridinium B i(dmit)2 salts. <i>Journal of Materials Chemistry</i> , 1995 , 5, 1601-1608		14
138	Preparation and film-forming properties of stellular porphyrin pentamers and their metal complexes. <i>Journal of Materials Chemistry</i> , 1995 , 5, 237		6
137	Synthesis and characterisation of selectively fluorinated stearic acids (octadecanoic acids) and their tristearins: the effect of introducing one and two fluorine atoms into a hydrocarbon chain. <i>Journal of the Chemical Society Perkin Transactions II</i> , 1995 , 221		8
136	Semiconducting Langmuir B lodgett films of non-amphiphilic ethylenedithio E etrathiafulvalene derivatives bearing pyridine and pyridinium substituents. <i>Journal of the Chemical Society Chemical Communications</i> , 1995 , 475-476		27
135	Semi-conducting Langmuir B lodgett films of a novel amphiphilic bis(tetrathiafulvalene) derivative. <i>Journal of Materials Chemistry</i> , 1995 , 5, 191-192		5
134	Conducting Langmuir B lodgett films of an amphiphilic unsymmetrical ethylenedithiotetrathiafulvalene derivative: EDTITTFICH2OC(O)C17H35. <i>Journal of Materials Chemistry</i> , 1995 , 5, 1593-1599		13
133	A semiconducting Langmuir B lodgett film of a non-amphiphilic bis-tetrathiafulvalene derivative. <i>Journal of Materials Chemistry</i> , 1995 , 5, 1609-1615		18
132	Gas sensing using thin organic films. <i>Biosensors and Bioelectronics</i> , 1995 , 10, 129-134	11.8	29
131	A Comparative Study of the Electrochemical Properties of Dip-Coated, Spun, and Langmuir-Blodgett Films of Polyaniline. <i>Journal of the Electrochemical Society</i> , 1994 , 141, 1573-1576	3.9	69
130	Synthesis of Novel Bis- and Tris(tetrathiafulvalene) Amphiphiles for Use in Langmuir-Blodgett Film Deposition. <i>Synthesis</i> , 1994 , 1994, 613-618	2.9	34

129	The formation and characterization of Langmuir-Blodgett films of dipalmitoylphosphatidic acid. <i>Thin Solid Films</i> , 1994 , 243, 596-601	2.2	9
128	Conductivity and electroluminescence in an organometallic Langmuir-Blodgett film/anthracene structure. <i>Thin Solid Films</i> , 1994 , 244, 936-938	2.2	6
127	Vapour recognition using organic films and artificial neural networks. <i>Sensors and Actuators B: Chemical</i> , 1994 , 17, 143-147	8.5	83
126	Electrochemical properties of hexadecanoyltetrathiafulvalene Langmuir-Blodgett films. <i>Thin Solid Films</i> , 1994 , 238, 280-284	2.2	11
125	A field effect transistor based on Langmuir-Blodgett films of an Ni(dmit)2 charge transfer complex. <i>Thin Solid Films</i> , 1994 , 244, 932-935	2.2	29
124	Electro-optic properties of some oligomeric Langmuir-Blodgett films. <i>Thin Solid Films</i> , 1994 , 244, 1067-1	1072	9
123	Aggregate Formation in Langmuir-Blodgett Films of an Amphiphilic Benzothiazolium Styryl Chromoionophore. <i>Langmuir</i> , 1994 , 10, 4185-4189	4	24
122	Langmuir-Blodgett Films of Chromoionophores Containing a Crown Ether Ring: Complex Formation with Ag+ Cations in Water. <i>The Journal of Physical Chemistry</i> , 1994 , 98, 9601-9605		18
121	Impedance spectroscopy of biomembrane Langmuir-Blodgett films. <i>Thin Solid Films</i> , 1994 , 244, 951-954	2.2	4
120	Photochemistry of an Amphiphilic Benzothiazolium Styryl Chromoionophore Organized in Langmuir-Blodgett Films. <i>Langmuir</i> , 1994 , 10, 4190-4194	4	10
119	Synthesis of Monofunctionalized Tetrathiafulvalene (TTF) Derivatives by Reactions of Tetrathiafulvalenyllithium with Electrophiles: X-ray Crystal Structures of Four TTF Derivatives Bearing Amide, Thioamide, and Thioester Substituents. <i>Chemistry of Materials</i> , 1994 , 6, 1419-1425	9.6	37
118	Deposition and Structural Properties of Langmuir-Blodgett Films of a Fluorescently Labeled Phospholipid. <i>Langmuir</i> , 1994 , 10, 1877-1881	4	7
117	Highly Conducting Langmuir-Blodgett films of an amphiphilic Bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) derivative: BEDT-TTF-C18H37. <i>Chemistry of Materials</i> , 1994 , 6, 1426-1431	9.6	25
116	Langmuir-Blodgett films of the fullerenes C70 and C60. <i>Synthetic Metals</i> , 1993 , 56, 2955-2960	3.6	10
	Langinan -bloagett rans of the raderenes Cro and Coo. Synthetic Metals, 1993, 30, 2933-2900	<i>3</i> .0	
115	Pentacosa-10,12-diynoic acid/henicosa-2,4-diynylamine alternatelayer Langmuir B lodgett films: synthesis, polymerisation and electrical properties. <i>Journal of Materials Chemistry</i> , 1993 , 3, 97-104	<i></i>	17
	Pentacosa-10,12-diynoic acid/henicosa-2,4-diynylamine alternatelayer Langmuir B lodgett films:	<i>3.</i> 0	17
115	Pentacosa-10,12-diynoic acid/henicosa-2,4-diynylamine alternatelayer Langmuir B lodgett films: synthesis, polymerisation and electrical properties. <i>Journal of Materials Chemistry</i> , 1993 , 3, 97-104 Electrochemical studies on Langmuir B lodgett films of 1-tert-butyl-1,9-dihydrofullerene-60.	4	

111	Optical properties of polyaniline thin films. Synthetic Metals, 1993, 55, 183-187	3.6	24
110	Conducting langmuir-blodgett films of new amphiphilic tetrathiafulvalene derivatives. <i>Synthetic Metals</i> , 1993 , 57, 3871-3878	3.6	11
109	Field-effect transistor based on organometallic Langmuir-Blodgett film. <i>Electronics Letters</i> , 1993 , 29, 1377	1.1	20
108	Electrical Properties of Multilayer Films Containing a Carotene Derivative. <i>Molecular Crystals and Liquid Crystals</i> , 1993 , 229, 83-90		4
107	Two-Dimensional Energy Transfer in Langmuir-Blodgett Films. <i>Molecular Crystals and Liquid Crystals</i> , 1993 , 229, 37-45		4
106	A novel TGS/70:30 VDF:TrFE copolymer composite material for pyroelectric sensors. <i>Ferroelectrics, Letters Section</i> , 1993 , 15, 45-48	0.5	3
105	Gas sensing using Langmuir-Blodgett films of a ruthenium porphyrin. <i>Sensors and Actuators B: Chemical</i> , 1993 , 12, 111-114	8.5	27
104	Langmuir-Blodgett films of 1-t-butyl-9-hydrofullerene-60. <i>Thin Solid Films</i> , 1993 , 230, 73-77	2.2	33
103	Pyroelectric Langmuir-Blodgett films prepared using preformed polymers. <i>Journal Physics D: Applied Physics</i> , 1992 , 25, 1032-1035	3	28
102	Tricos-22-enoic acid/1-docosylamine alternate-layer Langmuir B lodgett films: polymerisation, pyroelectric properties and infrared spectroscopic studies. <i>Journal of Materials Chemistry</i> , 1992 , 2, 87-9	91	8
102		91	28
	pyroelectric properties and infrared spectroscopic studies. <i>Journal of Materials Chemistry</i> , 1992 , 2, 87-9. Electronic, structural and spectroscopic properties of Langmuir-Blodgett films of		
101	pyroelectric properties and infrared spectroscopic studies. <i>Journal of Materials Chemistry</i> , 1992 , 2, 87-52. Electronic, structural and spectroscopic properties of Langmuir-Blodgett films of (o-hexadecylthiocarboxy)tetrathiafulvalene (HDTTTF). <i>Chemistry of Materials</i> , 1992 , 4, 724-728. Fourier transform infrared spectroscopic studies on alternate-layer Langmuir-Blodgett films with	9.6	28
101	pyroelectric properties and infrared spectroscopic studies. <i>Journal of Materials Chemistry</i> , 1992 , 2, 87-52. Electronic, structural and spectroscopic properties of Langmuir-Blodgett films of (o-hexadecylthiocarboxy)tetrathiafulvalene (HDTTTF). <i>Chemistry of Materials</i> , 1992 , 4, 724-728. Fourier transform infrared spectroscopic studies on alternate-layer Langmuir-Blodgett films with nonlinear optical properties. <i>Langmuir</i> , 1992 , 8, 262-266. Semiconducting Langmuir-Blodgett films of new long-chain tetrathiafulvalene derivatives.	9.6	28
101 100 99	pyroelectric properties and infrared spectroscopic studies. <i>Journal of Materials Chemistry</i> , 1992 , 2, 87-52. Electronic, structural and spectroscopic properties of Langmuir-Blodgett films of (o-hexadecylthiocarboxy)tetrathiafulvalene (HDTTTF). <i>Chemistry of Materials</i> , 1992 , 4, 724-728. Fourier transform infrared spectroscopic studies on alternate-layer Langmuir-Blodgett films with nonlinear optical properties. <i>Langmuir</i> , 1992 , 8, 262-266. Semiconducting Langmuir-Blodgett films of new long-chain tetrathiafulvalene derivatives. <i>Chemistry of Materials</i> , 1992 , 4, 720-723. Fourier transform infrared studies of molecular ordering and interactions in Langmuir-Blodgett	9.6 4 9.6	28 17 6
101 100 99 98	Electronic, structural and spectroscopic properties of Langmuir-Blodgett films of (o-hexadecylthiocarboxy)tetrathiafulvalene (HDTTTF). <i>Chemistry of Materials</i> , 1992 , 4, 724-728 Fourier transform infrared spectroscopic studies on alternate-layer Langmuir-Blodgett films with nonlinear optical properties. <i>Langmuir</i> , 1992 , 8, 262-266 Semiconducting Langmuir-Blodgett films of new long-chain tetrathiafulvalene derivatives. <i>Chemistry of Materials</i> , 1992 , 4, 720-723 Fourier transform infrared studies of molecular ordering and interactions in Langmuir-Blodgett films containing nitrostilbene and stearic acid. <i>Langmuir</i> , 1992 , 8, 257-261 Molecular interactions in Langmuir-Blodgett films of phospholipid and fatty acid mixtures.	9.6 4 9.6	28 17 6
101 100 99 98 97	Electronic, structural and spectroscopic properties of Langmuir-Blodgett films of (o-hexadecylthiocarboxy)tetrathiafulvalene (HDTTTF). Chemistry of Materials, 1992, 4, 724-728 Fourier transform infrared spectroscopic studies on alternate-layer Langmuir-Blodgett films with nonlinear optical properties. Langmuir, 1992, 8, 262-266 Semiconducting Langmuir-Blodgett films of new long-chain tetrathiafulvalene derivatives. Chemistry of Materials, 1992, 4, 720-723 Fourier transform infrared studies of molecular ordering and interactions in Langmuir-Blodgett films containing nitrostilbene and stearic acid. Langmuir, 1992, 8, 257-261 Molecular interactions in Langmuir-Blodgett films of phospholipid and fatty acid mixtures. Langmuir, 1992, 8, 619-623 An infrared study of the incorporation of ion channel forming peptides into Langmuir-Blodgett	9.6444	28 17 6 50

93	Electrooptic modulation in polymer/Langmuir-Blodgett film waveguides. <i>Thin Solid Films</i> , 1992 , 210-211, 216-218	2.2	10
92	Electrical properties of Langmuir-Blodgett films of a Ni(dmit)2 charge-transfer complex. <i>Thin Solid Films</i> , 1992 , 210-211, 257-260	2.2	17
91	Pyroelectric behaviour of synthetic biomembrane structures. <i>Thin Solid Films</i> , 1992 , 210-211, 320-323	2.2	5
90	Possible applications for Langmuir-Blodgett films. <i>Thin Solid Films</i> , 1992 , 210-211, 417-426	2.2	90
89	FTIR studies of conducting Langmuir-Blodgett films of o-hexadecylthiocarboxytetrathiafulvalene. <i>Thin Solid Films</i> , 1992 , 210-211, 589-591	2.2	2
88	Structure of valinomycin/fatty acid langmuir-blodgett films. <i>Makromolekulare Chemie Macromolecular Symposia</i> , 1991 , 51, 175-182		3
87	An X-ray photoelectron investigation of conducting N-octadecylpyridinium-tetracyanoquinodimethane Langmuir-Blodgett films. <i>Thin Solid Films</i> , 1991 , 198, 363-367	2.2	4
86	Effects of polarization of infrared spectra collected in reflection at grazing incidence. <i>Vibrational Spectroscopy</i> , 1991 , 1, 305-309	2.1	11
85	Observation of perylene excimers in LangmuirBlodgett films. Chemical Physics Letters, 1991, 184, 235-2	2 3:8 5	30
84	An electrical investigation into multilayer assemblies of charge-transfer materials. <i>Journal Physics D: Applied Physics</i> , 1991 , 24, 1422-1429	3	6
83	Highly-conducting Langmuir-Blodgett films based on Ni(dmit)2 anions. <i>Journal of the Chemical Society Chemical Communications</i> , 1991 , 322		20
82	Docosanoyl itaconate/1-docosylamine alternate-layer Langmuir B lodgett films: polymerisation, pyroelectric properties and infrared spectroscopic studies. <i>Journal of Materials Chemistry</i> , 1991 , 1, 819-	-826	26
81	Electroactive Langmuir blodgett films of tetrathiafulvalene derivatives. Synthetic Metals, 1991, 42, 144	13.6	
80	Application of multilayer films to molecular sensors: some examples of bioengineering at the molecular level. <i>Journal of Biomedical Engineering</i> , 1991 , 13, 209-14		20
79	Langmuir-Blodgett alternate layer structures for second-order nonlinear optics 1990,		3
78	The fluorescence of perylene-doped Langmuir B lodgett films. <i>Chemical Physics Letters</i> , 1990 , 173, 425-4	1295	47
77	Structural characterization of phospholipid Langmuir-Blodgett multilayers containing valinomycin. <i>Vibrational Spectroscopy</i> , 1990 , 1, 29-33	2.1	7
76	An optical sensor for nitrogen dioxide based on a copper phthalocyanine Langmuir B lodgett film. <i>Sensors and Actuators B: Chemical</i> , 1990 , 2, 265-269	8.5	58

75	Substituted silicon phthalocyanine Langmuir-Blodgett film and its possible use in electronic devices. <i>Thin Solid Films</i> , 1990 , 192, 383-390	2.2	22
74	The deposition and characterization of phosphatidic acid Langmuir-Blodgett films. <i>Thin Solid Films</i> , 1990 , 192, 391-396	2.2	21
73	Electroactive Langmuir B lodgett films of O-hexadecylthiocarboxytetrathiafulvalene (HDTTTF). <i>Journal of the Chemical Society Chemical Communications</i> , 1990 , 970-972		19
72	Synthesis of amphiphilic, mono-functionalised tetrathiafulvalenes; X-ray crystal structure of 4-(6-sromohexanoyl)tetrathiafulvalene. <i>Journal of the Chemical Society Chemical Communications</i> , 1990 , 816		24
71	Structural studies on Langmuir-Blodgett films containing nitrostilbene and hemicyanine dyes. <i>Langmuir</i> , 1990 , 6, 172-177	4	6
70	Infrared spectroscopic studies on the structure and ordering of hexadecanoyltetrathiafulvalene conducting Langmuir-Blodgett multilayers. <i>Langmuir</i> , 1990 , 6, 1680-1682	4	16
69	Infrared spectroscopic studies of molecular structure, ordering, and interactions in enzyme-containing Langmuir-Blodgett films. <i>Langmuir</i> , 1990 , 6, 1068-1070	4	18
68	Structural properties of Langmuir-Blodgett films of a long-chain tetrathiafulvalene derivative. <i>Synthetic Metals</i> , 1990 , 35, 307-318	3.6	20
67	Small angle X-ray analysis of alternate-layer Langmuir B lodgett films. <i>Philosophical Magazine Letters</i> , 1989 , 59, 317-323	1	10
66	Conducting Langmuir-Blodgett films of 1-tetrathiafulvalenyl-octadecan-1-ol-TCNQ complex. <i>Journal Physics D: Applied Physics</i> , 1989 , 22, 1586-1590	3	9
65	Functionalised diarylalkynes: a new class of Langmuir-Blodgett film materials for nonlinear optics. Journal Physics D: Applied Physics, 1989 , 22, 1608-1612	3	10
64	Effects of hydrogen gas on palladium/LB film/silicon MIS devices. Sensors and Actuators, 1989, 16, 255-2	261	4
63	Phospholipid-based potassium-selective Langmuir-Blodgett films. <i>Thin Solid Films</i> , 1989 , 180, 111-115	2.2	13
62	Optical properties of highly ordered perylene multilayers. <i>Thin Solid Films</i> , 1989 , 179, 515-520	2.2	15
61	On the formation of Langmuir-Blodgett films containing enzymes. <i>Thin Solid Films</i> , 1989 , 176, 151-156	2.2	43
60	Alternate-layer Langmuir-Blodgett films of long-chain TCNQ and TTF derivatives. <i>Synthetic Metals</i> , 1989 , 31, 275-279	3.6	24
59	Multilayer assemblies for non-linear optics. <i>Synthetic Metals</i> , 1989 , 28, D711-D719	3.6	6
58	Infrared studies of valinomycin-containing Langmuir-Blodgett films. <i>Langmuir</i> , 1989 , 5, 330-332	4	43

(1986-1989)

57	Synthesis of tetrathiafulvalene (TTF) derivatives substituted with two and four hydrophobic alkyl chains. <i>Synthetic Metals</i> , 1989 , 31, 379-387	3.6	6
56	Polarization processes in pyroelectric Langmuir-Blodgett films. <i>Thin Solid Films</i> , 1988 , 160, 117-123	2.2	25
55	Charge incorporation in Etricosenoic acid Langmuir-Blodgett multilayers. <i>Thin Solid Films</i> , 1988 , 160, 177-185	2.2	10
54	Surface plasmon resonance studies of gas effects in phthalocyanine Langmuir-Blodgett films. <i>Thin Solid Films</i> , 1988 , 160, 431-443	2.2	59
53	The deposition and characterization of multilayers of the ionophore valinomycin. <i>Thin Solid Films</i> , 1988 , 160, 483-489	2.2	27
52	Fourier transform IR studies of alternate layer acid-amine Langmuir-Blodgett films with pyroelectric properties. <i>Thin Solid Films</i> , 1988 , 159, 461-467	2.2	34
51	A highly conducting tetrathiafulvalene Langmuir-Blodgett film. <i>Thin Solid Films</i> , 1988 , 165, L97-L100	2.2	49
50	Blue electroluminescence from ZnSe/Langmuir-Blodgett film MIS diodes. <i>Journal of Luminescence</i> , 1988 , 40-41, 861-862	3.8	2
49	Langmuir-Blodgett films: a new class of pyroelectric materials. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,</i> 1988 , 35, 736-40	3.2	15
48	Synthesis of tetrathiafulvalene (TTF) derivatives bearing long alkyl chains. <i>Journal of the Chemical Society Chemical Communications</i> , 1988 , 1391		9
48 47		3	9
	Society Chemical Communications, 1988, 1391 Thermally stimulated discharge of alternate-layer Langmuir-Blodgett film structures. Journal	3	
47	Society Chemical Communications, 1988, 1391 Thermally stimulated discharge of alternate-layer Langmuir-Blodgett film structures. Journal Physics D: Applied Physics, 1988, 21, 95-100 Blue electroluminescence from ZnSe/Langmuir-Blodgett film MIS diodes. Electronics Letters, 1987,		19
47 46	Thermally stimulated discharge of alternate-layer Langmuir-Blodgett film structures. <i>Journal Physics D: Applied Physics</i> , 1988 , 21, 95-100 Blue electroluminescence from ZnSe/Langmuir-Blodgett film MIS diodes. <i>Electronics Letters</i> , 1987 , 23, 231-232 Second-harmonic generation in mixed hemicyanine: fatty-acid Langmuir-Blodgett monolayers.	1.1	19
47 46 45	Thermally stimulated discharge of alternate-layer Langmuir-Blodgett film structures. <i>Journal Physics D: Applied Physics</i> , 1988 , 21, 95-100 Blue electroluminescence from ZnSe/Langmuir-Blodgett film MIS diodes. <i>Electronics Letters</i> , 1987 , 23, 231-232 Second-harmonic generation in mixed hemicyanine: fatty-acid Langmuir-Blodgett monolayers. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1987 , 4, 950 Electroactive langmuir-blodgett films of N-octadecylpyridinium-TCNQ charge-transfer salt.	1.7	19 14 124
47 46 45 44	Thermally stimulated discharge of alternate-layer Langmuir-Blodgett film structures. <i>Journal Physics D: Applied Physics</i> , 1988 , 21, 95-100 Blue electroluminescence from ZnSe/Langmuir-Blodgett film MIS diodes. <i>Electronics Letters</i> , 1987 , 23, 231-232 Second-harmonic generation in mixed hemicyanine: fatty-acid Langmuir-Blodgett monolayers. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1987 , 4, 950 Electroactive langmuir-blodgett films of N-octadecylpyridinium-TCNQ charge-transfer salt. <i>Synthetic Metals</i> , 1987 , 22, 185-189	1.1 1.7 3.6	19 14 124 33
47 46 45 44 43	Thermally stimulated discharge of alternate-layer Langmuir-Blodgett film structures. <i>Journal Physics D: Applied Physics</i> , 1988 , 21, 95-100 Blue electroluminescence from ZnSe/Langmuir-Blodgett film MIS diodes. <i>Electronics Letters</i> , 1987 , 23, 231-232 Second-harmonic generation in mixed hemicyanine: fatty-acid LangmuirBlodgett monolayers. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1987 , 4, 950 Electroactive langmuir-blodgett films of N-octadecylpyridinium-TCNQ charge-transfer salt. <i>Synthetic Metals</i> , 1987 , 22, 185-189 IR studies of pyroelectric Langmuir-Blodgett films. <i>Thin Solid Films</i> , 1987 , 155, 187-195 Photoelectric properties of substituted silicon phthalocyanine Langmuir-Blodgett film Schottky	1.1 1.7 3.6	19 14 124 33 39

39	Interface state effects in Pd-gate mos hydrogen sensors. Sensors and Actuators, 1986, 9, 165-175		11
38	Dynamic pyroelectric response of Langmuir-Blodgett film infrared detectors. <i>Journal Physics D: Applied Physics</i> , 1986 , 19, L167-L172	3	18
37	Second harmonic generation from LB superlattices containing two active components. <i>Electronics Letters</i> , 1986 , 22, 460	1.1	82
36	Spontaneous polarization in organic superlattices. <i>Applied Physics Letters</i> , 1986 , 48, 1101-1103	3.4	49
35	Monolayer films of a substituted silicon phthalocyanine. <i>The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties</i> , 1986 , 53, 105-113	3	54
34	The preparation and dielectric properties of polybutadiene Langmuir-Blodgett films. <i>Thin Solid Films</i> , 1985 , 134, 75-82	2.2	34
33	A Langmuir trough for the production of organic superlattices. <i>Thin Solid Films</i> , 1985 , 134, 83-88	2.2	48
32	Electronic devices incorporating stable phthalocyanine Langmuir-Blodgett films. <i>Thin Solid Films</i> , 1985 , 132, 113-123	2.2	94
31	GaP/phthalocyanine Langmuir B lodgett film electroluminescent diode. <i>Electronics Letters</i> , 1984 , 20, 489	1.1	27
30	GaAs/LB film MISS switching device. <i>Electronics Letters</i> , 1984 , 20, 838	1.1	14
30	GaAs/LB film MISS switching device. <i>Electronics Letters</i> , 1984 , 20, 838 A RHEED study of cadmium stearate Langmuir-Blodgett films. <i>Journal of Materials Science Letters</i> , 1984 , 3, 25-28	1.1	14
	A RHEED study of cadmium stearate Langmuir-Blodgett films. <i>Journal of Materials Science Letters</i> ,	2.2	
29	A RHEED study of cadmium stearate Langmuir-Blodgett films. <i>Journal of Materials Science Letters</i> , 1984 , 3, 25-28 The preparation and properties of stable metal-free phthalocyanine Langmuir-Blodgett films. <i>Thin</i>		11
29	A RHEED study of cadmium stearate Langmuir-Blodgett films. <i>Journal of Materials Science Letters</i> , 1984 , 3, 25-28 The preparation and properties of stable metal-free phthalocyanine Langmuir-Blodgett films. <i>Thin Solid Films</i> , 1983 , 99, 53-59 Electroluminescence in GaP/Langmuir-Blodgett film metal/insulator/semiconductor diodes. <i>Thin</i>	2.2	178
29 28 27	A RHEED study of cadmium stearate Langmuir-Blodgett films. <i>Journal of Materials Science Letters</i> , 1984, 3, 25-28 The preparation and properties of stable metal-free phthalocyanine Langmuir-Blodgett films. <i>Thin Solid Films</i> , 1983, 99, 53-59 Electroluminescence in GaP/Langmuir-Blodgett film metal/insulator/semiconductor diodes. <i>Thin Solid Films</i> , 1983, 99, 283-290 Langmuir-Blodgett film metal/insulator/ semiconductor structures on narrow band gap	2.2	11 178 31
29 28 27 26	A RHEED study of cadmium stearate Langmuir-Blodgett films. <i>Journal of Materials Science Letters</i> , 1984, 3, 25-28 The preparation and properties of stable metal-free phthalocyanine Langmuir-Blodgett films. <i>Thin Solid Films</i> , 1983, 99, 53-59 Electroluminescence in GaP/Langmuir-Blodgett film metal/insulator/semiconductor diodes. <i>Thin Solid Films</i> , 1983, 99, 283-290 Langmuir-Blodgett film metal/insulator/ semiconductor structures on narrow band gap semiconductors. <i>Thin Solid Films</i> , 1983, 99, 291-296	2.2	11 178 31 29
29 28 27 26 25	A RHEED study of cadmium stearate Langmuir-Blodgett films. <i>Journal of Materials Science Letters</i> , 1984, 3, 25-28 The preparation and properties of stable metal-free phthalocyanine Langmuir-Blodgett films. <i>Thin Solid Films</i> , 1983, 99, 53-59 Electroluminescence in GaP/Langmuir-Blodgett film metal/insulator/semiconductor diodes. <i>Thin Solid Films</i> , 1983, 99, 283-290 Langmuir-Blodgett film metal/insulator/ semiconductor structures on narrow band gap semiconductors. <i>Thin Solid Films</i> , 1983, 99, 291-296 Amorphous silicon/Langmuir-Blodgett film field effect transistor. <i>Thin Solid Films</i> , 1983, 99, 297-304	2.2 2.2 2.2	11 178 31 29 26

21	Langmuir-Blodgett films in amorphous silicon MIS structures. Thin Solid Films, 1982, 89, 395-400	2.2	24
20	Thermally stimulated conductivity in InP:Fe. <i>Journal Physics D: Applied Physics</i> , 1981 , 14, 2107-2116	3	4
19	Electrical properties of CdTe:Cl. <i>Journal Physics D: Applied Physics</i> , 1980 , 13, 1899-1909	3	10
18	Cadmium telluride/Langmuir film photovoltaic structures. <i>Electronics Letters</i> , 1980 , 16, 201	1.1	34
17	CdTe/Langmuir-film m.i.s. structures. <i>Electronics Letters</i> , 1979 , 15, 335	1.1	7
16	Electrical properties of ZnxHg1-xTe thin films. <i>Journal Physics D: Applied Physics</i> , 1976 , 9, 1605-1617	3	5
15	Optical absorption in ZnxHg1-xTe thin films. <i>Journal Physics D: Applied Physics</i> , 1976 , 9, 2305-2316	3	О
14	Constants218-218		
13	Properties of Selected Elements520-521		
12	Chemical Sensors and Actuators359-401		
11	Scope of Molecular Electronics1-17		
10	Electrical Conductivity65-128		1
9	Tools for Molecular Electronics213-239		
8	Thin Film Processing and Device Fabrication241-285		
7	Liquid Crystals and Devices287-311		
6	Bioelectronics455-503		
5	Plastic Electronics313-358		
4	MaterialsRFoundations19-64		

3 Molecular-Scale Electronics403-454

The Electromagnetic Spectrum219-219

Electroactive Organic Compounds169-211

1