Encarnacion Montecino-Rodriguez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3748974/publications.pdf

Version: 2024-02-01

62 papers 4,425 citations

28 h-index 53 g-index

62 all docs

62 docs citations

62 times ranked 6349 citing authors

#	Article	IF	CITATIONS
1	Causes, consequences, and reversal of immune system aging. Journal of Clinical Investigation, 2013, 123, 958-965.	3.9	570
2	Identification of a B-1 B cell–specified progenitor. Nature Immunology, 2006, 7, 293-301.	7.0	386
3	The ageing immune system: is it ever too old to become young again?. Nature Reviews Immunology, 2009, 9, 57-62.	10.6	362
4	B-1 B Cell Development in the Fetus and Adult. Immunity, 2012, 36, 13-21.	6.6	300
5	Osteopontin promotes fibrosis in dystrophic mouse muscle by modulating immune cell subsets and intramuscular TGF- \hat{l}^2 . Journal of Clinical Investigation, 2009, 119, 1583-1594.	3.9	251
6	Embryonic day 9 yolk sac and intra-embryonic hemogenic endothelium independently generate a B-1 and marginal zone progenitor lacking B-2 potential. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1468-1473.	3.3	243
7	Helper (CD4+) and Cytotoxic (CD8+) T Cells Promote the Pathology of Dystrophin-Deficient Muscle. Clinical Immunology, 2001, 98, 235-243.	1.4	237
8	Reduction in the Developmental Potential of Intrathymic T Cell Progenitors with Age. Journal of Immunology, 2004, 173, 245-250.	0.4	188
9	Bipotential B-macrophage progenitors are present in adult bone marrow. Nature Immunology, 2001, 2, 83-88.	7.0	173
10	Fetal B-cell lymphopoiesis and the emergence of B-1-cell potential. Nature Reviews Immunology, 2007, 7, 213-219.	10.6	130
11	New perspectives in B-1 B cell development and function. Trends in Immunology, 2006, 27, 428-433.	2.9	120
12	Effects of Aging on the Common Lymphoid Progenitor to Pro-B Cell Transition. Journal of Immunology, 2006, 176, 1007-1012.	0.4	107
13	Effects of Insulin-Like Growth Factor Administration and Bone Marrow Transplantation on Thymopoiesis in Aged Mice1. Endocrinology, 1998, 139, 4120-4126.	1.4	96
14	Aging and cancer resistance in lymphoid progenitors are linked processes conferred by p16 ^{Ink4a} and Arf. Genes and Development, 2008, 22, 3115-3120.	2.7	89
15	Effects of aging on early B- and T-cell development. Immunological Reviews, 2005, 205, 7-17.	2.8	85
16	Expression of connexin 43 (Cx43) is critical for normal hematopoiesis. Blood, 2000, 96, 917-924.	0.6	77
17	Plasma Cells Are Obligate Effectors of Enhanced Myelopoiesis in Aging Bone Marrow. Immunity, 2019, 51, 351-366.e6.	6.6	76
18	Age-related defects in B lymphopoiesis underlie the myeloid dominance of adult leukemia. Blood, 2007, 110, 1831-1839.	0.6	71

#	Article	IF	CITATIONS
19	Reduced production of B-1–specified common lymphoid progenitors results in diminished potential of adult marrow to generate B-1 cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13700-13704.	3.3	71
20	Distinct Genetic Networks Orchestrate the Emergence of Specific Waves of Fetal and Adult B-1 and B-2 Development. Immunity, 2016, 45, 527-539.	6.6	64
21	Reassessing the role of growth hormone and sex steroids in thymic involution. Clinical Immunology, 2006, 118, 117-123.	1.4	62
22	Humoral and Cell-Mediated Immunity in Mice with Genetic Deficiencies of Prolactin, Growth Hormone, Insulin-like Growth Factor-I, and Thyroid Hormone. Clinical Immunology, 2000, 96, 140-149.	1.4	61
23	Mef2C is a lineage-restricted target of Scl/Tal1 and regulates megakaryopoiesis and B-cell homeostasis. Blood, 2009, 113, 3461-3471.	0.6	51
24	Do haematopoietic stem cells age?. Nature Reviews Immunology, 2020, 20, 196-202.	10.6	50
25	Lymphoid-Biased Hematopoietic Stem Cells Are Maintained with Age and Efficiently Generate Lymphoid Progeny. Stem Cell Reports, 2019, 12, 584-596.	2.3	45
26	Fibroblast growth factor-7 partially reverses murine thymocyte progenitor aging by repression of Ink4a. Blood, 2012, 119, 5715-5721.	0.6	39
27	Formation of B-1 B Cells from Neonatal B-1 Transitional Cells Exhibits NF-κB Redundancy. Journal of Immunology, 2011, 187, 5712-5719.	0.4	38
28	Macrophages and Stromal Cells Phagocytose Apoptotic Bone Marrow-Derived B Lineage Cells. Journal of Immunology, 2004, 172, 4717-4723.	0.4	31
29	Transgenic Expression of Helios in B Lineage Cells Alters B Cell Properties and Promotes Lymphomagenesis. Journal of Immunology, 2005, 175, 3508-3515.	0.4	30
30	Evolving Patterns of Lymphopoiesis from Embryogenesis through Senescence. Immunity, 2006, 24, 659-662.	6.6	25
31	To T or not to T: reassessing the common lymphoid progenitor. Nature Immunology, 2003, 4, 100-101.	7.0	22
32	Radiation Therapy of Spontaneous Autoimmunity: A Review of Mouse Models. International Journal of Radiation Biology, 1988, 53, 119-136.	1.0	21
33	Regulation of B and T cell development by anterior pituitary hormones. Cellular and Molecular Life Sciences, 1998, 54, 1076-1082.	2.4	21
34	Genetic regulation of thymocyte progenitor aging. Seminars in Immunology, 2012, 24, 303-308.	2.7	20
35	Murine B-1 B Cell Progenitors Initiate B-Acute Lymphoblastic Leukemia with Features of High-Risk Disease. Journal of Immunology, 2014, 192, 5171-5178.	0.4	20
36	Identification of B/macrophage progenitors in adult bone marrow. Seminars in Immunology, 2002, 14, 371-376.	2.7	18

#	Article	IF	Citations
37	Effects of housing on the thymic deficiency in dwarf mice and its reversal by growth hormone administration. Clinical Immunology, 2003, 109, 197-202.	1.4	18
38	B-cell development in the thymus is limited by inhibitory signals from the thymic microenvironment. Blood, 2002, 100, 3504-3511.	0.6	17
39	Aging, B lymphopoiesis, and patterns of leukemogenesis. Experimental Gerontology, 2007, 42, 391-395.	1.2	17
40	Stromal cell–dependent growth of B-1 B cell progenitors in the absence of direct contact. Nature Protocols, 2006, 1, 1140-1144.	5 . 5	16
41	PET imaging to non-invasively study immune activation leading to antitumor responses with a 4-1BB agonistic antibody. , $2013, 1, 14$.		13
42	NZB Mice Exhibit a Primary T Cell Defect in Fetal Thymic Organ Culture. Journal of Immunology, 2000, 164, 1569-1575.	0.4	12
43	Immature B-cell progenitors survive oncogenic stress and efficiently initiate Ph+ B-acute lymphoblastic leukemia. Blood, 2010, 116, 2522-2530.	0.6	12
44	Differential Expression of PU.1 and Key T Lineage Transcription Factors Distinguishes Fetal and Adult T Cell Development. Journal of Immunology, 2018, 200, 2046-2056.	0.4	11
45	Use of Busulfan to Condition Mice for Bone Marrow Transplantation. STAR Protocols, 2020, 1, 100159.	0.5	11
46	Impaired Development of T Lymphoid Precursors from Pluripotent Hematopoietic Stem Cells in New Zealand Black Mice. Journal of Immunology, 2002, 168, 81-86.	0.4	7
47	Human pediatric B-cell acute lymphoblastic leukemias can be classified as B-1 or B-2-like based on a minimal transcriptional signature. Experimental Hematology, 2020, 90, 65-71.e1.	0.2	7
48	Developmental relationships between B-1 and B-2 progenitors. Cell Cycle, 2011, 10, 3810-3811.	1.3	6
49	Thymocyte development in vitro: implications for studies of ageing and thymic involution. Mechanisms of Ageing and Development, 1997, 93, 47-57.	2.2	5
50	The Expansion of Thymopoiesis in Neonatal Mice Is Dependent on Expression of High Mobility Group A 2 Protein (Hmga2). PLoS ONE, 2015, 10, e0125414.	1.1	5
51	B1 B cell progenitors. Science, 2019, 364, 248-248.	6.0	5
52	SERUM IMMUNOGLOBULIN ISOTYPE PROFILE OF VIABLE AND NON VIABLE LYMPHOID CELL CHIMAERAS MADE WITH NUDE ATHYMIC Ipr (LYMPHOPROLIFERATION) MOUSE RECIPIENTS. Autoimmunity, 1992, 11, 151-158.	1.2	4
53	Regulation of Lymphocyte Development by Microenvironmental and Systemic Factors., 1998,, 197-211.		4
54	Differential Expression of Bone Marrow Stromal Cell-Surface Antigens on Myeloid and Lymphoid Cells. Hybridoma, 1994, 13, 175-181.	0.9	3

#	Article	IF	CITATIONS
55	Long-Term Bone Marrow Cultures Provide Access to Early Lymphoid Progenitors. Journal of Hematotherapy and Stem Cell Research, 2001, 10, 107-114.	1.8	1
56	B-1 B Cell Development. , 2016, , 52-56.		1
57	Comparison of the N- and O-Linked Glycopeptides of Lymph Node Cells from C57 Bl/6 Lpr/Lpr and C57 Bl/6 Mice. Autoimmunity, 1993, 14, 45-56.	1.2	O
58	Use of severe combined immunodeficient mice to measure developmental potential of B-cell precursors. Research in Immunology, 1994, 145, 325-328.	0.9	0
59	Evolving Patterns of Lymphopoiesis from Embryogenesis through Senescence. Immunity, 2006, 25, 177.	6.6	O
60	Expression of connexin 43 (Cx43) is critical for normal hematopoiesis. Blood, 2000, 96, 917-924.	0.6	0
61	B Lymphocytes Emerge De Novo Independently in the YS and PSP Before E10, but Lack B-2 Potential Blood, 2009, 114, 1501-1501.	0.6	O
62	Genetic Subtypes of Human Pediatric ALLs Show Gene Expression Differences That Parallel Those Observed in Mouse B1 and B2 Progenitors, Suggesting Divergent Developmental Origins. Blood, 2016, 128, 1741-1741.	0.6	0