
Kim C Mansky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3748839/publications.pdf Version: 2024-02-01

KIM C MANSKY

#	Article	IF	CITATIONS
1	Histone deacetylase 5 is a phosphorylation substrate of protein kinase D in osteoclasts. Bone, 2022, 159, 116393.	1.4	1
2	Strontium- and peptide-modified silicate nanostructures for dual osteogenic and antimicrobial activity. , 2022, 135, 212735.		7
3	Tissue selective effects of bazedoxifene on the musculoskeletal system in female mice. Journal of Endocrinology, 2021, 248, 181-191.	1.2	3
4	Antimicrobial and enzyme-responsive multi-peptide surfaces for bone-anchored devices. Materials Science and Engineering C, 2021, 125, 112108.	3.8	16
5	Phlpp1 is induced by estrogen in osteoclasts and its loss in Ctsk-expressing cells does not protect against ovariectomy-induced bone loss. PLoS ONE, 2021, 16, e0251732.	1.1	3
6	WNT-5a and SOST Levels in Gingival Crevicular Fluid Depend on the Inflammatory and Osteoclastogenic Activities of Periodontal Tissues. Medicina (Lithuania), 2021, 57, 788.	0.8	6
7	Myeloid Lineage Ablation of Phlpp1 Regulates M-CSF Signaling and Tempers Bone Resorption in Female Mice. International Journal of Molecular Sciences, 2021, 22, 9702.	1.8	3
8	Epigenetic Regulators Involved in Osteoclast Differentiation. International Journal of Molecular Sciences, 2020, 21, 7080.	1.8	15
9	Hdac3 deletion in myeloid progenitor cells enhances bone healing in females and limits osteoclast fusion via Pmepa1. Scientific Reports, 2020, 10, 21804.	1.6	10
10	Loss of myocyte enhancer factor 2 expression in osteoclasts leads to opposing skeletal phenotypes. Bone, 2020, 138, 115466.	1.4	11
11	Regulation of Osteoclast Differentiation at Multiple Stages by Protein Kinase D Family Kinases. International Journal of Molecular Sciences, 2020, 21, 1056.	1.8	6
12	Bone morphogenetic proteins: Their role in regulating osteoclast differentiation. Bone Reports, 2019, 10, 100207.	0.2	31
13	Inactivating Mutation in <i>IRF8</i> Promotes Osteoclast Transcriptional Programs and Increases Susceptibility to Tooth Root Resorption. Journal of Bone and Mineral Research, 2019, 34, 1155-1168.	3.1	22
14	Sclerostin and WNTâ€5a gingival protein levels in chronic periodontitis and health. Journal of Periodontal Research, 2019, 54, 555-565.	1.4	24
15	Regulation of Osteoclast Differentiation and Skeletal Maintenance by Histone Deacetylases. Molecules, 2019, 24, 1355.	1.7	22
16	SMAD1/5 signaling in osteoclasts regulates bone formation via coupling factors. PLoS ONE, 2018, 13, e0203404.	1.1	27
17	Regulation of Osteoclast Differentiation by Myosin X. Scientific Reports, 2017, 7, 7603.	1.6	21
18	Class II and IV HDACs function as inhibitors of osteoclast differentiation. PLoS ONE, 2017, 12, e0185441.	1.1	24

KIM C MANSKY

#	Article	IF	CITATIONS
19	Breast cancer cell-derived fibroblast growth factors enhance osteoclast activity and contribute to the formation of metastatic lesions. PLoS ONE, 2017, 12, e0185736.	1.1	26
20	The Function of Twisted Gastrulation in Regulating Osteoclast Differentiation is Dependent on BMP Binding. Journal of Cellular Biochemistry, 2015, 116, 2239-2246.	1.2	10
21	Smad1/5 and Smad4 Expression Are Important for Osteoclast Differentiation. Journal of Cellular Biochemistry, 2015, 116, 1350-1360.	1.2	24
22	Deletion of Histone Deacetylase 7 in Osteoclasts Decreases Bone Mass in Mice by Interactions with MITF. PLoS ONE, 2015, 10, e0123843.	1.1	25
23	Bone Morphogenetic Proteins Signal Via SMAD and Mitogen-activated Protein (MAP) Kinase Pathways at Distinct Times during Osteoclastogenesis. Journal of Biological Chemistry, 2013, 288, 37230-37240.	1.6	55
24	Protein Kinase D Promotes in Vitro Osteoclast Differentiation and Fusion. Journal of Biological Chemistry, 2013, 288, 9826-9834.	1.6	6
25	Bone morphogenetic protein 2 signaling in osteoclasts is negatively regulated by the BMP antagonist, twisted gastrulation. Journal of Cellular Biochemistry, 2011, 112, 793-803.	1.2	33
26	HDAC3 and HDAC7 Have Opposite Effects on Osteoclast Differentiation. Journal of Biological Chemistry, 2011, 286, 12056-12065.	1.6	75
27	Bone morphogenic protein 2 directly enhances differentiation of murine osteoclast precursors. Journal of Cellular Biochemistry, 2010, 109, 672-682.	1.2	103
28	The 19S proteasomal lid subunit POH1 enhances the transcriptional activation by Mitf in osteoclasts. Journal of Cellular Biochemistry, 2010, 109, 967-974.	1.2	23
29	Aging, human immunodeficiency virus, and bone health. Clinical Interventions in Aging, 2010, 5, 285.	1.3	13
30	Downregulation of Gnas, Got2 and Snord32a following tenofovir exposure of primary osteoclasts. Biochemical and Biophysical Research Communications, 2010, 391, 1324-1329.	1.0	35
31	Tenofovir treatment of primary osteoblasts alters gene expression profiles: Implications for bone mineral density loss. Biochemical and Biophysical Research Communications, 2010, 394, 48-53.	1.0	70
32	C-TAK1 interacts with microphthalmia-associated transcription factor, Mitf, but not the related family member Tfe3. Biochemical and Biophysical Research Communications, 2010, 394, 890-895.	1.0	8
33	Tenofovir-associated bone density loss. Therapeutics and Clinical Risk Management, 2010, 6, 41-7.	0.9	60
34	Enhanced Osteoclastogenesis Causes Osteopenia in Twisted Gastrulation-Deficient Mice Through Increased BMP Signaling. Journal of Bone and Mineral Research, 2009, 24, 1917-1926.	3.1	52
35	MITF and PU.1 Recruit p38 MAPK and NFATc1 to Target Genes during Osteoclast Differentiation. Journal of Biological Chemistry, 2007, 282, 15921-15929.	1.6	155
36	Microphthalmia-associated Transcription Factor Interactions with 14-3-3 Modulate Differentiation of Committed Myeloid Precursors. Molecular Biology of the Cell, 2006, 17, 3897-3906.	0.9	66

#	Article	IF	CITATIONS
37	Microphthalmia Transcription Factor Is a Target of the p38 MAPK Pathway in Response to Receptor Activator of NF-κB Ligand Signaling. Journal of Biological Chemistry, 2002, 277, 11077-11083.	1.6	218
38	The microphthalmia transcription factor (MITF) contains two N-terminal domains required for transactivation of osteoclast target promoters and rescue of mi mutant osteoclasts. Journal of Leukocyte Biology, 2002, 71, 295-303.	1.5	19
39	The microphthalmia transcription factor and the related helix-loop-helix zipper factors TFE-3 and TFE-C collaborate to activate the tartrate-resistant acid phosphatase promoter. Journal of Leukocyte Biology, 2002, 71, 304-10.	1.5	32