Hans-Joachim Massonne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3748829/publications.pdf Version: 2024-02-01

		126901	138468
117	3,860	33	58
papers	citations	h-index	g-index
117	117	117	2273
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Eclogite with unusual atoll garnet from the southern Armorican Massif, France: Pressure-temperature path and geodynamic implications. Tectonophysics, 2022, 823, 229183.	2.2	8
2	Highâ€pressure granulite facies reâ€equilibration and zoisite–biotite dehydration melting during decompression of an ultrahighâ€pressure garnet clinopyroxenite from the island of FjÃ,rtoft, Norway. Journal of Metamorphic Geology, 2022, 40, 887-918.	3.4	7
3	Melting of phengite-bearing eclogite at pressures of 4 and 9 GPa relevant to deep regions of a subduction zone. Earth and Planetary Science Letters, 2022, 584, 117475.	4.4	5
4	Partial melting due to breakdown of phengite and amphibole in retrogressed eclogite of deep Precambrian crust: An example from the Algonquin terrane, western Grenville Province, Canada. Precambrian Research, 2021, 352, 105965.	2.7	12
5	The closure of the Rocas Verdes Basin and early tectono-metamorphic evolution of the Magallanes Fold-and-Thrust Belt, southern Patagonian Andes (52–54°S). Tectonophysics, 2021, 798, 228686.	2.2	21
6	Key patterns of Sâ€type granitic gneiss to define the baric (low―to highâ€pressure) nature of Phanerozoic basement terranes. Terra Nova, 2021, 33, 225-239.	2.1	2
7	Evidence of two metamorphic cycles preserved in garnet from felsic granulite in the southern Variscan belt of Corsica, France. Lithos, 2021, 380-381, 105919.	1.4	6
8	Metapelite from the high―to ultrahighâ€pressure terrane of the Eastern Alps (Pohorje Mountains,) Tj ETQq0 C Metamorphic Geology, 2021, 39, 695-726.	0 rgBT /O 3.4	verlock 10 Tf 10
9	Kyanite-garnet granulite from the Andrelândia nappe system, BrasÃlia belt, registers two late Neoproterozoic metamorphic cycles. Precambrian Research, 2021, 355, 106086.	2.7	7
10	Pressure–temperature–deformation–time path of a deformed garnet-bearing granite from the Paleoproterozoic Tandilia Belt, RÃo de la Plata Craton of Argentina. International Journal of Earth Sciences, 2021, 110, 2273-2293.	1.8	2
11	Two contrasting P-T paths for metamorphic sole amphibolites of the Dinaride Ophiolite Zone (Krivaja-Konjuh ultramafic massif, Central Bosnia and Herzegovina) and their geodynamic implications. Lithos, 2021, 394-395, 106184.	1.4	1
12	Comment to "Deep subduction of felsic rocks hosting UHP lenses in the central Saxonian Erzgebirge: Implications for UHP terrane exhumation―by. Gondwana Research, 2021, 98, 317-319.	6.0	3
13	Reply to the comment by Klonowska et al. on the paper "Evolution of a gneiss in the Seve nappe complex of central Sweden – Hints at an early Caledonian, medium-pressure metamorphism―by. Lithos, 2021, 400-401, 106384.	1.4	0
14	Pressure-Temperature Evolution of a Mylonitic Gneiss from the Lower Seve Nappe in the Handöl Area, Central Sweden. Journal of Earth Science (Wuhan, China), 2021, 32, 1496-1511.	3.2	2
15	Comments to "high-pressure eclogite facies metamorphism and decompression melting recorded in Paleoproterozoic accretionary wedge adjacent to probable ophiolite from Itaguara (southern São) Tj ETQq1 1	0.7 8.4 314	rg& /Overlo
16	Paleoproterozoic P-T-d-t evolution of a gneiss with quartz-sillimanite nodules from the Azul ranges, Rio de la Plata craton, Argentina. Journal of South American Earth Sciences, 2020, 98, 102453.	1.4	8
17	Garnet-Rich Veins in an Ultrabasic Amphibolite from NE Sardinia, Italy: An Example of Vein Mineralogical Re-Equilibration during the Exhumation of a Granulite Terrane. Geosciences (Switzerland), 2020, 10, 344.	2.2	4
18	Geochemical and geochronological dataset of rutile from a Variscan metabasite in Sardinia, Italy. Data in Brief, 2020, 31, 105925.	1.0	3

#	Article	IF	CITATIONS
19	Zoning of eclogitic garnet cores – a key pattern demonstrating the dominance of tectonic erosion as part of the burial process of worldwide occurring eclogites. Earth-Science Reviews, 2020, 210, 103356.	9.1	16
20	Evolution of a gneiss in the Seve nappe complex of central Sweden – Hints at an early Caledonian, medium-pressure metamorphism. Lithos, 2020, 376-377, 105746.	1.4	11
21	Highâ€ <i>P</i> (<i>P</i> Â=Â1.5–1.8ÂGPa) blueschist from Elba: Implications for underthrusting and exhumation of continental units in the Northern Apennines. Journal of Metamorphic Geology, 2020, 38, 495-525.	3.4	15
22	The Main Central Thrust zone along the Alaknanda and Dhauli Ganga valleys (Garhwal Himalaya, NW) Tj ETQq0 C	0 rgBT /O	verlock 10 Tf 12
23	Metamorphic Evolution of Chloritoid-Bearing Micaschist from the Variscan Elstergebirge: Evidences for Stacking of High-Pressure Rocks in the Saxothuringian Zone of Central Europe. Journal of Earth Science (Wuhan, China), 2020, 31, 425-446.	3.2	8
24	Paleoproterozoic metamorphosed calc-alkaline dikes of the southwestern RÃo de la Plata craton, Tandilia belt of Argentina, record a prograde high-pressure, medium-temperature evolution. Journal of South American Earth Sciences, 2020, 101, 102595.	1.4	8
25	Partial melting of zoisite eclogite from the Sanddal area, North-East Greenland Caledonides. European Journal of Mineralogy, 2020, 32, 405-425.	1.3	10
26	Partial melting due to breakdown of an epidoteâ€group mineral during exhumation of ultrahighâ€pressure eclogite: An example from the Northâ€East Greenland Caledonides. Journal of Metamorphic Geology, 2019, 37, 15-39.	3.4	26
27	Chemistry of chromium spinel in high-Mg rocks from the Morungava Intrusion, Cretaceous ParanÃi Igneous Province, southernmost Brazil. Mineralogy and Petrology, 2019, 113, 765-782.	1.1	3
28	A shallow origin for diamonds in ophiolitic chromitites: COMMENT. Geology, 2019, 47, e476-e476.	4.4	9
29	Partial melting and strain localization in metapelites at very low-pressure conditions: The northern Apennines magmatic arc on the Island of Elba, Italy. Lithos, 2019, 350-351, 105230.	1.4	11
30	Highâ€Pressure Fluidâ€Rock Interaction and Mass Transfer During Exhumation of Deeply Subducted Rocks: Insights From an Eclogiteâ€Vein System in the Ultrahighâ€Pressure Terrane of the Dabie Shan, China. Geochemistry, Geophysics, Geosystems, 2019, 20, 5786-5817.	2.5	9
31	A record of ultrahigh temperature metamorphism in the Dabie orogen during Triassic continental collision. Gondwana Research, 2019, 72, 54-64.	6.0	6
32	An anticlockwise <i>P–T–t</i> path at highâ€pressure, highâ€temperature conditions for a migmatitic gneiss from the island of FjÃ,rtoft, Western Gneiss Region, Norway, indicates two burial events during the Caledonian orogeny. Journal of Metamorphic Geology, 2019, 37, 567-588.	3.4	20
33	Tectonic implications of P-T paths derived for garnet-bearing felsic gneisses from the Dabie and Sulu ultrahigh pressure terranes, east-central China. Numerische Mathematik, 2019, 319, 788-817.	1.4	5
34	U-Pb geochronology of ParanÃ; volcanics combined with trace element geochemistry of the zircon crystals and zircon Hf isotope data. Journal of South American Earth Sciences, 2019, 89, 219-226.	1.4	23
35	Zircon fissionâ€track ages from Newfoundland—A proxy for high geothermal gradients and exhumation before opening of the Central Atlantic Ocean. Terra Nova, 2019, 31, 1-10.	2.1	2

High-pressure investigations of yttrium(III) oxoarsenate(V): Crystal structure and luminescence36properties of Eu3+-doped scheelite-type Y[AsO4] from xenotime-type precursors. Journal of Solid State2.97Chemistry, 2018, 263, 65-71.

#	Article	IF	CITATIONS
37	Two Tertiary metamorphic events recognized in highâ€pressure metapelites of the Nevadoâ€Filábride Complex (Betic Cordillera, S Spain). Journal of Metamorphic Geology, 2018, 36, 603-630.	3.4	37
38	Growth of chloritoid and garnet along a nearly isothermal burial path to 70Âkm depth: an example from the Bughea Metamorphic Complex, Leaota Massif, South Carpathians. Mineralogy and Petrology, 2018, 112, 535-553.	1.1	5
39	Alpine metamorphism of low-grade schists from the Slavonian Mountains (Croatia): new P-T and geochronological constraints. International Geology Review, 2018, 60, 288-304.	2.1	5
40	Origin of native copper in the ParanÃ; volcanic province, Brazil, integrating Cu stable isotopes in a multi-analytical approach. Mineralium Deposita, 2018, 53, 417-434.	4.1	16
41	Anticlockwise pressure–temperature paths record Variscan upperâ€plate exhumation: Example from micaschists of the Porto Vecchio region, Corsica. Journal of Metamorphic Geology, 2018, 36, 55-77.	3.4	38
42	Highâ€ <i>P</i> tectonoâ€metamorphic evolution of mylonites from the Variscan basement of the Northern Apennines, Italy. Journal of Metamorphic Geology, 2018, 36, 23-39.	3.4	5
43	Polyphase solid-inclusions formed by interactions between infiltrating fluids and precursor minerals enclosed in garnet of UHP rocks from the Dabie Shan, China. American Mineralogist, 2018, 103, 1663-1673.	1.9	10
44	The Pocologan metamorphic suite of southern New Brunswick, Canada: New constraints on age and conditions of medium- to high-pressure metamorphism on the Ganderian margin of the Rheic Ocean. Tectonophysics, 2018, 747-748, 177-190.	2.2	8
45	Pressure-temperature-time evolution of a Variscan garnet-bearing micaschist from the northeastern Fichtelgebirge, NW Bohemian Massif in central Europe. Lithos, 2018, 316-317, 366-384.	1.4	9
46	Trans-Amazonian U-Th-Pb monazite ages and P-T-d exhumation paths of garnet-bearing leucogranite and migmatitic country rock of the southeastern Tandilia belt, Rio de la Plata craton in Argentina. Lithos, 2017, 274-275, 328-348.	1.4	13
47	Intergranular coesite and coesite inclusions in dolomite from the Dabie Shan: Constraints on the preservation of coesite in <scp>UHP</scp> rocks. Terra Nova, 2017, 29, 154-161.	2.1	16
48	Contrasting metamorphic evolution of metapelites from the Malpica-Tuy unit and the underlying so-called parautochthon at the coast of NW Spain. Lithos, 2017, 286-287, 92-108.	1.4	17
49	Diopside, apatite, and rutile in an ultrahigh pressure impure marble from the Dabie Shan, eastern China: A record of eclogite-facies metasomatism during exhumation. Chemical Geology, 2017, 466, 123-139.	3.3	7
50	Hydrothermal karst and associated breccias in Neoproterozoic limestone from the Barker-Villa Cacique area (Tandilia belt), Argentina. Journal of South American Earth Sciences, 2017, 76, 182-197.	1.4	9
51	Monazite in a Variscan mylonitic paragneiss from the Münchberg Metamorphic Complex (<scp>NE</scp> Bavaria) records Cadomian protolith ages. Journal of Metamorphic Geology, 2017, 35, 453-469.	3.4	22
52	Clockwise and Anticlockwise P–T Paths of High-pressure Rocks from the â€~La Pioza' Eclogite Body of the Malpica–Tuy Complex, NW Spain. Journal of Petrology, 2017, 58, 1363-1392.	2.8	31
53	Chapter 13 Jadeitite and other high-pressure metamorphic rocks from the Jade Mines Belt, Tawmaw area, Kachin State, northern Myanmar. Geological Society Memoir, 2017, 48, 295-315.	1.7	13
54	Petrographic, mineral and pressure–temperature constraints on phyllites from the Variscan basement at Punta Bianca, Northern Apennines, Italy. Italian Journal of Geosciences, 2016, 135, 489-502.	0.8	9

#	Article	IF	CITATIONS
55	The P–T path of eclogites in the St. Cyr klippe, Yukon, Canada: Permian metamorphism of a coherent high-pressure unit in an accreted terrane of the North American Cordillera. European Journal of Mineralogy, 2016, 28, 1111-1130.	1.3	13
56	Metamorphic evolution of blueschists, greenschists, and metagreywackes in the Cretaceous Mt. Hibernia Complex (SE Jamaica). European Journal of Mineralogy, 2016, 28, 1059-1078.	1.3	13
57	Paleoproterozoic migmatitic gneisses from the Tandilia belt (Argentina), RÃo de la Plata craton, record cooling at deep crustal levels. Journal of South American Earth Sciences, 2016, 67, 201-220.	1.4	12
58	Middle to late Eocene exhumation of the Greater Himalayan Sequence in the Central Himalayas: Progressive accretion from the Indian plate. Bulletin of the Geological Society of America, 2016, 128, 1571-1592.	3.3	72
59	Tertiary high-pressure metamorphism recorded in andalusite-bearing mica-schist, southern Pirin Mts., SW Bulgaria. European Journal of Mineralogy, 2016, 28, 1187-1202.	1.3	23
60	Early Variscan P-T evolution of an eclogite body and adjacent orthogneiss from the northern Malpica-Tuy shear-zone in NW Spain. European Journal of Mineralogy, 2016, 28, 1131-1154.	1.3	32
61	Hydration of the lithospheric mantle by the descending plate in a continent–continent collisional setting and its geodynamic consequences. Journal of Geodynamics, 2016, 96, 50-61.	1.6	26
62	The Palu Metamorphic Complex, NW Sulawesi, Indonesia: Origin and evolution of a young metamorphic terrane with links to Gondwana and Sundaland. Journal of Asian Earth Sciences, 2016, 115, 133-152.	2.3	52
63	Effects of fluid flow, cooling and deformation as recorded by ⁴⁰ Ar/ ³⁹ Ar, Rb–Sr and zircon fission track ages in very low- to low-grade metamorphic rocks in Avalonian SE Cape Breton Island (Nova Scotia, Canada). Geological Magazine, 2015, 152, 767-787.	1.5	15
64	Timescales of exhumation and cooling inferred by kinetic modeling: An example using a lamellar garnet pyroxenite from the Variscan Granulitgebirge, Germany. American Mineralogist, 2015, 100, 747-759.	1.9	20
65	Derivation of P–T paths from high-pressure metagranites — Examples from the Gran Paradiso Massif, western Alps. Lithos, 2015, 226, 265-279.	1.4	31
66	Pressure–temperature–time–deformation path of kyanite-bearing migmatitic paragneiss in the Kali Gandaki valley (Central Nepal): Investigation of Late Eocene–Early Oligocene melting processes. Lithos, 2015, 231, 103-121.	1.4	101
67	Silica gossan as a prospective guide for amethyst geode deposits in the Ametista do Sul mining district, ParanA¡ volcanic province, southern Brazil. Journal of Geochemical Exploration, 2015, 159, 213-226.	3.2	8
68	Wealth of P–T–t information in medium-high grade metapelites: Example from the Jubrique Unit of the Betic Cordillera, S Spain. Lithos, 2014, 208-209, 137-157.	1.4	63
69	Mineralogical and geochemical characterization of a rare ultramafic lamprophyre in the Tandilia belt basement, RÃo de la Plata Craton, Argentina. Journal of South American Earth Sciences, 2013, 43, 46-61.	1.4	13
70	Geothermobarometry on anatectic melts – a high-pressure Variscan migmatite from northeast Sardinia. International Geology Review, 2013, 55, 1490-1505.	2.1	24
71	Evolution of a very deeply subducted metasediment from As Sifah, northeastern coast of Oman. Lithos, 2013, 156-159, 171-185.	1.4	29
72	Peraluminous leucogranites of the Cordilheira Suite: A record of Neoproterozoic collision and the generation of the Pelotas Batholith, Dom Feliciano Belt, Southern Brazil. Journal of South American Earth Sciences, 2013, 43, 8-24.	1.4	46

#	Article	IF	CITATIONS
73	Pressure–temperature and deformational evolution of high-pressure metapelites from Variscan NE Sardinia, Italy. Lithos, 2013, 175-176, 272-284.	1.4	37
74	Very Low- to Low-grade Metamorphic Processes Related to the Collisional Assembly of Avalonia in SE Cape Breton Island (Nova Scotia, Canada). Journal of Petrology, 2013, 54, 1849-1874.	2.8	15
75	Petrology and isotope geology of mafic to ultramafic metavolcanic rocks of the Brusque Metamorphic Complex, southern Brazil. International Geology Review, 2012, 54, 686-713.	2.1	8
76	<i>P–T</i> evolution and timing of a late Palaeozoic fore-arc system and its heterogeneous Mesozoic overprint in north-central Chile (latitudes 31–32°S). Geological Magazine, 2012, 149, 177-207.	1.5	33
77	Widespread relics of high-pressure metamorphism confirm major terrane accretion in Ecuador: a new example from the Northern Andes. International Geology Review, 2012, 54, 67-80.	2.1	29
78	Palaeozoic accretion of the microcontinent Chilenia, North Patagonian Andes: high-pressure metamorphism and subsequent thermal relaxation. International Geology Review, 2012, 54, 472-490.	2.1	36
79	Metamorphic evolution of the RÃo de la Plata Craton in the Cinco Cerros area, Buenos Aires Province, Argentina. Journal of South American Earth Sciences, 2012, 38, 57-70.	1.4	28
80	Melting of metasedimentary rocks at ultrahigh pressure—Insights from experiments and thermodynamic calculations. Lithosphere, 2012, 4, 269-285.	1.4	32
81	Formation of Amphibole and Clinozoisite-Epidote in Eclogite owing to Fluid Infiltration during Exhumation in a Subduction Channel. Journal of Petrology, 2012, 53, 1969-1998.	2.8	123
82	Early post-collisional Brasiliano magmatism in BotuverÃ; region, Santa Catarina, southern Brazil: Evidence from petrology, geochemistry, isotope geology and geochronology of the diabase and lamprophyre dikes. Journal of South American Earth Sciences, 2012, 37, 266-278.	1.4	15
83	H ₂ O content of deep-seated orogenic continental crust: the Ulten Zone, Italian Alps. International Geology Review, 2012, 54, 633-641.	2.1	17
84	Sequential opening and filling of cavities forming vesicles, amygdales and giant amethyst geodes in lavas from the southern ParanÃ; volcanic province, Brazil and Uruguay. International Geology Review, 2012, 54, 1-14.	2.1	42
85	Diapirs as the source of the sediment signature in arc lavas. Nature Geoscience, 2011, 4, 641-646.	12.9	330
86	Preservation of old (prograde metamorphic) U–Th–Pb ages in unshielded monazite from the high-pressure paragneisses of the Variscan Ulten Zone (Italy). Lithos, 2011, 127, 68-85.	1.4	35
87	Isotopic and structural constraints on the late Miocene to Pliocene evolution of the Namche Barwa area, eastern Himalayan syntaxis, SE Tibet. Gondwana Research, 2011, 19, 894-909.	6.0	36
88	The geodynamics of collision of a microplate (Chilenia) in Devonian times deduced by the pressure–temperature–time evolution within part of a collisional belt (Guarguaraz Complex,) Tj ETQq0 0 0 rş	gB B./ Overlo	
89	Phase relations of siliceous marbles at ultrahigh pressure based on thermodynamic calculations: examples from the Kokchetav Massif, Kazakhstan and the Sulu terrane, China. Geological Journal, 2011, 46, 114-125.	1.3	22

90 Coeficientes de distribuição de elementos-traço em clinopiroxênio e plagioclásio de sills basálticos da Formação Serra Geral, Brasil. Pesquisas Em Geociencias, 2011, 38, 158. 0.1 1

#	Article	IF	CITATIONS
91	Conditions and Timing of Pumpellyite–Actinolite-facies Metamorphism in the Early Mesozoic Frontal Accretionary Prism of the Madre de Dios Archipelago (Latitude 50°20′S; Southern Chile). Journal of Petrology, 2009, 50, 2127-2155.	2.8	48
92	Evidence for oceanic subduction at the NE Gondwana margin during Permoâ€Triassic times. Terra Nova, 2009, 21, 195-202.	2.1	38
93	Hydration, dehydration, and melting of metamorphosed granitic and dioritic rocks at high- and ultrahigh-pressure conditions. Earth and Planetary Science Letters, 2009, 288, 244-254.	4.4	53
94	Dehydration of clastic sediments in subduction zones: Theoretical study using thermodynamic data of minerals. Island Arc, 2008, 17, 577-590.	1.1	16
95	P-T evolution of metapelites from the Guarguaraz Complex, Argentina: evidence for Devonian crustal thickening close to the western Gondwana margin. Andean Geology, 2008, 35, .	0.5	42
96	Protolith age of Santa Maria Chico granulites dated on zircons from an associated amphibolite-facies granodiorite in southernmost Brazil. Anais Da Academia Brasileira De Ciencias, 2008, 80, 543-551.	0.8	38
97	Paragonite: Why Is It So Rare in Medium-Temperature High-Pressure Rocks?. International Geology Review, 2007, 49, 301-312.	2.1	7
98	P-T Evolution of Eclogites and Blueschists from the Luk Ulo Complex of Central Java, Indonesia. International Geology Review, 2007, 49, 329-356.	2.1	26
99	Geochemical signatures of Variscan eclogites from the Saxonian Erzgebirge, central Europe. Chemie Der Erde, 2007, 67, 69-83.	2.0	19
100	Eclogites from the Chinese continental scientific drilling borehole, their petrology and different <i>Pâ€T</i> evolutions. Island Arc, 2007, 16, 508-535.	1.1	21
101	δ13C signature of early graphite and subsequently formed microdiamond from the Saxonian Erzgebirge, Germany. Terra Nova, 2007, 19, 476-480.	2.1	9
102	Carbonatite-like dykes from the eastern Himalayan syntaxis: geochemical, isotopic, and petrogenetic evidence for melting of metasedimentary carbonate rocks within the orogenic crust. Journal of Asian Earth Sciences, 2006, 26, 105-120.	2.3	37
103	Involvement of Crustal Material in Delamination of the Lithosphere after Continent-Continent Collision. International Geology Review, 2005, 47, 792-804.	2.1	38
104	Focused ion beam technique and transmission electron microscope studies of microdiamonds from the Saxonian Erzgebirge, Germany. Earth and Planetary Science Letters, 2003, 210, 399-410.	4.4	60
105	A comparison of the evolution of diamondiferous quartz-rich rocks from the Saxonian Erzgebirge and the Kokchetav Massif: are so-called diamondiferous gneisses magmatic rocks?. Earth and Planetary Science Letters, 2003, 216, 347-364.	4.4	155
106	Relationships Among Eclogite Bodies and Host Rocks in the Lotru Metamorphic Suite (South) Tj ETQqO O O rgBT Medium-Pressure Terrain. International Geology Review, 2003, 45, 225-262.	Overlock 2.1	10 Tf 50 147 13
107	Characterization of an early metamorphic stage through inclusions in zircon of a diamondiferous quartzofeldspathic rock from the Erzgebirge, Germany. American Mineralogist, 2003, 88, 883-889.	1.9	63
108	First find of coesite in the ultrahigh-pressure metamorphic area of the central Erzgebirge, Germany. European Journal of Mineralogy, 2001, 13, 565-570.	1.3	118

#	Article	IF	CITATIONS
109	Microdiamond daughter crystals precipitated from supercritical COH + silicate fluids included in garnet, Erzgebirge, Germany. Geology, 2001, 29, 391.	4.4	200
110	Mineral Chemistry and Pressure–Temperature Evolution of Two Contrasting High-pressure–Low-temperature Belts in the Chonos Archipelago, Southern Chile. Journal of Petrology, 2000, 41, 309-330.	2.8	60
111	Microdiamonds from the Saxonian Erzgebirge, Germany: in situ micro-Raman characterisation. European Journal of Mineralogy, 2000, 12, 495-498.	1.3	133
112	Experimental Aspects of UHP Metamorphism in Pelitic Systems. International Geology Review, 1999, 41, 623-638.	2.1	14
113	Low differential stress during high-pressure metamorphism: The microstructural record of a metapelite from the Eclogite Zone, Tauern Window, Eastern Alps. Lithos, 1997, 41, 103-118.	1.4	78
114	Thermodynamic properties of white micas on the basis of high-pressure experiments in the systems K2Oî—,MgOî—,Al2O3î—,SiO2î—,H2O and K2î—,Oî—,FeOî—,Al3O3î—,SiO2î—,H3O. Lithos, 1997, 41, 229-250.	1.4	232
115	P - T - t history of the Lower Austroalpine Nappe Complex in the "Tarntaler Berge" NW of the Tauern Window: implications for the geotectonic evolution of the central Eastern Alps. Contributions To Mineralogy and Petrology, 1997, 129, 1-19.	3.1	28
116	Evidence for low-temperature ultrapotassic siliceous fluids in subduction zone environments from experiments in the system K2Oî—,MgOî—,Al2O3î—,SiO2î—,H2O (KMASH). Lithos, 1992, 28, 421-434.	1.4	57
117	Stability field of the high-pressure assemblage talc + phengite and two new phengite barometers. European Journal of Mineralogy, 1989, 1, 391-410.	1.3	165