Zasha Weinberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3748678/publications.pdf Version: 2024-02-01

ZASHA WEINBERC

#	Article	IF	CITATIONS
1	Application of RtcB ligase to monitor self-cleaving ribozyme activity by RNA-seq. Biological Chemistry, 2022, .	2.5	2
2	Spacer prioritization in CRISPR–Cas9 immunity is enabled by the leader RNA. Nature Microbiology, 2022, 7, 530-541.	13.3	9
3	RNAcentral 2021: secondary structure integration, improved sequence search and new member databases. Nucleic Acids Research, 2021, 49, D212-D220.	14.5	160
4	Rfam 14: expanded coverage of metagenomic, viral and microRNA families. Nucleic Acids Research, 2021, 49, D192-D200.	14.5	475
5	Beyond Plug and Pray: Context Sensitivity and <i>in silico</i> Design of Artificial Neomycin Riboswitches. RNA Biology, 2021, 18, 457-467.	3.1	6
6	Widespread bacterial utilization of guanidine as nitrogen source. Molecular Microbiology, 2021, 116, 200-210.	2.5	14
7	Biochemical analysis of cleavage and ligation activities of the pistol ribozyme from Paenibacillus polymyxa. RNA Biology, 2021, 18, 1-9.	3.1	9
8	Identification of over 200-fold more hairpin ribozymes than previously known in diverse circular RNAs. Nucleic Acids Research, 2021, 49, 6375-6388.	14.5	16
9	Satellite-Like W-Elements: Repetitive, Transcribed, and Putative Mobile Genetic Factors with Potential Roles for Biology and Evolution of <i>Schistosoma mansoni</i> . Genome Biology and Evolution, 2021, 13, .	2.5	8
10	cyPhyRNA-seq: a genome-scale RNA-seq method to detect active self-cleaving ribozymes by capturing RNAs with 2ʹ,3ʹ <u>cy</u> clic <u>p</u> hosphates and 5ʹ <u>hy</u> droxyl ends. RNA Biology, 2021, 18, 818-831.	3.1	5
11	Natural circularly permuted group II introns in bacteria produce RNA circles. IScience, 2021, 24, 103431.	4.1	7
12	Discovery and characterization of a fourth class of guanidine riboswitches. Nucleic Acids Research, 2020, 48, 12889-12899.	14.5	23
13	A rare bacterial RNA motif is implicated in the regulation of thepurFgene whose encoded enzyme synthesizes phosphoribosylamine. Rna, 2020, 26, 1838-1846.	3.5	5
14	Discovery of 20 novel ribosomal leader candidates in bacteria and archaea. BMC Microbiology, 2020, 20, 130.	3.3	10
15	A Plant Pathogen Type III Effector Protein Subverts Translational Regulation to Boost Host Polyamine Levels. Cell Host and Microbe, 2019, 26, 638-649.e5.	11.0	68
16	Novel ribozymes: discovery, catalytic mechanisms, and the quest to understand biological function. Nucleic Acids Research, 2019, 47, 9480-9494.	14.5	54
17	A streamlined protocol for the detection of mRNA–sRNA interactions using AMT-crosslinking <i>in vitro</i> . BioTechniques, 2019, 67, 178-183.	1.8	4
18	The structure of the SAM/SAH-binding riboswitch. Nucleic Acids Research, 2019, 47, 2654-2665.	14.5	33

ZASHA WEINBERG

#	Article	IF	CITATIONS
19	SAM-VI RNAs selectively bind <i>S</i> -adenosylmethionine and exhibit similarities to SAM-III riboswitches. RNA Biology, 2018, 15, 371-378.	3.1	42
20	Bioinformatic analysis of riboswitch structures uncovers variant classes with altered ligand specificity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2077-E2085.	7.1	75
21	Activation of the <i>glmS</i> Ribozyme Confers Bacterial Growth Inhibition. ChemBioChem, 2017, 18, 435-440.	2.6	24
22	Detection of 224 candidate structured RNAs by comparative analysis of specific subsets of intergenic regions. Nucleic Acids Research, 2017, 45, 10811-10823.	14.5	116
23	Numerous small hammerhead ribozyme variants associated with Penelope-like retrotransposons cleave RNA as dimers. RNA Biology, 2017, 14, 1499-1507.	3.1	17
24	Reporter Gene-Based Screening for TPP Riboswitch Activators. Methods in Molecular Biology, 2017, 1520, 227-235.	0.9	9
25	tRNA Modifications: Impact on Structure and Thermal Adaptation. Biomolecules, 2017, 7, 35.	4.0	241
26	Biochemical analysis of hatchet self-cleaving ribozymes. Rna, 2015, 21, 1845-1851.	3.5	36
27	Biochemical analysis of pistol self-cleaving ribozymes. Rna, 2015, 21, 1852-1858.	3.5	59
28	New classes of self-cleaving ribozymes revealed by comparative genomics analysis. Nature Chemical Biology, 2015, 11, 606-610.	8.0	174
29	Bacterial Riboswitches Cooperatively Bind Ni 2+ or Co 2+ Ions and Control Expression of Heavy Metal Transporters. Molecular Cell, 2015, 57, 1088-1098.	9.7	147
30	Control of bacterial exoelectrogenesis by c-AMP-GMP. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5389-5394.	7.1	98
31	Novel TPP-riboswitch activators bypass metabolic enzyme dependency. Frontiers in Chemistry, 2014, 2, 53.	3.6	17
32	The promise of riboswitches as potential antibacterial drug targets. International Journal of Medical Microbiology, 2014, 304, 79-92.	3.6	65
33	A widespread self-cleaving ribozyme class is revealed by bioinformatics. Nature Chemical Biology, 2014, 10, 56-60.	8.0	217
34	Structural, Functional, and Taxonomic Diversity of Three PreQ1 Riboswitch Classes. Chemistry and Biology, 2014, 21, 880-889.	6.0	78
35	Screening Assays to Identify Artificial glmS Ribozyme Activators. Methods in Molecular Biology, 2014, 1103, 199-209.	0.9	2
36	Riboswitches in eubacteria sense the second messenger c-di-AMP. Nature Chemical Biology, 2013, 9, 834-839.	8.0	247

ZASHA WEINBERG

#	Article	IF	CITATIONS
37	Small, Highly Active DNAs That Hydrolyze DNA. Journal of the American Chemical Society, 2013, 135, 9121-9129.	13.7	134
38	Fluoride resistance and transport by riboswitch-controlled CLC antiporters. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15289-15294.	7.1	125
39	Widespread Genetic Switches and Toxicity Resistance Proteins for Fluoride. Science, 2012, 335, 233-235.	12.6	356
40	Carba-sugars Activate the glmS-Riboswitch of <i>Staphylococcus aureus</i> . ACS Chemical Biology, 2011, 6, 675-678.	3.4	66
41	Meeting report of the RNA Ontology Consortium January 8-9, 2011. Standards in Genomic Sciences, 2011, 4, 252-256.	1.5	1
42	RNA diagnostics: realâ€ŧime RTâ€₽CR strategies and promising novel target RNAs. Wiley Interdisciplinary Reviews RNA, 2011, 2, 32-41.	6.4	26
43	R2R - software to speed the depiction of aesthetic consensus RNA secondary structures. BMC Bioinformatics, 2011, 12, 3.	2.6	226
44	RNIE: genome-wide prediction of bacterial intrinsic terminators. Nucleic Acids Research, 2011, 39, 5845-5852.	14.5	71
45	Identification of Hammerhead Ribozymes in All Domains of Life Reveals Novel Structural Variations. PLoS Computational Biology, 2011, 7, e1002031.	3.2	124
46	An Aptamer Targeting the Apicalâ€Loop Domain Modulates priâ€miRNA Processing. Angewandte Chemie - International Edition, 2010, 49, 4674-4677.	13.8	49
47	A Eubacterial Riboswitch Class That Senses the Coenzyme Tetrahydrofolate. Chemistry and Biology, 2010, 17, 681-685.	6.0	86
48	An Allosteric Self-Splicing Ribozyme Triggered by a Bacterial Second Messenger. Science, 2010, 329, 845-848.	12.6	309
49	Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes. Genome Biology, 2010, 11, R31.	9.6	348
50	Identification of candidate structured RNAs in the marine organism 'Candidatus Pelagibacter ubique'. BMC Genomics, 2009, 10, 268.	2.8	56
51	Exceptional structured noncoding RNAs revealed by bacterial metagenome analysis. Nature, 2009, 462, 656-659.	27.8	102
52	FINDING NON-CODING RNAs THROUGH GENOME-SCALE CLUSTERING. Journal of Bioinformatics and Computational Biology, 2009, 07, 373-388.	0.8	28
53	A widespread riboswitch candidate that controls bacterial genes involved in molybdenum cofactor and tungsten cofactor metabolism. Molecular Microbiology, 2008, 68, 918-932.	2.5	142
54	The aptamer core of SAM-IV riboswitches mimics the ligand-binding site of SAM-I riboswitches. Rna, 2008, 14, 822-828.	3.5	103

ZASHA WEINBERG

#	Article	IF	CITATIONS
55	The RNA WikiProject: Community annotation of RNA families. Rna, 2008, 14, 2462-2464.	3.5	66
56	A Computational Pipeline for High- Throughput Discovery of cis-Regulatory Noncoding RNA in Prokaryotes. PLoS Computational Biology, 2007, 3, e126.	3.2	77
57	Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline. Nucleic Acids Research, 2007, 35, 4809-4819.	14.5	292
58	FINDING NON-CODING RNAs THROUGH GENOME-SCALE CLUSTERING. , 2007, , .		0
59	Macronuclear Genome Sequence of the Ciliate Tetrahymena thermophila, a Model Eukaryote. PLoS Biology, 2006, 4, e286.	5.6	657
60	CMfindera covariance model based RNA motif finding algorithm. Bioinformatics, 2006, 22, 445-452.	4.1	316
61	Sequence-based heuristics for faster annotation of non-coding RNA families. Bioinformatics, 2006, 22, 35-39.	4.1	98
62	6S RNA is a widespread regulator of eubacterial RNA polymerase that resembles an open promoter. Rna, 2005, 11, 774-784.	3.5	210
63	Exploiting conserved structure for faster annotation of non-coding RNAs without loss of accuracy. Bioinformatics, 2004, 20, i334-i341.	4.1	56
64	Faster genome annotation of non-coding RNA families without loss of accuracy. , 2004, , .		43
65	A Glycine-Dependent Riboswitch That Uses Cooperative Binding to Control Gene Expression. Science, 2004, 306, 275-279.	12.6	491
66	An approximate search engine for structural databases. , 2000, , .		1
67	An approximate search engine for structural databases. SIGMOD Record, 2000, 29, 584.	1.2	0