Steve Hung Lam Yim

List of Publications by Citations

Source: https://exaly.com/author-pdf/3748640/steve-hung-lam-yim-publications-by-citations.pdf

Version: 2024-04-29

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

92 papers

2,422 citations

30 h-index

45 g-index

114 ext. papers

3,130 ext. citations

avg, IF

5.61 L-index

#	Paper	IF	Citations
92	Air pollution and early deaths in the United States. Part I: Quantifying the impact of major sectors in 2005. <i>Atmospheric Environment</i> , 2013 , 79, 198-208	5.3	238
91	Air ventilation impacts of the Wall effectIresulting from the alignment of high-rise buildings. <i>Atmospheric Environment</i> , 2009 , 43, 4982-4994	5.3	106
90	Global, regional and local health impacts of civil aviation emissions. <i>Environmental Research Letters</i> , 2015 , 10, 034001	6.2	76
89	Air quality and public health impacts of UK airports. Part II: Impacts and policy assessment. <i>Atmospheric Environment</i> , 2013 , 67, 184-192	5.3	73
88	The air quality and health impacts of domestic trans-boundary pollution in various regions of China. <i>Environment International</i> , 2016 , 97, 117-124	12.9	69
87	Public health impacts of combustion emissions in the United Kingdom. <i>Environmental Science & Environmental Science & Technology</i> , 2012 , 46, 4291-6	10.3	69
86	Impact of low-pressure systems on winter heavy air pollution in the northwest Sichuan Basin, China. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 13601-13615	6.8	67
85	Public health, climate, and economic impacts of desulfurizing jet fuel. <i>Environmental Science & Technology</i> , 2012 , 46, 4275-82	10.3	66
84	Impacts of sectoral emissions in China and the implications: air quality, public health, crop production, and economic costs. <i>Environmental Research Letters</i> , 2018 , 13, 084008	6.2	64
83	Exposure to ambient air pollution and blood lipids in adults: The 33 Communities Chinese Health Study. <i>Environment International</i> , 2018 , 119, 485-492	12.9	60
82	Developing a high-resolution wind map for a complex terrain with a coupled MM5/CALMET system. <i>Journal of Geophysical Research</i> , 2007 , 112,		60
81	Long-Term Trends of Persistent Synoptic Circulation Events in Planetary Boundary Layer and Their Relationships With Haze Pollution in Winter Half Year Over Eastern China. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 10,991-11,007	4.4	56
80	Trans-boundary air pollution in a city under various atmospheric conditions. <i>Science of the Total Environment</i> , 2018 , 618, 132-141	10.2	53
79	PM2.5 Pollution Modulates Wintertime Urban Heat Island Intensity in the Beijing-Tianjin-Hebei Megalopolis, China. <i>Geophysical Research Letters</i> , 2020 , 47, e2019GL084288	4.9	50
78	Ambient PM air pollution and cardiovascular disease prevalence: Insights from the 33 Communities Chinese Health Study. <i>Environment International</i> , 2019 , 123, 310-317	12.9	48
77	Assessing the impacts of seasonal and vertical atmospheric conditions on air quality over the Pearl River Delta region. <i>Atmospheric Environment</i> , 2018 , 180, 69-78	5.3	41
76	Synergistic effects of synoptic weather patterns and topography on air quality: a case of the Sichuan Basin of China. <i>Climate Dynamics</i> , 2019 , 53, 6729-6744	4.2	39

(2018-2014)

75	Quantifying the climate impacts of albedo changes due to biofuel production: a comparison with biogeochemical effects. <i>Environmental Research Letters</i> , 2014 , 9, 024015	6.2	38	
74	Use of high-resolution MM5/CALMET/CALPUFF system: SO2 apportionment to air quality in Hong Kong. <i>Atmospheric Environment</i> , 2010 , 44, 4850-4858	5.3	38	
73	Effect of Urbanization on Ozone and Resultant Health Effects in the Pearl River Delta Region of China. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 11568-11579	4.4	37	
7 2	Source contributions of surface ozone in China using an adjoint sensitivity analysis. <i>Science of the Total Environment</i> , 2019 , 662, 385-392	10.2	37	
71	Characteristics of Heavy Particulate Matter Pollution Events Over Hong Kong and Their Relationships With Vertical Wind Profiles Using High-Time-Resolution Doppler Lidar Measurements. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 9609-9623	4.4	37	
70	Near-airport distribution of the environmental costs of aviation. <i>Transport Policy</i> , 2014 , 34, 102-108	5.7	37	
69	Air quality and acid deposition impacts of local emissions and transboundary air pollution in Japan and South Korea. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 13309-13323	6.8	37	
68	Ambient PM air pollution, blood pressure, and hypertension: Insights from the 33 Communities Chinese Health Study. <i>Environmental Research</i> , 2019 , 170, 252-259	7.9	34	
67	Association between long-term exposure to air pollution and sleep disorder in Chinese children: the Seven Northeastern Cities study. <i>Sleep</i> , 2018 , 41,	1.1	34	
66	Determinants of personal exposure to fine particulate matter (PM) in adult subjects in Hong Kong. <i>Science of the Total Environment</i> , 2018 , 628-629, 1165-1177	10.2	33	
65	The Impact of the Aerosol Direct Radiative Forcing on Deep Convection and Air Quality in the Pearl River Delta Region. <i>Geophysical Research Letters</i> , 2018 , 45, 4410-4418	4.9	32	
64	Contribution of local emissions and transboundary air pollution to air quality in Hong Kong during El Nið-Southern Oscillation and heatwaves. <i>Atmospheric Research</i> , 2019 , 218, 50-58	5.4	32	
63	Residential greenness and blood lipids in urban-dwelling adults: The 33 Communities Chinese Health Study. <i>Environmental Pollution</i> , 2019 , 250, 14-22	9.3	30	
62	Liver function biomarkers disorder is associated with exposure to perfluoroalkyl acids in adults: Isomers of C8 Health Project in China. <i>Environmental Research</i> , 2019 , 172, 81-88	7.9	30	
61	Characteristics and meteorological mechanisms of transboundary air pollution in a persistent heavy PM2.5 pollution episode in Central-East China. <i>Atmospheric Environment</i> , 2020 , 223, 117239	5.3	30	
60	Impacts of air pollutants from fire and non-fire emissions on the regional air quality in Southeast Asia. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 6141-6156	6.8	30	
59	Sensitivity of inflow boundary conditions on downstream wind and turbulence profiles through building obstacles using a CFD approach. <i>Journal of Wind Engineering and Industrial Aerodynamics</i> , 2013 , 115, 137-149	3.7	29	
58	Projecting the impacts of atmospheric conditions under climate change on air quality over the Pearl River Delta region. <i>Atmospheric Environment</i> , 2018 , 193, 79-87	5.3	29	

57	Vertical Wind Shear Modulates Particulate Matter Pollutions: A Perspective from Radar Wind Profiler Observations in Beijing, China. <i>Remote Sensing</i> , 2020 , 12, 546	5	28
56	Chemical characterization and sources of personal exposure to fine particulate matter (PM) in the megacity of Guangzhou, China. <i>Environmental Pollution</i> , 2017 , 231, 871-881	9.3	27
55	Isomers of perfluoroalkyl substances and overweight status among Chinese by sex status: Isomers of C8 Health Project in China. <i>Environment International</i> , 2019 , 124, 130-138	12.9	27
54	High temporal resolution prediction of street-level PM2.5 and NOx concentrations using machine learning approach. <i>Journal of Cleaner Production</i> , 2020 , 268, 121975	10.3	24
53	An assessment indicator for air ventilation and pollutant dispersion potential in an urban canopy with complex natural terrain and significant wind variations. <i>Atmospheric Environment</i> , 2014 , 94, 297-30	<i>6</i> ^{5.3}	24
52	Development of a response surface model of aviation's air quality impacts in the United States. <i>Atmospheric Environment</i> , 2013 , 77, 445-452	5.3	23
51	Estimation of personal exposure to fine particles (PM) of ambient origin for healthy adults in Hong Kong. <i>Science of the Total Environment</i> , 2019 , 654, 514-524	10.2	23
50	Effects of urbanization and global climate change on regional climate in the Pearl River Delta and thermal comfort implications. <i>International Journal of Climatology</i> , 2019 , 39, 2984-2997	3.5	21
49	Air quality and climate impacts of alternative bus technologies in Greater London. <i>Environmental Science & Environmental Scie</i>	10.3	21
48	Investigation of near-global daytime boundary layer height using high-resolution radiosondes: first results and comparison with ERA5, MERRA-2, JRA-55, and NCEP-2 reanalyses. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 17079-17097	6.8	20
47	Characteristics and toxicological effects of commuter exposure to black carbon and metal components of fine particles (PM) in Hong Kong. <i>Science of the Total Environment</i> , 2020 , 742, 140501	10.2	19
46	Mesoscale Simulation of Year-to-Year Variation of Wind Power Potential over Southern China. <i>Energies</i> , 2009 , 2, 340-361	3.1	19
45	Assessing outdoor air quality and public health impact attributable to residential black carbon emissions in rural China. <i>Resources, Conservation and Recycling</i> , 2020 , 159, 104812	11.9	18
44	Interactions between ambient air pollution and obesity on lung function in children: The Seven Northeastern Chinese Cities (SNEC) Study. <i>Science of the Total Environment</i> , 2020 , 699, 134397	10.2	18
43	Development of a 3D Real-Time Atmospheric Monitoring System (3DREAMS) Using Doppler LiDARs and Applications for Long-Term Analysis and Hot-and-Polluted Episodes. <i>Remote Sensing</i> , 2020 , 12, 103	6 ⁵	18
42	A Model Investigation of Aerosol-Induced Changes in the East Asian Winter Monsoon. <i>Geophysical Research Letters</i> , 2019 , 46, 10186-10195	4.9	17
41	Contribution of local and remote anthropogenic aerosols to a record-breaking torrential rainfall event in Guangdong Province, China. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 223-241	6.8	15
40	Diurnal Evolution of the Wintertime Boundary Layer in Urban Beijing, China: Insights from Doppler Lidar and a 325-m Meteorological Tower. <i>Remote Sensing</i> , 2020 , 12, 3935	5	13

(2021-2019)

39	The Trend Reversal of Dust Aerosol Over East Asia and the North Pacific Ocean Attributed to Large-Scale Meteorology, Deposition, and Soil Moisture. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 10450-10466	4.4	13
38	Quantifying the air quality-CO2 tradeoff potential for airports. <i>Atmospheric Environment</i> , 2014 , 99, 546	-555\$	12
37	High-Spatial-Resolution Population Exposure to PM2.5 Pollution Based on Multi-Satellite Retrievals: A Case Study of Seasonal Variation in the Yangtze River Delta, China in 2013. <i>Remote Sensing</i> , 2019 , 11, 2724	5	12
36	Indoor, outdoor, and personal exposure to PM and their bioreactivity among healthy residents of Hong Kong. <i>Environmental Research</i> , 2020 , 188, 109780	7.9	11
35	Mapping ozone source-receptor relationship and apportioning the health impact in the Pearl River Delta region using adjoint sensitivity analysis. <i>Atmospheric Environment</i> , 2020 , 222, 1-117026	5.3	10
34	Modulations of synoptic and climatic changes on ozone pollution and its health risks in mountain-basin areas. <i>Atmospheric Environment</i> , 2020 , 240, 117808	5.3	10
33	A practical framework for predicting residential indoor PM concentration using land-use regression and machine learning methods. <i>Chemosphere</i> , 2021 , 265, 129140	8.4	10
32	Source identification of personal exposure to fine particulate matter (PM2.5) among adult residents of Hong Kong. <i>Atmospheric Environment</i> , 2019 , 218, 116999	5.3	9
31	Preliminary Evaluation of the Atmospheric Infrared Sounder Water Vapor Over China Against High-Resolution Radiosonde Measurements. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 3871-3888	4.4	9
30	The effect of urbanization and climate change on the mosquito population in the Pearl River Delta region of China. <i>International Journal of Biometeorology</i> , 2020 , 64, 501-512	3.7	9
29	Association of ambient ozone with pneumonia hospital admissions in Hong Kong and Taipei: A tale of two Southeast Asian cities. <i>Environment International</i> , 2021 , 156, 106634	12.9	9
28	The effects of particle-induced oxidative damage from exposure to airborne fine particulate matter components in the vicinity of landfill sites on Hong Kong. <i>Chemosphere</i> , 2019 , 230, 578-586	8.4	8
27	Observation of Turbulent Mixing Characteristics in the Typical Daytime Cloud-Topped Boundary Layer over Hong Kong in 2019. <i>Remote Sensing</i> , 2020 , 12, 1533	5	8
26	Influence of a weak typhoon on the vertical distribution of air pollution in Hong Kong: A perspective from a Doppler LiDAR network. <i>Environmental Pollution</i> , 2021 , 276, 116534	9.3	7
25	Towards understanding multi-model precipitation predictions from CMIP5 based on China hourly merged precipitation analysis data. <i>Atmospheric Research</i> , 2020 , 231, 104671	5.4	7
24	Effectiveness of indoor air purification intervention in improving cardiovascular health: A systematic review and meta-analysis of randomized controlled trials. <i>Science of the Total Environment</i> , 2021 , 789, 147882	10.2	7
23	Evaluation of hazardous airborne carbonyls in five urban roadside dwellings: A comprehensive indoor air assessment in Sri Lanka. <i>Atmospheric Pollution Research</i> , 2018 , 9, 270-277	4.5	6
22	Associations of Particulate Matter Sizes and Chemical Constituents with Blood Lipids: A Panel Study in Guangzhou, China. <i>Environmental Science & Environmental Science & Envi</i>	10.3	6

21	Source apportionment of hourly-resolved ambient volatile organic compounds: Influence of temporal resolution. <i>Science of the Total Environment</i> , 2020 , 725, 138243	10.2	5
20	Air quality and acid deposition impacts of local emissions and transboundary air pollution in Japan and South Korea 2019 ,		4
19	Effects of ozone egetation interactions on meteorology and air quality in China using a two-way coupled land tmosphere model. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 765-782	6.8	4
18	Development and intercity transferability of land-use regression models for predicting ambient PM₁₀, PM_{2.5}, NO₂ and O₃ concentrations in northern Taiwan. <i>Atmospheric Chemistry and Physics</i> ,	6.8	4
17	Assessing Transboundary-Local Aerosols Interaction Over Complex Terrain Using a Doppler LiDAR Network. <i>Geophysical Research Letters</i> , 2021 , 48, e2021GL093238	4.9	4
16	Association of cardiorespiratory hospital admissions with ambient volatile organic compounds: Evidence from a time-series study in Taipei, Taiwan. <i>Chemosphere</i> , 2021 , 276, 130172	8.4	3
15	Association of ambient non-methane hydrocarbons exposure with respiratory hospitalizations: A time series study in Taipei, Taiwan. <i>Science of the Total Environment</i> , 2020 , 729, 139010	10.2	2
14	Rise and fall of lung cancers in relation to tobacco smoking and air pollution: A global trend analysis from 1990 to 2012. <i>Atmospheric Environment</i> , 2022 , 269, 118835	5.3	2
13	Real-Time Monitoring of the Effects of Personal Temperature Exposure on the Blood Oxygen Saturation Level in Elderly People with and without Chronic Obstructive Pulmonary Disease: A Panel Study in Hong Kong. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	1
12	Suppression of Ozone Formation at High Temperature in China: From Historical Observations to Future Projections. <i>Geophysical Research Letters</i> ,	4.9	1
11	What drives long-term PM-attributable premature mortality change? A case study in central China using high-resolution satellite data from 2003 to 2018 <i>Environment International</i> , 2022 , 161, 107110	12.9	1
10	Inflammatory and oxidative stress responses of healthy elders to solar-assisted large-scale cleaning system (SALSCS) and changes in ambient air pollution: A quasi-interventional study in Xi'an, China. <i>Science of the Total Environment</i> , 2022 , 806, 151217	10.2	1
9	A new approach for health-oriented ozone control strategy: Adjoint-based optimization of NO emission reductions using metaheuristic algorithms. <i>Journal of Cleaner Production</i> , 2021 , 312, 127533	10.3	1
8	A novel approach for assessing the spatiotemporal trend of health risk from ambient particulate matter components: Case of Hong Kong. <i>Environmental Research</i> , 2022 , 204, 111866	7.9	1
7	The spatiotemporal relationship between PM _{2.5} and aerosol optical depth in China: influencing factors and implications for satellite PM _{2.5} estimations using MAIAC aerosol optical depth.	6.8	1
6	Regime-Dependent Impacts of Aerosol Particles and Updrafts on the Cloud Condensation Nuclei and the Enhanced Warm Rain Suppression: Evidence From Synergistic Satellite and LiDAR Observations. <i>Geophysical Research Letters</i> , 2022 , 49,	4.9	O
5	Characterizing the performance of a POPS miniaturized optical particle counter when operated on a quadcopter drone. <i>Atmospheric Measurement Techniques</i> , 2021 , 14, 6101-6118	4	О
4	Characteristics of surface energy balance and atmospheric circulation during hot-and-polluted episodes and their synergistic relationships with urban heat islands over the Pearl River Delta region. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 13443-13454	6.8	O

LIST OF PUBLICATIONS

Association of air pollution exposure with low arousal threshold obstructive sleep apnea: A cross-sectional study in Taipei, Taiwan.. *Environmental Pollution*, **2022**, 119393

9.3 0

Inverse Fluid Convection Problems in Enclosures. *Journal of Applied Mathematics*, **2012**, 2012, 1-2

1.1

Air quality and transboundary air pollution in China under climate change **2021**, 163-167