Mariana Argenziano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3748392/publications.pdf

Version: 2024-02-01

22 papers 234 citations

8 h-index

1162367

1058022 14 g-index

24 all docs

24 docs citations

times ranked

24

460 citing authors

#	Article	IF	CITATIONS
1	Electrophysiologic Characterization of Calcium Handling in Human Induced Pluripotent Stem Cell-Derived Atrial Cardiomyocytes. Stem Cell Reports, 2018, 10, 1867-1878.	2.3	48
2	Ca2+ Sparks and Ca2+ waves are the subcellular events underlying Ca2+ overload during ischemia and reperfusion in perfused intact hearts. Journal of Molecular and Cellular Cardiology, 2015, 79, 69-78.	0.9	33
3	Cardiac Arrhythmias Related to Sodium Channel Dysfunction. Handbook of Experimental Pharmacology, 2017, 246, 331-354.	0.9	28
4	3D promoter architecture re-organization during iPSC-derived neuronal cell differentiation implicates target genes for neurodevelopmental disorders. Progress in Neurobiology, 2021, 201, 102000.	2.8	24
5	Toxoplasma gondii Infection Induces Suppression in a Mouse Model of Allergic Airway Inflammation. PLoS ONE, 2012, 7, e43420.	1.1	19
6	Recent advances in the treatment of Brugada syndrome. Expert Review of Cardiovascular Therapy, 2018, 16, 387-404.	0.6	15
7	Tpeak-Tend as a predictor of ventricular arrhythmogenesis. International Journal of Cardiology, 2017, 249, 75-76.	0.8	14
8	Identifying differential regulatory control of $\langle i \rangle$ APOE $\langle j \rangle$ 6 on African versus European haplotypes as potential therapeutic targets. Alzheimer's and Dementia, 2022, 18, 1930-1942.	0.4	12
9	Inhibition of connexin 43 in cardiac muscle during intense physical exercise. Scandinavian Journal of Medicine and Science in Sports, 2014, 24, 336-344.	1.3	8
10	Phenotypic Variability in iPSC-Induced Cardiomyocytes and Cardiac Fibroblasts Carrying Diverse LMNA Mutations. Frontiers in Physiology, 2021, 12, 778982.	1.3	7
11	Arrhythmogenic effect of androgens on the rat heart. Journal of Physiological Sciences, 2017, 67, 217-225.	0.9	6
12	Transmural Autonomic Regulation of Cardiac Contractility at the Intact Heart Level. Frontiers in Physiology, 2019, 10, 773.	1.3	6
13	Generation of a Friedreich's Ataxia patient-derived iPSC line USFi001-A. Stem Cell Research, 2021, 54, 102399.	0.3	5
14	Transcriptional changes associated with advancing stages of heart failure underlie atrial and ventricular arrhythmogenesis. PLoS ONE, 2019, 14, e0216928.	1.1	2
15	Generation of a heterozygous FLNC mutation-carrying human iPSC line, USFi002-A, for modeling dilated cardiomyopathy. Stem Cell Research, 2021, 53, 102394.	0.3	2
16	Control hormonal de las corrientes de la fase 1 del potencial de acción cardiaco en el sÃndrome de Brugada. Revista Argentina De Cardiologia, 2014, 82, 310-315.	0.3	2
17	Generation of an iPSC cell line (USFi003-A) from a patient with dilated cardiomyopathy carrying a heterozygous mutation in LMNA (p.R541C). Stem Cell Research, 2021, 54, 102396.	0.3	1
18	Role of Calsequestrin and Sorcin in the Regulation of Cardiac Excitation Contraction Coupling: A Transcriptional and Physiological Study. Biophysical Journal, 2013, 104, 107a.	0.2	0

#	Article	IF	CITATIONS
19	Reperfusion Ca2+ Waves in the Intact Heart: A Possible Trigger for the Generation of Reperfusion Arrhythmias. Biophysical Journal, 2013, 104, 435a-436a.	0.2	O
20	P1â€019: HIGHâ€RESOLUTION GENOMEWIDE PROMOTERâ€FOCUSED CONNECTOME IMPLICATES MICROGLIA CAUSAL GENES FOR ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2019, 15, .	0.4	0
21	Highâ€resolution, genomeâ€wide, promoterâ€focused Capture C in astrocytes implicates causal genes for Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e043368.	0.4	O
22	Abstract P309: Particulate Matter Increases Oxidative Stress And Shortens The Action Potential In IPS-derived Cardiomyocytes. Circulation Research, 2021, 129, .	2.0	0