
Diederik M Roijers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3748231/publications.pdf Version: 2024-02-01

DIEDERIK M ROLLERS

#	Article	IF	CITATIONS
1	A Survey of Multi-Objective Sequential Decision-Making. Journal of Artificial Intelligence Research, 0, 48, 67-113.	7.0	246
2	Coordination of Electric Vehicle Charging Through Multiagent Reinforcement Learning. IEEE Transactions on Smart Grid, 2020, 11, 2347-2356.	9.0	69
3	A practical guide to multi-objective reinforcement learning and planning. Autonomous Agents and Multi-Agent Systems, 2022, 36, 1.	2.1	63
4	Multi-objective multi-agent decision making: a utility-based analysis and survey. Autonomous Agents and Multi-Agent Systems, 2020, 34, 1.	2.1	46
5	Open-Ended Learning: A Conceptual Framework Based on Representational Redescription. Frontiers in Neurorobotics, 2018, 12, 59.	2.8	38
6	Multi-Objective Decision Making. Synthesis Lectures on Artificial Intelligence and Machine Learning, 2017, 11, 1-129.	0.8	35
7	Deep Learning-Based Energy Disaggregation and On/Off Detection of Household Appliances. ACM Transactions on Knowledge Discovery From Data, 2021, 15, 1-21.	3.5	29
8	Real-Time Robot Vision on Low-Performance Computing Hardware. , 2018, , .		13
9	Directed Locomotion for Modular Robots with Evolvable Morphologies. Lecture Notes in Computer Science, 2018, , 476-487.	1.3	13
10	Computing Convex Coverage Sets for Faster Multi-objective Coordination. Journal of Artificial Intelligence Research, 0, 52, 399-443.	7.0	13
11	Monte Carlo Tree Search with options for general video game playing. , 2016, , .		11
12	Interactive Thompson Sampling forÂMulti-objective Multi-armed Bandits. Lecture Notes in Computer Science, 2017, , 18-34.	1.3	10
13	Scalar reward is not enough: a response to Silver, Singh, Precup and Sutton (2021). Autonomous Agents and Multi-Agent Systems, 2022, 36, .	2.1	10
14	Balancing Relevance Criteria through Multi-Objective Optimization. , 2016, , .		9
15	Queued Pareto Local Search for Multi-Objective Optimization. Lecture Notes in Computer Science, 2014, , 589-599.	1.3	9
16	Computing Convex Coverage Sets for Multi-objective Coordination Graphs. Lecture Notes in Computer Science, 2013, , 309-323.	1.3	9
17	Multi-objective decision-theoretic planning. Al Matters, 2016, 2, 11-12.	0.4	8
18	A utility-based analysis of equilibria in multi-objective normal-form games. Knowledge Engineering Review, 2020, 35, .	2.6	8

Diederik M Roijers

#	Article	IF	CITATIONS
19	Opponent learning awareness and modelling in multi-objective normal form games. Neural Computing and Applications, 2022, 34, 1759-1781.	5.6	7
20	Deep Multi-agent Reinforcement Learning in a Homogeneous Open Population. Communications in Computer and Information Science, 2019, , 90-105.	0.5	6
21	Interactive Multi-objective Reinforcement Learning in Multi-armed Bandits with Gaussian Process Utility Models. Lecture Notes in Computer Science, 2021, , 463-478.	1.3	5
22	Bayesian Best-Arm Identification for Selecting Influenza Mitigation Strategies. Lecture Notes in Computer Science, 2019, , 456-471.	1.3	5
23	Multi-criteria Coalition Formation Games. Lecture Notes in Computer Science, 2017, , 197-213.	1.3	5
24	Expected scalarised returns dominance: a new solution concept for multi-objective decision making. Neural Computing and Applications, 0, , .	5.6	4
25	Efficient Evaluation of Influenza Mitigation Strategies Using Preventive Bandits. Lecture Notes in Computer Science, 2017, , 67-85.	1.3	3
26	Predicting Appliance Usage Status In Home Like Environments. , 2018, , .		3
27	Bayesian Anytime m-top Exploration. , 2019, , .		2
28	Multi-Agent Thompson Sampling for Bandit Applications with Sparse Neighbourhood Structures. Scientific Reports, 2020, 10, 6728.	3.3	2
29	Sample-Efficient Model-Free Reinforcement Learning with Off-Policy Critics. Lecture Notes in Computer Science, 2020, 19-34	1.3	2