Theodore Tachim Medjo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3747967/publications.pdf

Version: 2024-02-01

		933447	996975
55	292	10	15
papers	citations	h-index	g-index
55	55	55	92
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	On the existence and uniqueness of solution to a stochastic 2D Cahn–Hilliard–Navier–Stokes model. Journal of Differential Equations, 2017, 263, 1028-1054.	2.2	32
2	Convergence of the solution of the stochastic 3D globally modified Cahn–Hilliard–Navier–Stokes equations. Journal of Differential Equations, 2018, 265, 545-592.	2.2	25
3	The exponential behavior of a stochastic globally modified Cahn–Hilliard–Navier–Stokes model with multiplicative noise. Journal of Mathematical Analysis and Applications, 2018, 460, 140-163.	1.0	24
4	A Navier–Stokes–Voight model with memory. Mathematical Methods in the Applied Sciences, 2013, 36, 2507-2523.	2.3	19
5	On a Regularized Family of Models for Homogeneous Incompressible Two-Phase Flows. Journal of Nonlinear Science, 2014, 24, 1033-1103.	2.1	19
6	Barotropic-Baroclinic Formulation of the Primitive Equations of the Ocean. Applicable Analysis, 2003, 82, 439-456.	1.3	15
7	Unique strong and attractor of a three dimensional globally modified Cahn-Hilliard-Navier-Stokes model. Applicable Analysis, 2017, 96, 2695-2716.	1.3	14
8	Optimal control of the primitive equations of the ocean with state constraints. Nonlinear Analysis: Theory, Methods & Applications, 2010, 73, 634-649.	1.1	13
9	Martingale solutions to stochastic nonlocal Cahn–Hilliard–Navier–Stokes equations with multiplicative noise of jump type. Physica D: Nonlinear Phenomena, 2019, 398, 23-68.	2.8	12
10	Pullback attractors for a non-autonomous homogeneous two-phase flow model. Journal of Differential Equations, 2012, 253, 1779-1806.	2.2	11
11	On the existence and uniqueness of solution to a stochastic 2D Allen–Cahn–Navier–Stokes model. Stochastics and Dynamics, 2019, 19, 1950007.	1.2	10
12	The exponential behavior of the stochastic three-dimensional primitive equations with multiplicative noise. Nonlinear Analysis: Real World Applications, 2011, 12, 799-810.	1.7	8
13	Pullback attractors for a non-autonomous Cahn–Hilliard–Navier–Stokes system in 2D. Asymptotic Analysis, 2014, 90, 21-51.	0.5	8
14	On the order of magnitude of the baroclinic flow in the primitive equations of the ocean. Annali Di Matematica Pura Ed Applicata, 2006, 185, S293-S313.	1.0	7
15	Attractors for the multilayer quasi-geostrophic equations of the ocean with delays. Applicable Analysis, 2008, 87, 325-347.	1.3	6
16	Averaging of a 3D primitive equations with oscillating external forces. Applicable Analysis, 2013, 92, 869-900.	1.3	6
17	A note on the regularity of weak solutions to the coupled 2D Allen–Cahn–Navier–Stokes system. Journal of Applied Analysis, 2019, 25, 111-117.	0.5	6
18	The exponential behavior of a stochastic Cahn-Hilliard-Navier-Stokes model with multiplicative noise. Communications on Pure and Applied Analysis, 2019, 18, 1117-1138.	0.8	5

#	Article	IF	CITATIONS
19	Second-order Optimality Conditions for Optimal Control of the Primitive Equations of the Ocean withÂPeriodic Inputs. Applied Mathematics and Optimization, 2011, 63, 75-106.	1.6	4
20	Global Existence of Martingale Solutions and Large Time Behavior for a 3D Stochastic Nonlocal Cahn–Hilliard–Navier–Stokes Systems with Shear Dependent Viscosity. Journal of Mathematical Fluid Mechanics, 2020, 22, 1.	1.0	4
21	On the strong solutions for a stochastic 2D nonlocal Cahn–Hilliard–Navier–Stokes model. Dynamics of Partial Differential Equations, 2020, 17, 19-60.	0.9	4
22	Mixed formulation of the two-layer quasi-geostrophic equations of the ocean. Numerical Methods for Partial Differential Equations, 1999, 15, 489-502.	3.6	3
23	FIXED-POINT ITERATION METHOD FOR NONLINEAR ROBUST CONTROL PROBLEMS IN FLUID MECHANICS. Numerical Functional Analysis and Optimization, 2002, 23, 849-873.	1.4	3
24	Maximum Principle of Optimal Control of the Primitive Equations of the Ocean With State Constraint. Numerical Functional Analysis and Optimization, 2008, 29, 1299-1327.	1.4	3
25	Maximum Principle of Optimal Control ofÂtheÂPrimitive Equations of the Ocean withÂTwoÂPointÂBoundary State Constraint. Applied Mathematics and Optimization, 2010, 62, 1-26.	1.6	3
26	Unique strong and $\$$ mathbb $\{V\}$ $\$$ V -attractor of a three-dimensional globally modified two-phase flow model. Annali Di Matematica Pura Ed Applicata, 2018, 197, 843-868.	1.0	3
27	Robust Control Problems Associated with the Multilayer Quasi-Geostrophic Equations of the Ocean. Applied Mathematics and Optimization, 2005, 51, 333-360.	1.6	2
28	Pullback attractors for closed cocycles. Nonlinear Analysis: Theory, Methods & Applications, 2010, 73, 2737-2751.	1.1	2
29	Long-time dynamics of a regularized family of models for homogeneous incompressible two-phase flows. Asymptotic Analysis, 2015, 94, 125-160.	0.5	2
30	Pullback attractor of a three dimensional globally modified Cahn–Hilliard-Navier–Stokes model. Applicable Analysis, 2018, 97, 1016-1041.	1.3	2
31	On the weak solutions to a 3D stochastic Cahn–Hilliard–Navier–Stokes model. Zeitschrift Fur Angewandte Mathematik Und Physik, 2020, 71, 1.	1.4	2
32	Weak solution of a stochastic 3D Cahn-Hilliard-Navier-Stokes model driven by jump noise. Journal of Mathematical Analysis and Applications, 2020, 484, 123680.	1.0	2
33	Gevrey class regularity for the global attractor of a two-dimensional non-Newtonian fluid. Acta Mathematica Scientia, 2022, 42, 265-282.	1.0	2
34	Existence and linear approximation for the stochastic 3D magnetohydrodynamic-alpha model. Journal of Mathematical Analysis and Applications, 2021, 502, 125242.	1.0	2
35	Pontryagin's maximum principle for optimal control of the stationary primitive equations of the ocean. Nonlinear Analysis: Theory, Methods & Applications, 2009, 71, 485-501.	1.1	1
36	Approximation of the long-term dynamics of the dynamical system generated by the multilayer quasigeostrophic equations of the ocean. Numerical Methods for Partial Differential Equations, 2016, 32, 1041-1065.	3.6	1

#	Article	IF	CITATIONS
37	Fully discrete finite element approximation of the stochastic Cahn–Hilliard–Navier–Stokes system. IMA Journal of Numerical Analysis, 2020, , .	2.9	1
38	Splitting-up scheme for the stochastic Cahn–Hilliard Navier–Stokes model. Stochastics and Dynamics, 2021, 21, 2150005.	1.2	1
39	Maximum principle of optimal control of a Cahn–Hilliard–Navier–Stokes model with state constraints. Optimal Control Applications and Methods, 2021, 42, 807-832.	2.1	1
40	Large deviation principles for a 2D stochastic Allen–Cahn–Navier–Stokes driven by jump noise. Stochastics and Dynamics, 2022, 22, .	1.2	1
41	On a Stochastic 2d Cahn-Hilliard-Navier-Stokes System Driven by Jump Noise. Communications on Stochastic Analysis, 2019, 13, .	0.1	1
42	On the weak solutions to a stochastic two-phase flow model. Applicable Analysis, 2022, 101, 914-937.	1.3	1
43	Large deviation principles for a 2D stochastic Cahn–Hilliard–Navier–Stokes driven by jump noise. Stochastics, 2022, 94, 1102-1136.	1.1	1
44	New formulations of a Stokes type problem related to the primitive equations of the atmosphere and applications. Numerische Mathematik, 2001, 87, 503-522.	1.9	0
45	Robust control problems for the multilayer quasi-geostrophic system. Nonlinear Analysis: Real World Applications, 2008, 9, 1425-1443.	1.7	0
46	Pullback attractors for the multi-layer quasi-geostrophic equations of the ocean. Nonlinear Analysis: Real World Applications, 2014, 17, 365-382.	1.7	0
47	Averaging of a nonlinear bipolar model with phase transition and oscillating external forces. Journal of Applied Analysis, 2015, 21, .	0.5	0
48	On the Weak Solutions to a Stochastic 2D Simplified Ericksen-Leslie Model. Potential Analysis, 2020, 53, 267-296.	0.9	0
49	Weak solution of a stochastic 2D Ericksen–Leslie model driven by jump noise. Stochastics, 2021, 93, 72-109.	1.1	0
50	Large deviation for a 2D Allen–Cahn–Navier–Stokes model under random influences. Asymptotic Analysis, 2021, 123, 41-78.	0.5	0
51	Convergent finite element based discretization of a stochastic twoâ€phase flow model. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 0, , e202000308.	1.6	0
52	On a Stochastic 2D Simplified Liquid Crystal Model Driven by Jump Noise. Civil War Book Review, 2018, 12, .	0.0	0
53	Some convergences results on the stochastic Cahn-Hilliard-Navier-Stokes equations with multiplicative noise. Potential Analysis, 0 , 1 .	0.9	0
54	Solution to a stochastic 3D nonlocal Cahn–Hilliard–Navier–Stokes model with shear dependent viscosity via a splitting-up method. Nonlinear Differential Equations and Applications, 2022, 29, 1.	0.8	0

#	Article	IF	CITATIONS
55	Existence and Exponential Behavior for the Stochastic 2D Cahn–Hilliard–Oldroyd Model of Oro One. Journal of Mathematical Fluid Mechanics, 2022, 24, 1.	der 1.0	o