Yong Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3747963/publications.pdf

Version: 2024-02-01

37	2,210	18	37
papers	citations	h-index	g-index
39	39	39	2532
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Genomic prediction models trained with historical records enable populating the German ex situ genebank bio-digital resource center of barley (HordeumÂsp.) with information on resistances to soilborne barley mosaic viruses. Theoretical and Applied Genetics, 2021, 134, 2181-2196.	3.6	5
2	On the use of GBLUP and its extension for GWAS with additive and epistatic effects. G3: Genes, Genomes, Genetics, $2021,11,1$	1.8	9
3	Unlocking big data doubled the accuracy in predicting the grain yield in hybrid wheat. Science Advances, 2021, 7, .	10.3	22
4	A SNP-based GWAS and functional haplotype-based GWAS of flag leaf-related traits and their influence on the yield of bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2021, 134, 3895-3909.	3.6	8
5	Characterization of heterosis and genomic predictionâ€based establishment of heterotic patterns for developing better hybrids in pigeonpea. Plant Genome, 2021, 14, e20125.	2.8	6
6	Genome-wide prediction for hybrids between parents with distinguished difference on exotic introgressions in Brassica napus. Crop Journal, 2021, 9, 1169-1178.	5.2	6
7	Improving Selection Efficiency of Crop Breeding With Genomic Prediction Aided Sparse Phenotyping. Frontiers in Plant Science, 2021, 12, 735285.	3.6	4
8	Genetic Dissection of Hybrid Performance and Heterosis for Yield-Related Traits in Maize. Frontiers in Plant Science, 2021, 12, 774478.	3.6	15
9	Exome association analysis sheds light onto leaf rust (<i>Puccinia triticina</i>) resistance genes currently used in wheat breeding (<i>Triticum aestivum</i> L.). Plant Biotechnology Journal, 2020, 18, 1396-1408.	8.3	13
10	Efficient Algorithms for Calculating Epistatic Genomic Relationship Matrices. Genetics, 2020, 216, 651-669.	2.9	15
11	Haplotype-based genome-wide association increases the predictability of leaf rust (<i>Puccinia) Tj ETQq1 1 0.784</i>	1314 rgBT -	/Oyerlock 10
12	Negative dominance and dominance-by-dominance epistatic effects reduce grain-yield heterosis in wide crosses in wheat. Science Advances, 2020, 6, eaay4897.	10.3	40
13	Can metabolic prediction be an alternative to genomic prediction in barley?. PLoS ONE, 2020, 15, e0234052.	2.5	17
14	Using Genome-Wide Predictions to Assess the Phenotypic Variation of a Barley (Hordeum sp.) Gene Bank Collection for Important Agronomic Traits and Passport Information. Frontiers in Plant Science, 2020, 11, 604781.	3.6	7
15	Selecting Closely-Linked SNPs Based on Local Epistatic Effects for Haplotype Construction Improves Power of Association Mapping. G3: Genes, Genomes, Genetics, 2019, 9, 4115-4126.	1.8	17
16	Genebank genomics highlights the diversity of a global barley collection. Nature Genetics, 2019, 51, 319-326.	21.4	322
17	Reciprocal recurrent genomic selection: an attractive tool to leverage hybrid wheat breeding. Theoretical and Applied Genetics, 2019, 132, 687-698.	3.6	33
18	Haplotype-Based Genome-Wide Prediction Models Exploit Local Epistatic Interactions Among Markers. G3: Genes, Genomes, Genetics, 2018, 8, 1687-1699.	1.8	50

#	Article	lF	Citations
19	Identification of QTL hot spots for malting quality in two elite breeding lines with distinct tolerance to abiotic stress. BMC Plant Biology, 2018, 18, 106.	3.6	25
20	Genome–metabolite associations revealed low heritability, high genetic complexity, and causal relations for leaf metabolites in winter wheat (<i>Triticum aestivum</i>). Journal of Experimental Botany, 2017, 68, erw441.	4.8	33
21	Genome-wide mapping and prediction suggests presence of local epistasis in a vast elite winter wheat populations adapted to Central Europe. Theoretical and Applied Genetics, 2017, 130, 635-647.	3.6	32
22	A quantitative genetic framework highlights the role of epistatic effects for grain-yield heterosis in bread wheat. Nature Genetics, 2017, 49, 1741-1746.	21.4	144
23	Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nature Biotechnology, 2017, 35, 969-976.	17.5	356
24	The roles of pleiotropy and close linkage as revealed by association mapping of yield and correlated traits of wheat (Triticum aestivum L.). Journal of Experimental Botany, 2017, 68, 4089-4101.	4.8	61
25	Validating the prediction accuracies of marker-assisted and genomic selection of Fusarium head blight resistance in wheat using an independent sample. Theoretical and Applied Genetics, 2017, 130, 471-482.	3.6	49
26	An insight into the description of the crystal structure for Mirković-Vilonen polytopes. Transactions of the American Mathematical Society, 2017, 369, 6407-6427.	0.9	3
27	Potential of marker selection to increase prediction accuracy of genomic selection in soybean (Glycine max L.). Molecular Breeding, 2016, 36, 113.	2.1	46
28	Genomic selection in a commercial winter wheat population. Theoretical and Applied Genetics, 2016, 129, 641-651.	3.6	129
29	Genome-based establishment of a high-yielding heterotic pattern for hybrid wheat breeding. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15624-15629.	7.1	178
30	Prospects and limits of marker imputation in quantitative genetic studies in European elite wheat (Triticum aestivum L.). BMC Genomics, 2015, 16, 168.	2.8	30
31	Modelling the genetic architecture of flowering time control in barley through nested association mapping. BMC Genomics, 2015, 16, 290.	2.8	192
32	Modeling Epistasis in Genomic Selection. Genetics, 2015, 201, 759-768.	2.9	210
33	Potential and limits of whole genome prediction of resistance to Fusarium head blight and Septoria tritici blotch in a vast Central European elite winter wheat population. Theoretical and Applied Genetics, 2015, 128, 2471-2481.	3.6	92
34	Parametrizations of Canonical Bases and Irreducible Components of Nilpotent Varieties. International Mathematics Research Notices, 2014, 2014, 3263-3278.	1.0	2
35	The Hall algebra approach to Drinfeld's presentation of quantum loop algebras. Advances in Mathematics, 2012, 231, 2593-2625.	1.1	13
36	Tame Quivers and Affine Enveloping Algebras. Pure and Applied Mathematics Quarterly, 2012, 8, 609-652.	0.4	0

#	Article	IF	CITATIONS
37	The elements in crystal bases corresponding to exceptional modules. Chinese Annals of Mathematics Series B, 2010, 31, 1-20.	0.4	4