
Oscar Esteban

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3747954/publications.pdf Version: 2024-02-01

OSCAD ESTERAN

#	Article	IF	CITATIONS
1	Measurement of the degree of salinity of water with a fiber-optic sensor. Applied Optics, 1999, 38, 5267.	2.1	63
2	In situsalinity measurements in seawater with a fibre-optic probe. Measurement Science and Technology, 2006, 17, 2227-2232.	1.4	62
3	High-sensitive SPR sensing with Indium Nitride as a dielectric overlay of optical fibers. Sensors and Actuators B: Chemical, 2011, 158, 372-376.	4.0	61
4	Plasmonic sensor based on tapered optical fibers and magnetic fluids for measuring magnetic fields. Sensors and Actuators A: Physical, 2017, 264, 58-62.	2.0	61
5	Surface plasmon resonance in the visible region in sensors based on tapered optical fibers. Sensors and Actuators B: Chemical, 2014, 190, 881-885.	4.0	52
6	A Polarization-Independent SPR Fiber Sensor. Plasmonics, 2010, 5, 7-12.	1.8	45
7	Improved performance of SPR sensors by a chemical etching of tapered optical fibers. Optics and Lasers in Engineering, 2011, 49, 1065-1068.	2.0	39
8	Surface plasmon resonance sensors based on uniform-waist tapered fibers in a reflective configuration. Applied Optics, 2006, 45, 7294.	2.1	38
9	Surface plasmon excitation in fiber-optics sensors: a novel theoretical approach. Journal of Lightwave Technology, 2002, 20, 448-453.	2.7	35
10	Tapered polymer optical fiber oxygen sensor based on fluorescence-quenching of an embedded fluorophore. Sensors and Actuators B: Chemical, 2013, 184, 64-69.	4.0	35
11	A fibre-optic temperature sensor based on the deposition of a thermochromic material on an adiabatic taper. Measurement Science and Technology, 2004, 15, 353-358.	1.4	32
12	Multiple surface-plasmon resonance in uniform-waist tapered optical fibers with an asymmetric double-layer deposition. Applied Optics, 2005, 44, 519.	2.1	32
13	Sensing properties of asymmetric double-layer-covered tapered fibers. Applied Optics, 2004, 43, 1615.	2.1	31
14	Improved fluorescence signal with tapered polymer optical fibers under side-illumination. Sensors and Actuators B: Chemical, 2010, 146, 190-194.	4.0	31
15	Plasmonic Sensors Based on Doubly-Deposited Tapered Optical Fibers. Sensors, 2014, 14, 4791-4805.	2.1	29
16	Advanced Plasmonic Fiber-Optic Sensor for High Sensitivity Measurement of Magnetic Field. IEEE Sensors Journal, 2019, 19, 7355-7364.	2.4	26
17	Optical-fiber self-referred refractometer based on Fresnel reflection at the fiber tip. Sensors and Actuators B: Chemical, 2013, 178, 263-269.	4.0	22
18	Absorption as a selective mechanism in surface plasmon resonance fiber optic sensors. Optics Letters, 2006, 31, 3089.	1.7	19

OSCAR ESTEBAN

#	Article	IF	CITATIONS
19	Coverage-Mapping Method Based on a Hardware Model for Mobile-Robot Positioning in Intelligent Spaces. IEEE Transactions on Instrumentation and Measurement, 2010, 59, 266-282.	2.4	18
20	Simple model of compound waveguide structures used as fiber-optic sensors. Optics and Lasers in Engineering, 2000, 33, 219-230.	2.0	16
21	Generation of Surface Plasmons at Waveguide Surfaces in the Mid-Infrared Region. Plasmonics, 2012, 7, 647-652.	1.8	16
22	Simultaneous Measurement of Humidity and Vibration Based on a Microwire Sensor System Using Fast Fourier Transform Technique. Journal of Lightwave Technology, 2016, 34, 4525-4530.	2.7	15
23	Multi-point fiber refractometer using Fresnel reflection and a coherent optical frequency-domain multiplexing technique. Applied Optics, 2019, 58, 684.	0.9	14
24	Multipoint Refractometer Based on Combined Correlation and Frequency Multiplexing. IEEE Photonics Technology Letters, 2017, 29, 1479-1482.	1.3	13
25	ECOAL Project—Delivering Solutions for Integrated Monitoring of Coal-Related Fires Supported on Optical Fiber Sensing Technology. Applied Sciences (Switzerland), 2017, 7, 956.	1.3	13
26	Multiple fluorescence sensing with side-pumped tapered polymer fiber. Sensors and Actuators B: Chemical, 2011, 157, 560-564.	4.0	12
27	Signal processing in SPR fiber sensors: Some remarks and a new method. Sensors and Actuators B: Chemical, 2018, 268, 150-156.	4.0	12
28	Optical constants of a sodium alginate polymer in the UV–vis range. Optical Materials, 2009, 31, 696-699.	1.7	11
29	Resonant nano-dimer metasurface for ultra-thin a-Si:H solar cells. Scientific Reports, 2021, 11, 7179.	1.6	10
30	Selectivity of SPR fiber sensors in absorptive media: An experimental evaluation. Sensors and Actuators B: Chemical, 2011, 160, 592-597.	4.0	9
31	Improved extrinsic polymer optical fiber sensors for gamma-ray monitoring in radioprotection applications. Optics and Laser Technology, 2017, 93, 201-207.	2.2	9
32	Location of Optical Fibers for the Calibration of Incoherent Optical Fiber Bundles for Image Transmission. IEEE Transactions on Instrumentation and Measurement, 2009, 58, 2996-3003.	2.4	8
33	Dynamic gamma-ray monitoring at radioprotection levels with extrinsic polymer optical fiber sensors. Sensors and Actuators A: Physical, 2018, 271, 83-87.	2.0	8
34	Simple low-cost refractometer using a disposable optical fiber tip for measurements. Optical Engineering, 2016, 55, 116108.	0.5	7
35	Highly Sensitive Extrinsic X-Ray Polymer Optical Fiber Sensors Based on Fiber Tip Modification. IEEE Sensors Journal, 2017, 17, 5112-5117.	2.4	6
36	Performance enhancement of an ultrafast all-fiber laser based on an InN saturable absorber using GRIN coupling. Optics Express, 2021, 29, 29357.	1.7	6

OSCAR ESTEBAN

#	Article	IF	CITATIONS
37	Simple oxygen gas sensor based on side-illuminated polymer optical fiber. , 2013, , .		5
38	Infrared SPR sensing with III-nitride dielectric layers. Sensors and Actuators B: Chemical, 2016, 223, 768-773.	4.0	5
39	Non-homogenous illumination correction of calibrated incoherent optical-fiber-bundles for image transmission purposes. , 2006, , .		4
40	How to play with the spectral sensitivity of interferometers using slow light concepts and how to do it practically. , 2007, , .		3
41	Moving the wavelength detection range in surface plasmon resonance sensors based on tapered optical fibers. Proceedings of SPIE, 2010, , .	0.8	3
42	Fluorescence excitation on tapered polymer optical fibers through microfiber evanescent field. Proceedings of SPIE, 2015, , .	0.8	3
43	A Preliminary Model for a Distance Sensor, Using a Radiometric Point of View. Sensor Letters, 2009, 7, 17-23.	0.4	3
44	Photo-interferometric spectroscopic ellipsometry. Thin Solid Films, 2004, 455-456, 90-94.	0.8	2
45	Theoretical method for the study of plasmon generation in hybrid multilayer-optical fiber structures. IEEE Sensors Journal, 2005, 5, 53-58.	2.4	2
46	Low-cost self-referenced all-fibre polarimetric current sensor for the monitoring of current in the railway catenary. Proceedings of SPIE, 2010, , .	0.8	2
47	Nanowire humidity optical sensor system based on fast Fourier transform technique. Proceedings of SPIE, 2015, , .	0.8	2
48	Camera to Emitter Distance Estimation Using Pixel Grey-Levels. Sensor Letters, 2009, 7, 133-142.	0.4	2
49	Remote sensing with ultra-low-reflective Bragg gratings written in standard telecommunication fiber. Optical Engineering, 2003, 42, 1182.	0.5	1
50	Fiber optic salinity probe. , 2004, , .		1
51	Improved performance of SPR optical fiber sensors with InN as dielectric cover. , 2011, , .		1
52	Monitoring of coal waste piles with fiber optic sensing technology. , 2015, , .		1
53	Fiber optic sensing system for temperature and gas monitoring in coal waste pile combustion environments. Proceedings of SPIE, 2015, , .	0.8	1
54	Optical fiber sensor for low dose gamma irradiation monitoring. , 2016, , .		1

OSCAR ESTEBAN

#	Article	IF	CITATIONS
55	Microfiber as light source for exciting fluorescence in a polymer optical fiber. Sensors and Actuators B: Chemical, 2016, 223, 30-34.	4.0	1
56	Multi-point gamma-ray monitoring at radioprotection levels with image devices. Sensors and Actuators A: Physical, 2018, 281, 117-123.	2.0	1
57	Uniform-waist tapered optical fibers with double-layer deposition. , 2004, 5502, 524.		0
58	Wide range refractive index sensor using a twin-grating interferometer for intensity reference. , 2009, , .		0
59	Characterization of tapered polymer optical fibers under side illumination for fluorescence sensing applications. Proceedings of SPIE, 2011, , .	0.8	0
60	An experimental evaluation of the behavior of SPR fiber sensors in absorptive medium when plasmons are tuned to absorption peaks: method for selective measurement. Proceedings of SPIE, 2011, , .	0.8	0
61	Extension of surface plasmon resonance in fiber optic sensors into the visible region. Proceedings of SPIE, 2013, , .	0.8	0
62	Simple refractometer based on in-line fiber interferometers. Proceedings of SPIE, 2015, , .	0.8	0
63	Multi-Point Fiber-Optic Refractometer Using the Fresnel Reflections at Fiber Tips. , 2018, , .		0
64	Nanostructured Top Contact as an Alternative to Transparent Conductive Oxides in Tandem Perovskite/c-Si Solar Cells. Applied Sciences (Switzerland), 2022, 12, 1854.	1.3	0