
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3747942/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	7.8	8,753
2	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	7.8	6,413
3	Multi-messenger Observations of a Binary Neutron Star Merger [*] . Astrophysical Journal Letters, 2017, 848, L12.	8.3	2,805
4	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	7.8	2,701
5	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	8.3	2,314
6	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Physical Review X, 2019, 9, .	8.9	2,022
7	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	7.8	1,987
8	Advanced LIGO. Classical and Quantum Gravity, 2015, 32, 074001.	4.0	1,929
9	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	7.8	1,600
10	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	7.8	1,473
11	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	7.8	1,224
12	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophysical Journal Letters, 2020, 896, L44.	8.3	1,090
13	GW190425: Observation of a Compact Binary Coalescence with Total MassÂâ^1⁄4Â3.4 M _⊙ . Astrophysical Journal Letters, 2020, 892, L3.	8.3	1,049
14	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	4.0	1,029
15	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	8.3	968
16	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 2016, 6, .	8.9	898
17	GW190521: A Binary Black Hole Werger with a Total Mass of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>150</mml:mn><mml:mtext> </mml:mtext><mml:mtext> stretchy="false">⊙</mml:mtext></mml:mrow>. Physical Review</mml:math 	nml ma text>	⊳ <n≋asaktmsub< td=""></n≋asaktmsub<>
18	Letters, 2020, 125, 101102. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature Photonics, 2013, 7, 613-619.	31.4	825

#	Article	IF	CITATIONS
19	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
20	Exploring the sensitivity of next generation gravitational wave detectors. Classical and Quantum Gravity, 2017, 34, 044001.	4.0	735
21	Properties of the Binary Neutron Star Merger GW170817. Physical Review X, 2019, 9, .	8.9	728
22	A gravitational-wave standard siren measurement of the Hubble constant. Nature, 2017, 551, 85-88.	27.8	674
23	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	7.8	673
24	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	8.3	633
25	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters, 2019, 882, L24.	8.3	566
26	Population Properties of Compact Objects from the Second LIGO–Virgo Gravitational-Wave Transient Catalog. Astrophysical Journal Letters, 2021, 913, L7.	8.3	514
27	Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. Physical Review D, 2019, 100, .	4.7	470
28	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	7.8	466
29	Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences. Astrophysical Journal Letters, 2021, 915, L5.	8.3	453
30	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
31	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	26.7	427
32	Properties and Astrophysical Implications of the 150 M _⊙ Binary Black Hole Merger GW190521. Astrophysical Journal Letters, 2020, 900, L13.	8.3	406
33	Tests of General Relativity with GW170817. Physical Review Letters, 2019, 123, 011102.	7.8	370
34	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 2016, 93, .	4.7	315
35	Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo. SoftwareX, 2021, 13, 100658.	2.6	275
36	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	7.8	269

#	Article	IF	CITATIONS
37	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	8.3	230
38	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	4.0	225
39	Bayesian inference for compact binary coalescences with <scp>bilby</scp> : validation and application to the first LIGO–Virgo gravitational-wave transient catalogue. Monthly Notices of the Royal Astronomical Society, 2020, 499, 3295-3319.	4.4	213
40	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13.	8.3	210
41	Search for the isotropic stochastic background using data from Advanced LIGO's second observing run. Physical Review D, 2019, 100, .	4.7	200
42	Computationally efficient models for the dominant and subdominant harmonic modes of precessing binary black holes. Physical Review D, 2021, 103, .	4.7	198
43	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	7.8	194
44	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	8.3	189
45	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814. Astrophysical Journal Letters, 2019, 876, L7.	8.3	179
46	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. Physical Review Letters, 2018, 120, 091101.	7.8	166
47	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	8.3	156
48	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	8.3	146
49	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	4.5	144
50	Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. Astrophysical Journal Letters, 2017, 850, L35.	8.3	135
51	Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. Physical Review D, 2013, 88, .	4.7	132
52	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	4.5	131
53	LIGO detector characterization in the second and third observing runs. Classical and Quantum Gravity, 2021, 38, 135014.	4.0	128
54	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	4.5	125

#	Article	IF	CITATIONS
55	Hierarchical data-driven approach to fitting numerical relativity data for nonprecessing binary black holes with an application to final spin and radiated energy. Physical Review D, 2017, 95, .	4.7	123
56	Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D, 2016, 93, .	4.7	119
57	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. Physical Review Letters, 2019, 123, 161102.	7.8	119
58	Search for Gravitational Lensing Signatures in LIGO-Virgo Binary Black Hole Events. Astrophysical Journal Letters, 2019, 874, L2.	8.3	107
59	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. Physical Review X, 2016, 6, .	8.9	106
60	Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence. Physical Review D, 2016, 94, .	4.7	102
61	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	4.0	98
62	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal, 2019, 875, 160.	4.5	97
63	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run. Classical and Quantum Gravity, 2018, 35, 065010.	4.0	94
64	Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009–2010. Physical Review D, 2013, 87, .	4.7	92
65	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Physical Review D, 2016, 93, .	4.7	92
66	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. Physical Review D, 2013, 87, .	4.7	91
67	Enhancing gravitational-wave science with machine learning. Machine Learning: Science and Technology, 2021, 2, 011002.	5.0	91
68	Constraints on cosmic strings using data from the first Advanced LIGO observing run. Physical Review D, 2018, 97, .	4.7	88
69	Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data. Astrophysical Journal, 2019, 879, 10.	4.5	88
70	Constraints on Cosmic Strings Using Data from the Third Advanced LIGO–Virgo Observing Run. Physical Review Letters, 2021, 126, 241102.	7.8	87
71	Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009–2010 LIGO and Virgo Data. Physical Review Letters, 2014, 113, 231101.	7.8	86
72	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	7.8	85

#	Article	IF	CITATIONS
73	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	7.8	84
74	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. Physical Review Letters, 2018, 121, 231103.	7.8	77
75	The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002.	4.0	73
76	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Physical Review D, 2017, 96, .	4.7	73
77	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	8.3	73
78	Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914. Physical Review D, 2017, 95, .	4.7	72
79	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. Astrophysical Journal, 2019, 883, 149.	4.5	72
80	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. Astrophysical Journal, 2019, 875, 161.	4.5	71
81	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. Physical Review D, 2017, 95, .	4.7	69
82	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	2.4	69
83	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	7.8	68
84	First Search for Nontensorial Gravitational Waves from Known Pulsars. Physical Review Letters, 2018, 120, 031104.	7.8	68
85	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	4.5	66
86	Directed search for continuous gravitational waves from the Galactic center. Physical Review D, 2013, 88, .	4.7	65
87	Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars. Astrophysical Journal Letters, 2020, 902, L21.	8.3	65
88	All-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2017, 96, .	4.7	64
89	SUPPLEMENT: "THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914―(2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14.	7.7	63
90	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28.	7.7	62

#	Article	IF	CITATIONS
91	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO [*] . Astrophysical Journal, 2019, 875, 122.	4.5	61
92	First all-sky search for continuous gravitational waves from unknown sources in binary systems. Physical Review D, 2014, 90, .	4.7	60
93	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. Physical Review D, 2016, 94, .	4.7	60
94	First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. Physical Review D, 2017, 96, .	4.7	60
95	Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run. Physical Review D, 2019, 99, .	4.7	60
96	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. Physical Review D, 2017, 95, .	4.7	59
97	Search for continuous gravitational waves: Improving robustness versus instrumental artifacts. Physical Review D, 2014, 89, .	4.7	58
98	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7.	7.7	57
99	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	4.5	52
100	Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. Physical Review D, 2019, 100, .	4.7	52
101	Directional limits on persistent gravitational waves using data from Advanced LIGO's first two observing runs. Physical Review D, 2019, 100, .	4.7	52
102	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. Physical Review D, 2015, 91, .	4.7	47
103	First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. Physical Review D, 2017, 96, .	4.7	47
104	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	4.5	46
105	Full band all-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2018, 97, .	4.7	46
106	Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model. Physical Review D, 2019, 100, .	4.7	46
107	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	7.7	44
108	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity, 2014, 31, 115004.	4.0	42

#	Article	IF	CITATIONS
109	Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. Physical Review D, 2017, 96, .	4.7	40
110	Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. Physical Review D, 2015, 91, .	4.7	39
111	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. Physical Review D, 2015, 91, .	4.7	37
112	Constraining the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"> <mml:mi> p</mml:mi> </mml:math> -Mode– <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi>g</mml:mi> -Mode Tidal Instability with GW170817. Physical Review Letters, 2019, 122, 061104.</mml:math 	7.8	36
113	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. Physical Review D, 2014, 89, .	4.7	35
114	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. Physical Review D, 2016, 94, .	4.7	35
115	Search for strongly lensed counterpart images of binary black hole mergers in the first two LIGO observing runs. Physical Review D, 2020, 102, .	4.7	35
116	A Detailed Analysis of GW190521 with Phenomenological Waveform Models. Astrophysical Journal, 2022, 924, 79.	4.5	35
117	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Classical and Quantum Gravity, 2014, 31, 165014.	4.0	34
118	A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 008-008.	5.4	32
119	Search for Gravitational Waves Associated with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>γ</mml:mi>-ray Bursts Detected by the Interplanetary Network. Physical Review Letters, 2014, 113, 011102.</mml:math 	7.8	32
120	First low frequency all-sky search for continuous gravitational wave signals. Physical Review D, 2016, 93, .	4.7	32
121	Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube. Astrophysical Journal, 2019, 870, 134.	4.5	32
122	Diving below the Spin-down Limit: Constraints on Gravitational Waves from the Energetic Young Pulsar PSR J0537-6910. Astrophysical Journal Letters, 2021, 913, L27.	8.3	32
123	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. Physical Review D, 2013, 88, .	4.7	31
124	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. Physical Review D, 2016, 94, .	4.7	31
125	Search Methods for Continuous Gravitational-Wave Signals from Unknown Sources in the Advanced-Detector Era. Universe, 2021, 7, 474.	2.5	31
126	New twists in compact binary waveform modeling: A fast time-domain model for precession. Physical Review D, 2022, 105, .	4.7	31

#	Article	IF	CITATIONS
127	Robust semicoherent searches for continuous gravitational waves with noise and signal models including hours to days long transients. Physical Review D, 2016, 93, .	4.7	30
128	The most powerful astrophysical events: Gravitational-wave peak luminosity of binary black holes as predicted by numerical relativity. Physical Review D, 2017, 96, .	4.7	30
129	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. Astrophysical Journal, 2019, 871, 90.	4.5	30
130	Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube. Physical Review D, 2014, 90, .	4.7	29
131	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. Physical Review D, 2014, 89, .	4.7	29
132	All-sky search for long-duration gravitational wave transients with initial LIGO. Physical Review D, 2016, 93, .	4.7	29
133	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. Astrophysical Journal, 2019, 886, 75.	4.5	29
134	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005–2010. Physical Review D, 2014, 89, .	4.7	28
135	Einstein@Home search for continuous gravitational waves from Cassiopeia A. Physical Review D, 2016, 94, .	4.7	28
136	Hierarchical follow-up of subthreshold candidates of an all-sky Einstein@Home search for continuous gravitational waves on LIGO sixth science run data. Physical Review D, 2016, 94, .	4.7	26
137	Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO's Second Observing Run. Astrophysical Journal, 2019, 874, 163.	4.5	26
138	Towards the routine use of subdominant harmonics in gravitational-wave inference: Reanalysis of GW190412 with generation X waveform models. Physical Review D, 2021, 103, .	4.7	25
139	Adaptive transient Hough method for long-duration gravitational wave transients. Physical Review D, 2019, 99, .	4.7	22
140	All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run. Physical Review D, 2019, 99, .	4.7	22
141	First search for long-duration transient gravitational waves after glitches in the Vela and Crab pulsars. Physical Review D, 2019, 100, .	4.7	22
142	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. Classical and Quantum Gravity, 2014, 31, 085014.	4.0	21
143	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20
144	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. Physical Review D, 2017, 95, .	4.7	19

#	Article	IF	CITATIONS
145	Time-domain phenomenological model of gravitational-wave subdominant harmonics for quasicircular nonprecessing binary black hole coalescences. Physical Review D, 2022, 105, .	4.7	19
146	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. Classical and Quantum Gravity, 2018, 35, 065009.	4.0	18
147	Application of a hierarchical MCMC follow-up to Advanced LIGO continuous gravitational-wave candidates. Physical Review D, 2021, 104, .	4.7	18
148	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Physical Review D, 2016, 93, .	4.7	17
149	PyFstat: a Python package for continuous gravitational-wave data analysis. Journal of Open Source Software, 2021, 6, 3000.	4.6	16
150	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007–2013. Physical Review D, 2016, 93, .	4.7	14
151	Faster search for long gravitational-wave transients: GPU implementation of the transient \$ ewcommand{F}{mathcal{F}}oldsymbol{ F}\$ -statistic. Classical and Quantum Gravity, 2018, 35, 205003.	4.0	14
152	Galactic double neutron star total masses and Gaussian mixture model selection. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1665-1674.	4.4	14
153	A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs. Astrophysical Journal, 2020, 893, 100.	4.5	12
154	Empirically estimating the distribution of the loudest candidate from a gravitational-wave search. Physical Review D, 2022, 105, .	4.7	12
155	Constrained probability distributions of correlation functions. Astronomy and Astrophysics, 2011, 534, A76.	5.1	11
156	OctApps: a library of Octave functions for continuous gravitational-wave data analysis. Journal of Open Source Software, 2018, 3, 707.	4.6	11
157	Line-robust statistics for continuous gravitational waves: safety in the case of unequal detector sensitivities. Classical and Quantum Gravity, 2015, 32, 035004.	4.0	10
158	Matched-filter study and energy budget suggest no detectable gravitational-wave â€~extended emission' from GW170817. Monthly Notices of the Royal Astronomical Society, 2019, 485, 843-850.	4.4	8
159	Time-frequency track distance for comparing continuous gravitational wave signals. Physical Review D, 2021, 103, .	4.7	8
160	Octahedron configuration for a displacement noise-cancelling gravitational wave detector in space. Physical Review D, 2013, 88, .	4.7	7
161	Search for long-duration transient gravitational waves from glitching pulsars during LIGO—Virgo third observing run. Journal of Physics: Conference Series, 2021, 2156, 012079.	0.4	5
162	Gravitational waves: search results, data analysis and parameter estimation. General Relativity and Gravitation, 2015, 47, 11.	2.0	4

#	Article	IF	CITATIONS
163	Multiple-image Lensing Bayes Factor for a Set of Gravitational-wave Events. Research Notes of the AAS, 2019, 3, 46.	0.7	4
164	Distinguishing transient signals and instrumental disturbances in semi-coherent searches for continuous gravitational waves with line-robust statistics. Journal of Physics: Conference Series, 2016, 716, 012003.	0.4	3
165	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2