
## Angel Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3747764/publications.pdf Version: 2024-02-01



ANCEL MADTIN

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends in Food<br>Science and Technology, 2014, 39, 18-39.                                                                                  | 15.1 | 385       |
| 2  | Encapsulation and co-precipitation processes with supercritical fluids: Fundamentals and applications. Journal of Supercritical Fluids, 2009, 47, 546-555.                                                                   | 3.2  | 333       |
| 3  | Formulation of lavandin essential oil with biopolymers by PCSS for application as biocide in ecological agriculture. Journal of Supercritical Fluids, 2010, 54, 369-377.                                                     | 3.2  | 103       |
| 4  | Carotenoid processing with supercritical fluids. Journal of Food Engineering, 2009, 93, 255-265.                                                                                                                             | 5.2  | 101       |
| 5  | Formulation of β-carotene by precipitation from pressurized ethyl acetate-on-water emulsions for application as natural colorant. Food Hydrocolloids, 2012, 26, 17-27.                                                       | 10.7 | 95        |
| 6  | Extraction of phytocompounds from the medicinal plant Clinacanthus nutans Lindau by<br>microwave-assisted extraction and supercritical carbon dioxide extraction. Industrial Crops and<br>Products, 2015, 74, 83-94.         | 5.2  | 89        |
| 7  | Encapsulation and Co-Precipitation Processes with Supercritical Fluids: Applications with Essential Oils~!2009-08-12~!2009-12-08~!2010-03-25~!. Open Chemical Engineering Journal, 2010, 4, 31-41.                           | 0.5  | 86        |
| 8  | Precipitation of lutein and co-precipitation of lutein and poly-lactic acid with the supercritical anti-solvent process. Chemical Engineering and Processing: Process Intensification, 2008, 47, 1594-1602.                  | 3.6  | 84        |
| 9  | Formulation of a natural biocide based on lavandin essential oil by emulsification using modified starches. Chemical Engineering and Processing: Process Intensification, 2009, 48, 1121-1128.                               | 3.6  | 83        |
| 10 | Thermodynamic analysis of absorption refrigeration cycles using ionic liquid+supercritical CO2 pairs.<br>Journal of Supercritical Fluids, 2010, 55, 852-859.                                                                 | 3.2  | 80        |
| 11 | Supercritical impregnation of lavandin (Lavandula hybrida) essential oil in modified starch. Journal of<br>Supercritical Fluids, 2011, 58, 313-319.                                                                          | 3.2  | 71        |
| 12 | Supercritical antisolvent precipitation from an emulsion: β-Carotene nanoparticle formation. Journal of Supercritical Fluids, 2009, 51, 238-247.                                                                             | 3.2  | 69        |
| 13 | Antimicrobial activity of lavandin essential oil formulations against three pathogenic food-borne<br>bacteria. Industrial Crops and Products, 2013, 42, 243-250.                                                             | 5.2  | 65        |
| 14 | Supercritical anti-solvent precipitation of carotenoid fraction from pink shrimp residue: Effect of operational conditions on encapsulation efficiency. Journal of Supercritical Fluids, 2012, 66, 342-349.                  | 3.2  | 63        |
| 15 | Production of stabilized sub-micrometric particles of carotenoids using supercritical fluid extraction of emulsions. Journal of Supercritical Fluids, 2012, 61, 167-174.                                                     | 3.2  | 59        |
| 16 | Enhanced Delivery of Quercetin by Encapsulation in Poloxamers by Supercritical Antisolvent Process.<br>Industrial & Engineering Chemistry Research, 2014, 53, 4318-4327.                                                     | 3.7  | 59        |
| 17 | Microwave-assisted extraction of polyphenols from Clinacanthus nutans Lindau medicinal plant:<br>Energy perspective and kinetics modeling. Chemical Engineering and Processing: Process<br>Intensification, 2015, 97, 66-74. | 3.6  | 52        |
| 18 | Solubility of gases in 1-alkyl-3methylimidazolium alkyl sulfate ionic liquids: Experimental determination and modeling. Journal of Chemical Thermodynamics, 2013, 58, 237-244.                                               | 2.0  | 50        |

| #  | Article                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Impregnation of medicinal plant phytochemical compounds into silica and alginate aerogels. Journal of Supercritical Fluids, 2016, 116, 251-263. | 3.2 | 49        |

## Formulation of $\hat{l}^2$ -carotene with soybean lecithin by PGSS (Particles from Gas Saturated) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 702 Td (S

| 21 | Hydrogen Storage in sH Clathrate Hydrates: Thermodynamic Model. Journal of Physical Chemistry B,<br>2009, 113, 7558-7563.                                                                               | 2.6  | 45 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| 22 | Production of Polymorphs of Ibuprofen Sodium by Supercritical Antisolvent (SAS) Precipitation.<br>Crystal Growth and Design, 2009, 9, 2504-2511.                                                        | 3.0  | 45 |
| 23 | New Thermodynamic Model of Equilibrium States of Gas Hydrates Considering Lattice Distortion.<br>Journal of Physical Chemistry C, 2009, 113, 422-430.                                                   | 3.1  | 45 |
| 24 | Hint: An educational software for heat exchanger network design with the pinch method. Education for Chemical Engineers, 2008, 3, e6-e14.                                                               | 4.8  | 43 |
| 25 | Formulation of β-carotene with poly-(ε-caprolactones) by PGSS process. Powder Technology, 2012, 217,<br>77-83.                                                                                          | 4.2  | 43 |
| 26 | Development of water-soluble Î <sup>2</sup> -carotene formulations by high-temperature, high-pressure emulsification and antisolvent precipitation. Food Hydrocolloids, 2014, 37, 14-24.                | 10.7 | 42 |
| 27 | Harvesting Renewable Energy for Carbon Dioxide Catalysis. Energy Technology, 2017, 5, 796-811.                                                                                                          | 3.8  | 42 |
| 28 | Encapsulation of curcumin using supercritical antisolvent (SAS) technology to improve its stability and solubility in water. Food Chemistry, 2018, 258, 156-163.                                        | 8.2  | 42 |
| 29 | Precipitation Processes with Supercritical Fluids: Patents Review. Recent Patents on Engineering, 2008, 2, 9-20.                                                                                        | 0.4  | 41 |
| 30 | Computational fluid dynamics simulation of a transpiring wall reactor for supercritical water oxidation. Chemical Engineering Journal, 2010, 158, 431-440.                                              | 12.7 | 40 |
| 31 | Micronization of polyethylene glycol by PGSS (Particles from Gas Saturated Solutions)-drying of aqueous solutions. Chemical Engineering and Processing: Process Intensification, 2010, 49, 1259-1266.   | 3.6  | 40 |
| 32 | PGSS-drying: Mechanisms and modeling. Journal of Supercritical Fluids, 2010, 55, 271-281.                                                                                                               | 3.2  | 37 |
| 33 | Production of water soluble quercetin formulations by pressurized ethyl acetate-in-water emulsion technique using natural origin surfactants. Food Hydrocolloids, 2015, 51, 295-304.                    | 10.7 | 35 |
| 34 | View cell investigation of silica aerogels during supercritical drying: Analysis of size variation and mass transfer mechanisms. Journal of Supercritical Fluids, 2014, 92, 24-30.                      | 3.2  | 34 |
| 35 | Thermodynamic Modeling of Promoted Structure II Clathrate Hydrates of Hydrogen. Journal of<br>Physical Chemistry B, 2009, 113, 7548-7557.                                                               | 2.6  | 33 |
| 36 | Gradual hydrophobic surface functionalization of dry silica aerogels by reaction with silane<br>precursors dissolved in supercritical carbon dioxide. Journal of Supercritical Fluids, 2013, 84, 74-79. | 3.2  | 33 |

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Determination of Phase Equilibrium (Solidâ^'Liquidâ^'Gas) in Poly-(ε-caprolactone)â^'Carbon Dioxide<br>Systems. Journal of Chemical & Engineering Data, 2010, 55, 2781-2785.                                                        | 1.9 | 32        |
| 38 | Experimental Performance and Modeling of a New Cooled-Wall Reactor for the Supercritical Water Oxidation. Industrial & Engineering Chemistry Research, 2009, 48, 6262-6272.                                                         | 3.7 | 31        |
| 39 | A Simplified van der Waals-Platteeuw Model of Clathrate Hydrates with Multiple Occupancy of<br>Cavities. Journal of Physical Chemistry B, 2010, 114, 9602-9607.                                                                     | 2.6 | 31        |
| 40 | Unexpected Behavior of Helium as Guest Gas in sll Binary Hydrates. Journal of Physical Chemistry<br>Letters, 2010, 1, 1014-1017.                                                                                                    | 4.6 | 30        |
| 41 | Production of stabilized quercetin aqueous suspensions by supercritical fluid extraction of emulsions. Journal of Supercritical Fluids, 2015, 100, 34-45.                                                                           | 3.2 | 30        |
| 42 | Experimental and Computational Investigation of the sII Binary Heâ^'THF Hydrate. Journal of Physical Chemistry B, 2011, 115, 1411-1415.                                                                                             | 2.6 | 29        |
| 43 | Mathematical modeling for simultaneous extraction and fractionation process of coffee beans with supercritical CO2 and water. Journal of Supercritical Fluids, 2012, 66, 111-119.                                                   | 3.2 | 29        |
| 44 | Production of water-soluble Î <sup>2</sup> -carotene micellar formulations by novel emulsion techniques.<br>Chemical Engineering and Processing: Process Intensification, 2013, 74, 90-96.                                          | 3.6 | 29        |
| 45 | Phase equilibria of carbon dioxide+poly ethylene glycol+water mixtures at high pressure:<br>Measurements and modelling. Fluid Phase Equilibria, 2009, 286, 162-169.                                                                 | 2.5 | 28        |
| 46 | Teaching advanced equations of state in applied thermodynamics courses using open source programs. Education for Chemical Engineers, 2011, 6, e114-e121.                                                                            | 4.8 | 28        |
| 47 | Production of encapsulated quercetin particles using supercritical fluid technologies. Powder Technology, 2017, 317, 142-153.                                                                                                       | 4.2 | 28        |
| 48 | Ionic Liquid as Reaction Media for the Production of Cellulose-Derived Polymers from Cellulosic<br>Biomass. ChemEngineering, 2017, 1, 10.                                                                                           | 2.4 | 28        |
| 49 | Encapsulation of Lavandin Essential Oil in Polyâ€(ïµâ€caprolactones) by PGSS Process. Chemical Engineering<br>and Technology, 2013, 36, 1187-1192.                                                                                  | 1.5 | 26        |
| 50 | Microwave-assisted process intensification techniques. Current Opinion in Green and Sustainable Chemistry, 2018, 11, 70-75.                                                                                                         | 5.9 | 26        |
| 51 | Co-Precipitation of β-Carotene and Polyethylene Glycol with Compressed CO <sub>2</sub> as an<br>Antisolvent: Effect of Temperature and Concentration. Industrial & Engineering Chemistry<br>Research, 2008, 47, 3900-3906.          | 3.7 | 24        |
| 52 | Application of a group contribution equation of state for the thermodynamic modeling of binary systems (gas + ionic liquids) with bis[(trifluoromethyl)sulfonyl]imide anion. Journal of Chemical Thermodynamics, 2010, 42, 524-529. | 2.0 | 24        |
| 53 | Preparation of cellulose aerogels from ionic liquid solutions for supercritical impregnation of phytol. Journal of Supercritical Fluids, 2017, 130, 17-22.                                                                          | 3.2 | 24        |
| 54 | Production of silica aerogel microparticles loaded with ammonia borane by batch and semicontinuous supercritical drying techniques. Journal of Supercritical Fluids, 2014, 92, 299-310.                                             | 3.2 | 22        |

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Influence of water concentration in the viscosities and densities of cellulose dissolving ionic liquids. Correlation of viscosity data. Journal of Chemical Thermodynamics, 2015, 91, 8-16.                              | 2.0  | 22        |
| 56 | Enhancement of hydrogen release kinetics from ethane 1,2 diamineborane (EDAB) by micronization using Supercritical Antisolvent (SAS) precipitation. Chemical Engineering Journal, 2016, 306, 164-173.                    | 12.7 | 22        |
| 57 | Improvement of the kinetics of hydrogen release from ammonia borane confined in silica aerogel.<br>Microporous and Mesoporous Materials, 2017, 237, 189-200.                                                             | 4.4  | 22        |
| 58 | Innovative methods to enhance the properties of solid hydrogen storage materials based on hydrides through nanoconfinement: A review. Journal of Supercritical Fluids, 2018, 141, 198-217.                               | 3.2  | 22        |
| 59 | A Micellar Formulation of Quercetin Prevents Cisplatin Nephrotoxicity. International Journal of<br>Molecular Sciences, 2021, 22, 729.                                                                                    | 4.1  | 20        |
| 60 | Crystallization of Caffeine by Supercritical Antisolvent (SAS) Process: Analysis of Process Parameters and Control of Polymorphism. Crystal Growth and Design, 2012, 12, 1943-1951.                                      | 3.0  | 19        |
| 61 | Operando Raman-mass spectrometry investigation of hydrogen release by thermolysis of ammonia<br>borane confined in mesoporous materials. Microporous and Mesoporous Materials, 2016, 226, 454-465.                       | 4.4  | 19        |
| 62 | Quercetin loaded particles production by means of supercritical fluid extraction of emulsions:<br>Process scale-upstudy and thermo-economic evaluation. Food and Bioproducts Processing, 2017, 103,<br>27-38.            | 3.6  | 19        |
| 63 | Effect of the spraying conditions and nozzle design on the shape and size distribution of particles obtained with supercritical fluid drying. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 70, 389-401. | 4.3  | 18        |
| 64 | Experimental determination of viscosities and densities of mixtures carbon<br>dioxide+1-allyl-3-methylimidazolium chloride. Viscosity correlation. Journal of Supercritical Fluids,<br>2016, 111, 91-96.                 | 3.2  | 18        |
| 65 | Melting point depression effect with CO 2 in high melting temperature cellulose dissolving ionic<br>liquids. Modeling with group contribution equation of state. Journal of Supercritical Fluids, 2016,<br>107, 590-604. | 3.2  | 18        |
| 66 | Behavior of an organic solvent drop during the supercritical extraction of emulsions. AICHE Journal, 2010, 56, 1184-1195.                                                                                                | 3.6  | 16        |
| 67 | Application of a Group Contribution Equation of State for the Thermodynamic Modeling of Gas +<br>Ionic Liquid Mixtures. Industrial & Engineering Chemistry Research, 2010, 49, 4966-4973.                                | 3.7  | 16        |
| 68 | Direct Synthesis of Linalyl Acetate from Linalool in Supercritical Carbon Dioxide: A Thermodynamic<br>Study. Chemical Engineering and Technology, 2007, 30, 726-731.                                                     | 1.5  | 15        |
| 69 | Modeling the phase behavior of ternary systems ionic liquid + organic + CO <sub>2</sub> with a Group Contribution Equation of State. AICHE Journal, 2009, 55, 1265-1273.                                                 | 3.6  | 15        |
| 70 | Solubility of Diisopropoxititanium Bis(acetylacetonate) in Supercritical Carbon Dioxide. Journal of<br>Chemical & Engineering Data, 2008, 53, 204-206.                                                                   | 1.9  | 14        |
| 71 | Kinetics of hydrogen release from dissolutions of ammonia borane inÂdifferent ionic liquids. Energy,<br>2015, 91, 742-750.                                                                                               | 8.8  | 14        |
| 72 | Release of hydrogen from nanoconfined hydrides by application of microwaves. Journal of Power Sources, 2017, 353, 131-137.                                                                                               | 7.8  | 13        |

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Effect of the modifier on the particle formation and crystallisation behaviour during precipitation from aqueous solutions. Journal of Supercritical Fluids, 2008, 44, 409-421.                                                               | 3.2 | 12        |
| 74 | Solubility of β-carotene in poly-(ɛ-caprolactone) particles produced in colloidal state by Supercritical<br>Fluid Extraction of Emulsions (SFEE). Journal of Supercritical Fluids, 2013, 84, 105-112.                                         | 3.2 | 12        |
| 75 | Lycopene solubility in mixtures of carbon dioxide and ethyl acetate. Journal of Supercritical Fluids, 2013, 75, 6-10.                                                                                                                         | 3.2 | 12        |
| 76 | Micronization of Magnesium Acetate by the Supercritical Antisolvent Process as a Precursor for the<br>Production of Magnesium Oxide and Magnesium Hydride. Crystal Growth and Design, 2014, 14,<br>4768-4776.                                 | 3.0 | 12        |
| 77 | Viscosities of binary mixtures containing 1-butanol + 2,2,4-trimethylpentane or +<br>1,2,4-trimethylbenzene at high pressures for the thermophysical characterization of biofuels. Journal<br>of Chemical Thermodynamics, 2016, 102, 140-146. | 2.0 | 12        |
| 78 | Impregnation of açaÃ-residue extracts in silica-aerogel. Journal of Supercritical Fluids, 2019, 146, 120-127.                                                                                                                                 | 3.2 | 12        |
| 79 | Solubility of Polycaprolactone in Supercritical Carbon Dioxide with Ethanol as Cosolvent. Journal of Chemical & Engineering Data, 2009, 54, 962-965.                                                                                          | 1.9 | 11        |
| 80 | Novel windows for "solar commodities― a device for CO <sub>2</sub> reduction using plasmonic catalyst activation. Faraday Discussions, 2015, 183, 249-259.                                                                                    | 3.2 | 11        |
| 81 | Tuned Pd/SiO 2 aerogel catalyst prepared by different synthesis techniques. Journal of the Taiwan<br>Institute of Chemical Engineers, 2016, 65, 515-521.                                                                                      | 5.3 | 11        |
| 82 | Measurement and modelling of mass transport properties during the supercritical fluid extraction of emulsions. Journal of Supercritical Fluids, 2017, 129, 36-47.                                                                             | 3.2 | 10        |
| 83 | Recent Developments of Supercritical Water Oxidation: A Patents Review. Recent Patents on Chemical Engineering, 2011, 4, 219-230.                                                                                                             | 0.5 | 10        |
| 84 | Precipitation of Mandelic Acid with a Supercritical Antisolvent Process:  Experimental and Theoretical<br>Analysis, Optimization, and Scaleup. Industrial & Engineering Chemistry Research, 2007, 46,<br>1552-1562.                           | 3.7 | 9         |
| 85 | Hydrothermal CO2 Reduction by Glucose as Reducing Agent and Metals and Metal Oxides as Catalysts.<br>Molecules, 2022, 27, 1652.                                                                                                               | 3.8 | 8         |
| 86 | Design and Cost Evaluation of a Separation Process for a Multicomponent Mixture Using Dense CO2.<br>Industrial & Engineering Chemistry Research, 2009, 48, 5779-5788.                                                                         | 3.7 | 7         |
| 87 | Reversible hydrogen sorption in the composite made of magnesium borohydride and silica aerogel.<br>International Journal of Hydrogen Energy, 2016, 41, 15245-15253.                                                                           | 7.1 | 7         |
| 88 | Formulation of açaÃ-(E. oleracea Mart.) Pulp and seeds extracts by co-precipitation in Supercritical<br>Antisolvent (SAS) technology. Journal of Supercritical Fluids, 2021, 169, 105090.                                                     | 3.2 | 7         |
| 89 | A Bio-Based Alginate Aerogel as an Ionic Liquid Support for the Efficient Synthesis of Cyclic<br>Carbonates from CO2 and Epoxides. Catalysts, 2021, 11, 872.                                                                                  | 3.5 | 7         |
| 90 | Protective Effect of Quercetin 3-O-Glucuronide against Cisplatin Cytotoxicity in Renal Tubular Cells.<br>Molecules, 2022, 27, 1319.                                                                                                           | 3.8 | 7         |

| #   | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Production of water-soluble quercetin formulations by antisolvent precipitation and supercritical drying. Journal of Supercritical Fluids, 2015, 104, 281-290.                                                                        | 3.2 | 6         |
| 92  | Adsorption of nickelocene and ruthenocene on mesoporous silica MCM-48 and activated carbon supports in supercritical carbon dioxide. Journal of Supercritical Fluids, 2016, 117, 138-146.                                             | 3.2 | 6         |
| 93  | Applications of supercritical technologies to CO2 reduction: Catalyst development and process intensification. Journal of Supercritical Fluids, 2018, 134, 141-149.                                                                   | 3.2 | 6         |
| 94  | Solubility of Bisphenol A in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data, 2011, 56, 3910-3913.                                                                                                               | 1.9 | 5         |
| 95  | Analysis of the Energy Flow in a Municipal Wastewater Treatment Plant Based on a Supercritical<br>Water Oxidation Reactor Coupled to a Gas Turbine. Processes, 2021, 9, 1237.                                                         | 2.8 | 5         |
| 96  | Stability and cell distortion of sI clathrate hydrates of methane and carbon dioxide: A 2D lattice-gas model study. Fluid Phase Equilibria, 2015, 402, 30-37.                                                                         | 2.5 | 4         |
| 97  | Measurement and modelization of VLE of binary mixtures of propyl acetate, butyl acetate or isobutyl acetate with methanol at pressure of 0.6MPa. Chinese Journal of Chemical Engineering, 2016, 24, 630-637.                          | 3.5 | 4         |
| 98  | Carbon Dioxide Hydrogenation by Means of Plasmonic Resonance Activation in Silica Aerogel Media.<br>Materials, 2018, 11, 2134.                                                                                                        | 2.9 | 4         |
| 99  | Lattice-gas Monte Carlo study of sI clathrate hydrates of ethylene: Stability analysis and cell<br>distortion. Fluid Phase Equilibria, 2020, 521, 112739.                                                                             | 2.5 | 4         |
| 100 | Energy and Economic Analysis of the Hydrothermal Reduction of CO <sub>2</sub> into Formate.<br>Industrial & Engineering Chemistry Research, 2021, 60, 14038-14050.                                                                    | 3.7 | 4         |
| 101 | Measurement and Modeling of High Pressure Vapor–Liquid Equilibrium for Methyl Acetate or Ethyl<br>Acetate with 2-Butanol. Isobaric Data at 1.5 MPa. Journal of Chemical & Engineering Data, 2016, 61,<br>1136-1145.                   | 1.9 | 3         |
| 102 | Determination of density and excess molar volume of dimethyl sulfoxide + 1-allyl-3-methylimidazolium chloride mixtures at high pressure. Journal of Supercritical Fluids, 2017, 130, 76-83.                                           | 3.2 | 3         |
| 103 | Effect of scCO2 on the kinetics of acetylation of cellulose using 1-allyl-3-methylimidazolium chloride as solvent. Experimental study and modeling. Journal of Supercritical Fluids, 2018, 141, 97-103.                               | 3.2 | 3         |
| 104 | Supercritical drying of thermoresponsive gels based on N-isopropylacrylamide. Journal of the Taiwan<br>Institute of Chemical Engineers, 2020, 110, 120-129.                                                                           | 5.3 | 3         |
| 105 | CO2–CH4 Exchange Process in Structure I Clathrate Hydrates: Calculations of the Thermodynamic<br>Functions Using a Flexible 2D Lattice-Gas Model and Monte Carlo Simulations. Journal of Physical<br>Chemistry B, 2022, 126, 878-889. | 2.6 | 3         |
| 106 | Reactors for Supercritical Water Oxidation Processes. Biofuels and Biorefineries, 2014, , 179-205.                                                                                                                                    | 0.5 | 0         |